### **Bayesian Inference**

"The true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind." James Clerk Maxwell (1850)

Jérémie Mattout Lyon Neuroscience Research Center, France

> With many thanks to Jean Daunizeau Guillaume Flandin Karl Friston Will Penny

SPM MEEG Course, London, May 2011

### Outline

- General principles
- The Bayesian way
- SPM examples

### - General principles

- The Bayesian way
- SPM examples

## A starting point



## The notion(s) of probability





P. de Fermat (1601-1665)



*To express belief that an event has or will occur* 

**()** : All possible events  $A_i$ : one particular event

### **Kolomogorov** axioms

(3)  $P(A_1 \cup A_2 \cdots \cup A_k) = \sum_{k=1}^{k} P(A_i)$ 

(1)  $0 \le P(A) \le 1$ 

(for mutually exclusive events)

(2)  $P(\Omega) = 1$ 

```
A.N. Kolmogorov (1903-1987)
```

### A few consequences...

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (*joint probability*)

 $P(A \cap B) = 0$  (if mutually exclusive events)

 $P(A \cap B) = P(A) P(B)$ 

(if independent events)

## The notion(s) of probability

### **Frequentist interpretation**

- **Probability** = frequency of the occurrence of an event, given an infinite number of trials

- Is only defined for random processes that can be observed many times

- Is meant to be **Objective** 



### **Bayesian interpretation**

- **Probability** = degree of belief, measure of uncertainty

- Can be arbitrarily defined for any type of event

- Is considered as **Subjective** in essence



## The notion(s) of probability

### **Frequentist interpretation**

- **Probability** = frequency of the occurrence of an event, given an infinite number of trials

- Is only defined for random processes that can be observed many times

- Is meant to be **Objective** 

### **Bayesian interpretation**

- **Probability** = degree of belief, measure of uncertainty

- Can be arbitrarily defined for any type of event

- Is considered as **Subjective** in essence



### Joint and conditional probabilities

- Joint probability of A and B  $P(A \cap B) = P(A, B)$ Conditional probability of A given B P(A|B)•
- •

$$P(A,B) = P(A|B)P(B)$$

Note that if A and B are independent ٠

$$P(A|B) = P(A)$$

and

$$P(A,B) = P(A)P(B)$$

### Joint and conditional probabilities

- Joint probability of A and B  $P(A \cap B) = P(A, B)$ Conditional probability of A given B P(A|B)
- •

$$P(A,B) = P(A|B)P(B)$$

$$P(A,B) = P(B,A) = P(B|A)P(A)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$



T. Baves (1702-1761)

## **Probability distributions (quick reminder)**

**Discrete variable** (e.g. Binomial distribution)

P(Heads) = 1 - P(Tails)



### **Continuous variable**

(e.g. Gaussian distribution)



- General principles
- The Bayesian way
- SPM examples

## A word on generative models

Model: mathematical formulation of a system or process (set of hypothesis and approximations)



**Observations (Y)** 

#### A Probabilistic Model enables to:

#### - Account for prior knowledge and uncertainty

(due to randomness, noise, incomplete observations)

- Simulate data
- Make predictions
- Estimate hidden parameters
- Test Hypothesis

### **Another look at Bayes rule**



### A simple example

Univariate Gaussian variables

$$P(\theta|Y) = \frac{P(Y|\theta)P(\theta)}{P(Y)}$$

Likelihood  $Y = X\theta + \varepsilon$   $\varepsilon \sim N(0, \gamma)$ Prior  $\theta \sim N(\mu, \sigma)$ 



### **Qualifying priors**

 $P(\theta|Y) = \frac{P(Y|\theta)P(\theta)}{P(Y)}$ 

Shrinkage prior  $\theta \sim N(0, \sigma)$ 

**Uninformative (objective) prior**  $\theta \sim N(0, \sigma)$  with large  $\sigma$ 

Conjugate prior

when the prior and posterior distributions belong to the same family

| <u>Likelihood dist.</u> | Conjugate prior dist. |
|-------------------------|-----------------------|
| Binomiale               | Beta                  |
| Multinomiale            | Dirichlet             |
| Gaussian                | Gaussian              |
| Gamma                   | Gamma                 |

## Hierarchical models and empirical priors

**Likelihood**  $Y = X\theta_1 + \varepsilon \quad \varepsilon \sim N(0, \gamma)$ 

Prior

$$\theta = \{\theta_1, \theta_2, \dots, \theta_{k-1}\}$$
$$\theta_1 \sim N(\theta_2, \sigma_2)$$

$$\theta_2 \sim N(\theta_3, \sigma_3)$$
  
$$\vdots$$
  
$$\theta_{k-1} \sim N(\theta_k, \sigma_k)$$

#### Graphical representation



## Hierarchical models and empirical priors

#### Univariate Gaussian variables



### **Hypothesis testing**



• given a null hypothesis, e.g.:  $H_0: \theta > 0$ 



- apply decision rule, i.e.:
- if  $P(H_0|Y) \ge \delta$  then accept H0

Posterior Probability Maps (PPM)

### **Comparison with the frequentist approach**

• given a null hypothesis, e.g.:  $H_0: \theta > 0$ 



• given a null hypothesis, e.g.: 
$$H_0: \theta = 0$$
  
 $P(t|Y)$   
 $P(t > t*|H_0)$   
 $t*$   
 $t \equiv t(Y)$ 

- apply decision rule, i.e.:
- if  $P(H_0|Y) \ge \delta$  then accept H0

#### Posterior Probability Map (PPM)

- apply decision rule, i.e.:
  - if  $P(t > t^* | H_0) \le \alpha$  then reject H0

Statistical Parametric Map (SPM)

### **Model comparison**

$$P(\theta|Y) = \frac{P(Y|\theta)P(\theta)}{P(Y)}$$

Making the model dependency explicit...

$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Bayes rule again... 
$$P(M|Y) = rac{P(Y|M)P(M)}{P(Y)}$$

And with no prior in favor of one particular model...

 $P(M|Y) \propto P(Y|M)$ 

### **Model comparison**

if 
$$P(Y|M_1) > P(Y|M_2)$$
 , select model  $M_1$ 

In practice, compute the Bayes Factor...

$$BF_{12} = \frac{P(Y|M_1)}{P(Y|M_2)}$$

... and apply the decision rule

| B <sub>12</sub> | Evidence    |
|-----------------|-------------|
| 1 to 3          | Weak        |
| 3 to 20         | Positive    |
| 20 to 150       | Strong      |
| ≥ 150           | Very strong |

## **Principle of parsimony**

# $P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$

#### Occam's razor

Complex models should not be considered without necessity



### **Approximations to the (log-)evidence**

$$\Delta BIC = -2\log\left[\frac{\sup P(Y|\theta, M_1)}{\sup P(Y|\theta, M_2)}\right] - (n2 - n1)\log N$$

$$\Delta AIC = -2\log\left[\frac{\sup P(Y|\theta, M_1)}{\sup P(Y|\theta, M_2)}\right] - 2(n2 - n1)$$

Free energy **F** 



## **Variational Bayes Inference**

Variational Bayes (VB) = Expectation Maximization (EM) = Restricted Maximum Likelihood (ReML)

#### Main features

- Iterative optimization procedure
- Yields a twofold inference on parameters  $\theta$  and models M
- Uses a fixed-form approximate posterior  $q(\theta)$
- Make use of approximations (e.g. mean field, Laplace) to approach  $P(\theta|Y, M)$  and P(Y|M)

#### The criterion to be maximized is the (negative) free-energy F

$$F \text{ is a lower bound to the log-evidence}$$

$$F = \ln P(Y|M) - D_{KL}(Q(\theta); P(\theta|Y, M))$$

$$= \langle \ln P(Y, \theta|M) \rangle_Q + S(Q)$$

$$= \langle \ln P(Y|\theta, M) \rangle_Q - D_{KL}(Q(\theta); P(\theta|M))$$

$$F = \text{accuracy - complexity}$$

### To summarize

#### Bayesian inference enables us to

- Make use of probabilities to formalize complex models, to incorporate prior knowledge and to deal with randomness, uncertainty or incomplete observations
- Test hypothesis on both parameters and models
- Formalize the scientific methods, that is up-dating our knowledge by testing hypothesis



- General principles
- The Bayesian way
- SPM examples

### **Segmentation of anatomical MRI**



### **EEG/MEG source reconstruction**



(e) ReML solution under the smoothness and valid priors

(f) ReML solution under the smoothness, valid and invalid priors

### **Dynamic causal modelling of EEG data**

### Evidence for feedback loops (MMN paradigm)

