Bayesian Inference

"The true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." James Clerk Maxwell (1850)

Jérémie Mattout
Lyon Neuroscience Research Center, France

Jean Daunizeau
Guillaume Flandin
Karl Friston
Will Penny

Outline

- General principles
- The Bayesian way
- SPM examples

- General principles

- The Bayesian way
- SPM examples

A starting point

Statistics: concerned with the collection, analysis and interpretation of data to make decisions

Theoretical statistics

summary statistics, graphics...

Inferential statistics
Data interpretations, decision making
(Modeling, accounting for randomness and unvertainty, hypothesis testing, infering hidden parameters)

The notion(s) of probability

To express belief that an event has or will occur
Ω : All possible events
A_{i} : one particular event

Kolomogorov axioms

(1) $0 \leq P(A) \leq 1$
(2) $P(\Omega)=1$
(3) $P\left(A_{1} \cup A_{2} \cdots \cup A_{k}\right)=\sum_{i=1}^{k} P\left(A_{i}\right)$

A few consequences...

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cap B)=0{ }_{\text {(joint probability) }}^{(\text {(if mutually exclusive events) }} \\
& P(A \cap B)=P(A) \cdot P(B)
\end{aligned}
$$

The notion(s) of probability

Frequentist interpretation

Bayesian interpretation

- Probability = degree of belief, measure of uncertainty
- Can be arbitrarily defined for any type of event
- Is considered as Subjective in essence

The notion(s) of probability

Frequentist interpretation

Bayesian interpretation

- Probability = degree of belief, measure of uncertainty
- Can be arbitrarily defined for any type of event
- Is considered as Subjective in essence

Joint and conditional probabilities

- Joint probability of A and $B \quad P(A \cap B)=P(A, B)$
- Conditional probability of A given $B \quad P(A \mid B)$

$$
P(A, B)=P(A \mid B) P(B)
$$

- Note that if A and B are independent

$$
P(A \mid B)=P(A)
$$

and

$$
P(A, B)=P(A) P(B)
$$

Joint and conditional probabilities

- Joint probability of A and $B \quad P(A \cap B)=P(A, B)$
- Conditional probability of A given $B \quad P(A \mid B)$

$$
\begin{gathered}
P(A, B)=P(A \mid B) P(B) \\
P(A, B)=P(B, A)=P(B \mid A) P(A) \\
P(A \mid B) P(B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

Probability distributions (quick reminder)

Discrete variable (e.g. Binomial distribution)

$P($ Heads $)=1-P($ Tails $)$

$$
p(X=x)=C_{x}^{n} p^{x}(1-p)^{1-x}
$$

$$
p(X \leq x)=\sum_{0}^{x} f(x)
$$

Continuous variable (e.g. Gaussian distribution)

- General principles
- The Bayesian way
- SPM examples

A word on generative models

Model: mathematical formulation of a system or process (set of hypothesis and approximations)

A Probabilistic Model enables to:

- Account for prior knowledge and uncertainty
(due to randomness, noise, incomplete observations)
- Simulate data
- Make predictions
- Estimate hidden parameters
- Test Hypothesis

Another look at Bayes rule

Model/Hypothesis

A simple example

Univariate Gaussian variables

$$
P(\theta \mid Y)=\frac{\text { Likelihood } \quad Y=X \theta+\varepsilon \quad \varepsilon \sim N(0, \gamma)}{P(Y)} \quad \text { Prior } \quad \theta \sim N(\mu, \sigma) \quad,
$$

Qualifying priors

$$
P(\theta \mid Y)=\frac{P(Y \mid \theta) P(\theta)}{P(Y)}
$$

Shrinkage prior $\quad \theta \sim N(0, \sigma)$

Uninformative (objective) prior $\theta \sim N(0, \sigma)$ with large σ

Conjugate prior when the prior and posterior distributions belong to the same family

Likelihood dist.	Conjugate prior dist.
Binomiale	Beta
Multinomiale	Dirichlet
Gaussian	Gaussian
Gamma	Gamma

Hierarchical models and empirical priors

Likelihood

$$
Y=X \theta_{1}+\varepsilon \quad \varepsilon \sim N(0, \gamma)
$$

Prior

$$
\theta=\left\{\theta_{1}, \theta_{2}, . ., \theta_{k-1}\right\}
$$

$$
\begin{gathered}
\theta_{1} \sim N\left(\theta_{2}, \sigma_{2}\right) \\
\theta_{2} \sim N\left(\theta_{3}, \sigma_{3}\right) \\
\vdots \\
\theta_{k-1} \sim N\left(\theta_{k}, \sigma_{k}\right)
\end{gathered}
$$

Graphical representation

Hierarchical models

and empirical priors

Univariate Gaussian variables

Hypothesis testing

$$
P(\theta \mid Y)=\frac{P(Y \mid \theta) P(\theta)}{P(Y)}
$$

- given a null hypothesis, e.g.: $H_{0}: \theta>0$

- apply decision rule, i.e.:
if $P\left(H_{0} \mid Y\right) \geq \delta$ then accept H0
Posterior Probability Maps (PPM)

Comparison with the frequentist approach

- given a null hypothesis, e.g.: $H_{0}: \theta>0$
- given a null hypothesis, e.g.: $H_{0}: \theta=0$

- apply decision rule, i.e.:
if $P\left(H_{0} \mid Y\right) \geq \delta$ then accept H0
Posterior Probability Map (PPM)
- apply decision rule, i.e.:
if $P\left(t>t^{*} \mid H_{0}\right) \leq \alpha$ then reject H0
Statistical Parametric Map (SPM)

Model comparison

$$
P(\theta \mid Y)=\frac{P(Y \mid \theta) P(\theta)}{P(Y)}
$$

Making the model dependency explicit...

$$
P(\theta \mid Y, M)=\frac{P(Y \mid \theta, M) P(\theta \mid M)}{P(Y \mid M)}
$$

Bayes rule again... $\quad P(M \mid Y)=\frac{P(Y \mid M) P(M)}{P(Y)}$

Model comparison

if $\quad P\left(Y \mid M_{1}\right)>P\left(Y \mid M_{2}\right)$, select model M_{1}

In practice, compute the Bayes Factor...

$$
B F_{12}=\frac{P\left(Y \mid M_{1}\right)}{P\left(Y \mid M_{2}\right)}
$$

... and apply the decision rule

B_{12}	Evidence
1 to 3	Weak
3 to 20	Positive
20 to 150	Strong
≥ 150	Very strong

Principle of parsimony

$$
P(\theta \mid Y, M)=\frac{P(Y \mid \theta, M) P(\theta \mid M)}{P(Y \mid M)}
$$

Occam's razor
Complex models should not be considered without necessity

$$
p(Y \mid M)=\int p(Y \mid \theta, M) p(\theta \mid M) d \theta
$$

Usually no exact analytic solution !!

Approximations to the (log-)evidence

$$
\begin{aligned}
& \Delta B I C=-2 \log \left[\frac{\sup P\left(Y \mid \theta, M_{1}\right)}{\sup P\left(Y \mid \theta, M_{2}\right)}\right]-(n 2-n 1) \log N \\
& \Delta A I C=-2 \log \left[\frac{\sup P\left(Y \mid \theta, M_{1}\right)}{\sup P\left(Y \mid \theta, M_{2}\right)}\right]-2(n 2-n 1)
\end{aligned}
$$

Variational Bayes Inference

Variational Bayes (VB) ミExpectation Maximization (EM) \equiv Restricted Maximum Likelihood (ReML)

Main features

- Iterative optimization procedure
- Yields a twofold inference on parameters θ and models M
- Uses a fixed-form approximate posterior $q(\theta)$
- Make use of approximations (e.g. mean field, Laplace)
to approach $P(\theta \mid Y, M)$ and $P(Y \mid M)$

The criterion to be maximized is the (negative) free-energy F
F is a lower bound to the log-evidence

$$
\begin{aligned}
\boldsymbol{F}=\ln & P(Y \mid M)-D_{K L}(Q(\theta) ; P(\theta \mid Y, M)) \\
& =\langle\ln P(Y, \theta \mid M)\rangle_{Q}+S(Q) \\
& =\langle\ln P(Y \mid \theta, M)\rangle_{Q}-D_{K L}(Q(\theta) ; P(\theta \mid M)) \\
& \quad \mathbf{F}=\text { accuracy - complexity }
\end{aligned}
$$

To summarize

Bayesian inference enables us to

- Make use of probabilities to formalize complex models, to incorporate prior knowledge and to deal with randomness, uncertainty or incomplete observations
- Test hypothesis on both parameters and models
- Formalize the scientific methods, that is up-dating our knowledge by testing hypothesis

- General principles
- The Bayesian way
- SPM examples

Segmentation of anatomical MRI

EEG/MEG source reconstruction

Dynamic causal modelling of EEG data

Evidence for feedback loops (MMN paradigm)

