### Group analyses

#### Will Penny

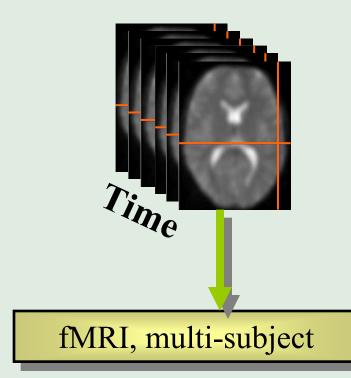


Wellcome Dept. of Imaging Neuroscience University College London

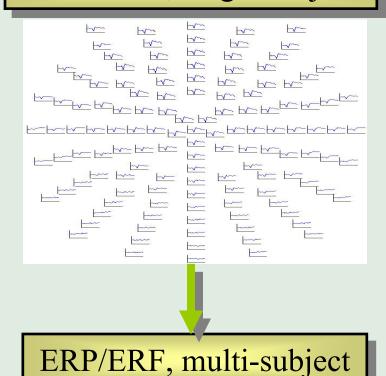


#### Data

fMRI, single subject

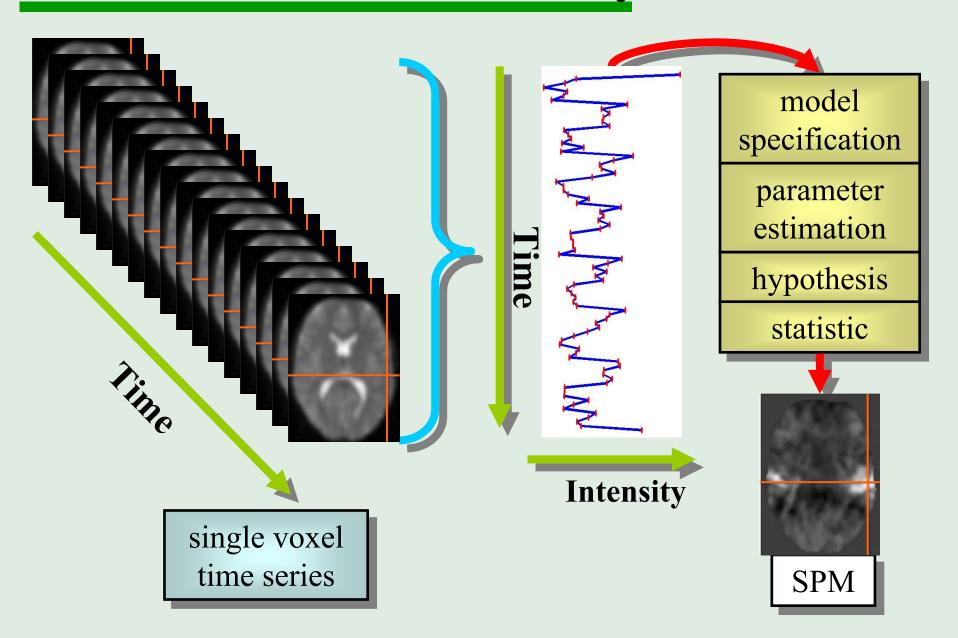


EEG/MEG, single subject



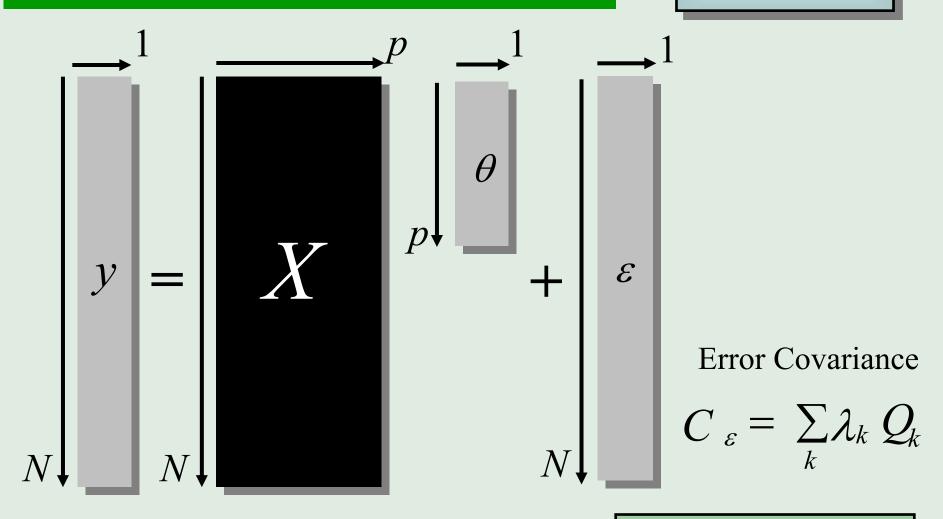
Hierarchical model for all imaging data!

# Reminder: voxel by voxel



### General Linear Model

$$y = X\theta + \varepsilon$$



*N*: number of scans

*p*: number of regressors

Model is specified by

- 1. Design matrix X
- 2. Assumptions about  $\varepsilon$

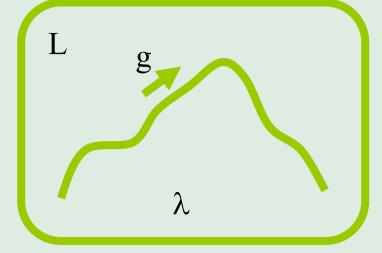
#### **Estimation**

$$y = X \theta + \varepsilon$$
 $N \times 1 N \times p p \times 1 N \times 1$ 

1. ReML-algorithm

$$C_{\varepsilon} = \sum_{k} \lambda_{k} Q_{k}$$

Maximise 
$$L = \ln p(y \mid \lambda) = \ln \int p(y \mid \theta, \lambda) d\theta$$



$$g = \frac{dL}{d\lambda}$$

$$J = \frac{d^{2}L}{d\lambda^{2}}$$

$$\lambda = \lambda + J^{-1}g$$

2. Weighted Least Squares

$$\theta = (X^T C_e^{-1} X^T) X^T C_e^{-1} y$$

Friston et al. 2002, Neuroimage

#### Hierarchical model

#### Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$\vdots$$

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

Multiple variance components at each level

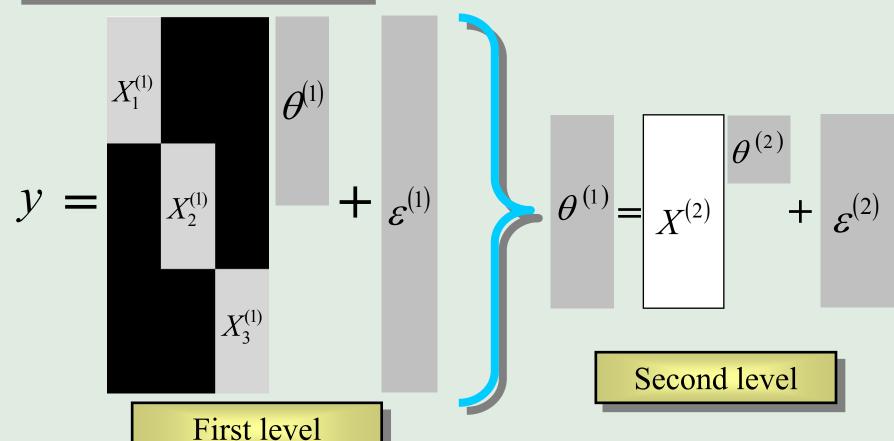
$$C_{\varepsilon}^{\scriptscriptstyle (i)} = \sum_{k} \lambda_{k}^{\scriptscriptstyle (i)} Q_{k}^{\scriptscriptstyle (i)}$$

At each level, distribution of parameters is given by level above.

What we don't know: distribution of parameters and variance parameters.

## Example: Two level model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$
$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$



#### **Estimation**

Hierarchical model

$$y = X^{(1)}\theta^{(1)} + \varepsilon^{(1)}$$

$$\theta^{(1)} = X^{(2)}\theta^{(2)} + \varepsilon^{(2)}$$

$$\vdots$$

$$\theta^{(n-1)} = X^{(n)}\theta^{(n)} + \varepsilon^{(n)}$$

Single-level model

$$y = \varepsilon^{(1)} + X^{(1)} \varepsilon^{(2)} + \dots + X^{(1)} \dots X^{(n-1)} \varepsilon^{(n)} + X^{(1)} \dots X^{(n)} \theta^{(n)}$$

$$= X\theta + e$$

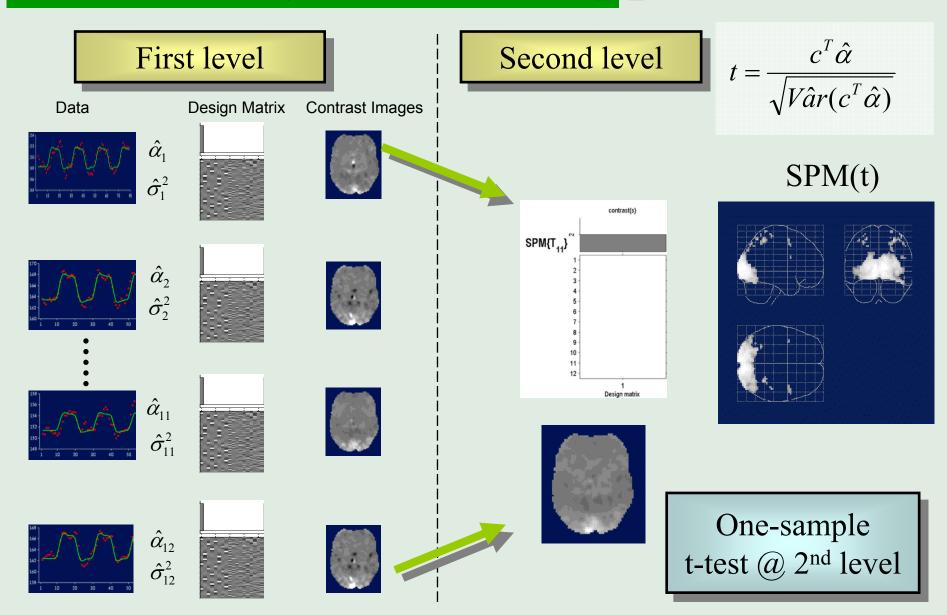
# Group analysis in practice

Many 2-level models are just too big to compute.

And even if, it takes a long time!

Is there a fast approximation?

# Summary Statistics approach



# Validity of approach

The summary stats approach is exact if for each session/subject:

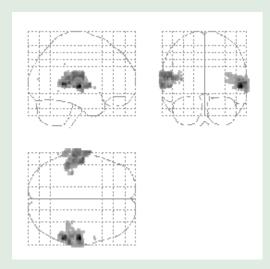
Within-session covariance the same

First-level design the same

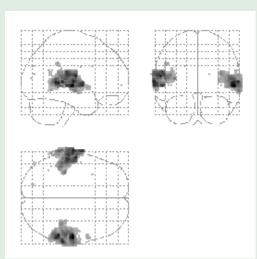
All other cases: Summary stats approach seems to be robust against typical violations.

## **Auditory Data**

**Summary** statistics



Hierarchical Model



Friston et al. (2004) Mixed effects and fMRI studies, Neuroimage

# Multiple contrasts per subject

Stimuli:

Auditory Presentation (SOA = 4 secs) of words

| Motion | Sound   | Visual | Action |
|--------|---------|--------|--------|
| "jump" | "click" | "pink" | "turn" |

Subjects:

(i) 12 control subjects

Scanning:

fMRI, 250 scans per subject, block design

Question:

What regions are affected by the semantic content of the words?

U. Noppeney et al.

### **ANOVA**

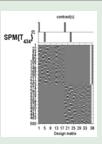
1<sup>st</sup> level:

1.Motion

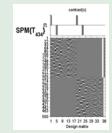
2.Sound

3. Visual

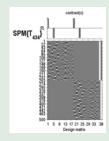
4.Action



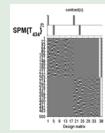
?



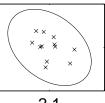
?



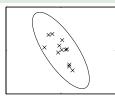
?



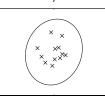
2<sup>nd</sup> level:



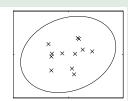
2,1



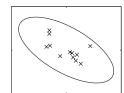
3,1



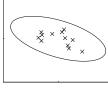
3,2



4,1



4,2



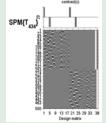
4,3

### **ANOVA**

1st level:

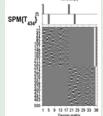
#### Motion

#### Sound

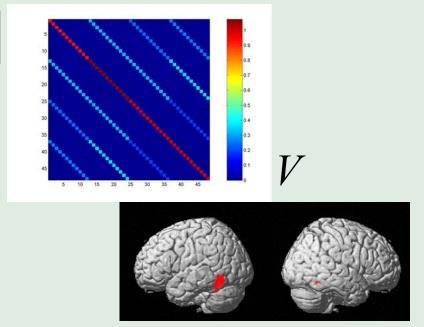


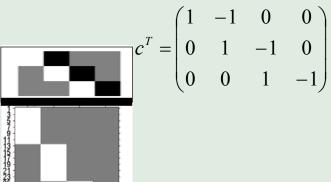
#### Visual

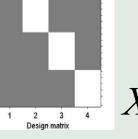
#### Action



2<sup>nd</sup> level:







# Summary

Linear hierarchical models are general enough for typical multi-subject imaging data (PET, fMRI, EEG/MEG).

Summary statistics are robust approximation for group analysis.

Also accomodates multiple contrasts per subject.