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Dynamic Causal Modelling

Dynamic Causal Modelling is a framework studying large
scale brain connectivity by fitting differential equation
models to brain imaging data.

DCMs differ in their level of biological plausibility and the
data features which they explain.

What is common to all DCMs are the Bayesian methods
for parameter estimation and model comparison.

SPM currently includes
I DCM for event related potentials - Jean
I DCM for steady state responses - Rosalyn
I DCM for induced responses - Bernadette
I DCM for phase coupling - Bernadette
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Dynamic Causal Modelling

SPM currently includes
I DCM for event related potentials - neural mass

models fitted to sensor space ERPs
I DCM for steady state responses - linearised neural

mass models fitted to source space spectra and
cross spectra

I DCM for induced responses - bilinear differential
equation models of spectrograms

I DCM for phase coupling - weakly coupled oscillator
models of source space phase time series
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Differential Equations
Differential equations have a long history in neuroscience
from the Hodgkin-Huxley (1952) model of a spiking
neuron, to Wilson-Cowan (1972) models of neural
populations, to spatially distributed models of neural fields
(Deco et al 2008).

They take the general form

dx
dt

= f (x ,u,w)

where x are neural state variables, u are experimental
perturbations and w are biophysical parameters.

If the inputs and parameters are known these equations can be
integrated eg by Euler method

xn+1 = xn + f (xn,un,w)∆t

where ∆t is the time step, to produce time series x(t).
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Forward Model
Neural state variables, x , are related to quantities derived
from brain imaging data, y , by an observation equation

y = g(x) + e

where e is Gaussian observation noise. If the data
features are in sensor space then this will include the
lead field.

The differential equations and observation equation
together describe a forward model. This specifices the
likelihood p(y |w).

A prior distribution over parameters p(w), reflecting either
ignorance or physiological constraints, is then updated to
a posterior density p(y |w) using an approximate
Bayesian inference procedure called Variational Laplace
(VL).
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Questions

Questions I will address include
I What are generic properties of differential equations

?
I What is a Neural Mass model ?
I How does Variational Laplace work ?
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Exponentials

We use the following shorthand for a time derivative

ẋ =
dx
dt

The exponential function x = exp(t) is invariant to
differentiation. Hence

ẋ = exp(t)

and
ẋ = x

Hence exp(t) is the solution of the above differential
equation.
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Initial Values and Fixed Points

An exponential increase (a > 0) or decrease (a < 0) from
initial condition x0

x = x0 exp(at)

has derivative
ẋ = ax0 exp(at)

The top equation is therefore the solution of the
differential equation

ẋ = ax

with initial condition x0.

The values of x for which ẋ = 0 are referred to as Fixed
Points (FPs). For the above the only fixed point is at
x = 0.
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Time constants
The figure shows

ẋ = ax

with a = −1.2 and intial value x0 = 2.

The time constant is τ = −1/a.

The time at which x decays to half its initial value is

τh =
1
a

log(1/2)

which equals τh = 0.58.
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Matrix Exponential

If x is a vector whose evolution is governed by a system
of linear differential equations we can write

ẋ = Ax

where A describes the linear dependencies.

The only fixed point is at x = 0.

For initial conditions x0 the above system has solution

xt = exp(At)x0

where exp(At) is the matrix exponential (written expm in
matlab) (Moler and Van Loan, 2003).
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Eigendecomposition

The equation
ẋ = Ax

can be understood by representing A with an
eigendecomposition, with eigenvalues λk and
eigenvectors qk that satisfy (Strang, p. 255)

A = QΛQ−1

We can then use the identity

exp(A) = Q exp(Λ)Q−1

Because Λ is diagonal, the matrix exponential simplifies
to a simple exponential function over each diagonal
element.
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Dynamical Modes
This tells us that the original dynamics

ẋ = Ax

has a solution
xt = exp(At)

that can be represented as a linear sum of k independent
dynamical modes

xt =
∑

k

qk exp(λk t)

where qk and λk are the k th eigenvector and eigenvalue
of A. For λk > 0 we have an unstable mode.

For λk < 0 we have a stable mode, and the magnitude of
λk determines the time constant of decay to the fixed
point.

The eigenvalues can also be complex. This gives rise to
oscillations.
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Spiral

A spiral occurs in a two-dimensional system when both
eigenvalues are a complex conjugate pair. For example
(Wilson, 1999)[

ẋ1
ẋ2

]
=

[
−2 −16
4 −2

] [
x1
x2

]
has

λ1 = −2 + 8i
λ2 = −2− 8i

giving solutions (for initial conditions x = [1,1]T )

x1(t) = exp(−2t) [cos(8t)− 2 sin(8t)]

x2(t) = exp(−2t) [cos(8t) + 0.5 sin(8t)]
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Spiral
We plot time series solutions

x1(t) = exp(−2t) (cos(8t)− 2 sin(8t))

x2(t) = exp(−2t) (cos(8t) + 0.5 sin(8t))

for x1 (black) and x2 (red).

8 radians = 1.3Hz
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Spiral State Space
Plotting x2 against x1 gives the state-space
representation.

x1
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Embedding

Univariate higher order differential equations can be
represented as multivariate first order DEs.

For example

v̈ =
H
τ

ut −
2
τ

v̇ − 1
τ2 v

can be written as

v̇ = c

ċ =
H
τ

ut −
2
τ

c − 1
τ2 v
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Kernels
The previous differential equation has a solution given by
the integral

v(t) =

∫
u(t)h(t − t ′)dt ′

where
h(t) =

H
τ

t exp(−t/τ)

is a kernel. In this case it is an alpha function synapse
with magnitude H and time constant τ
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Convolution
The previous integral can be written as

v = u ⊗ h

where ⊗ is the convolution operator.

h(t) =
H
τ

t exp(−t/τ)

is a kernel. In this case it is an alpha function synapse
with magnitude H and time constant τ
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Neural Mass Model

Jansen and Rit (1995), building on the work of Lopes Da
Sliva and others, developed a biologically inspired model
of EEG activity. It was originally developed to explain
alpha activity and Event-Related Potentials (ERPs).

It models a cortical unit with three subpopulations of cells
I Stellate cells with average membrane potential vs.
I Pyramidal cells with average membrane potential vp.
I Inhibitory interneurons with average membrane

potential vi .
Here I describe the Neural Mass model for a single
cortical unit as formulated in David et al. (2006).
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Firing Rate Curves
Membrane potentials, x , are transformed into firing rates via
sigmoidal functions

s(x) =
1

1 + exp(−rx)
− 1

2

Negative firing rates here allow systems to have a stable fixed
point at x = 0. All firing rates are therefore considered as
deviation from steady state values.
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Inhibitory Interneurons

The inhibitory interneurons receive excitatory input from
the pyramidal cells

vi = γ3s(vp)⊗ he



Principles of DCM

Will Penny

Introduction
DCM Library

Integration

Forward Model

Differential
Equations
Exponentials

Time constants

Matrix Exponential

Eigendecomposition

Dynamical Modes

Spiral

State space

Embedding

Kernels

Neural Mass Model

Bayesian
Estimation
Nonlinear Regression

Priors

Joint Log Likelihood

Posterior

Gradient Ascent

Adaptive Step Size

Example

References

Stellate Cells

The stellate cells receive external input from thalamus or
other cortical regions and excitatory feedback from
pyramidal cells

vs = (s(u) + γ1s(vp))⊗ he



Principles of DCM

Will Penny

Introduction
DCM Library

Integration

Forward Model

Differential
Equations
Exponentials

Time constants

Matrix Exponential

Eigendecomposition

Dynamical Modes

Spiral

State space

Embedding

Kernels

Neural Mass Model

Bayesian
Estimation
Nonlinear Regression

Priors

Joint Log Likelihood

Posterior

Gradient Ascent

Adaptive Step Size

Example

References

Pyramidal Cells
The pyramidal cells receive excitatory input from stellate
cells and inhibitory input from interneurons. This
produces both excitatory vpe and inhibitory vpi
postsynaptic potentials. This formulation is due to David
et al (2006).

vpe = γ2s(vs)⊗ he

vpi = γ4s(vi)⊗ hi

vp = vpe − vpi
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Differential Equations
The integral equations become

vi = γ3s(vp) ⊗ he

vs =
(
s(u) + γ1s(vp)

)
⊗ he

vpe = γ2s(vs) ⊗ he

vpi = γ4s(vi ) ⊗ hi

vp = vpe − vpi

the differential equations

v̇i = ci

ċi =
He

τe
γ3s(vp(t)) −

2

τe
ci −

1

τ2
e

vi

v̇s = cs

ċs =
He

τe
γ3(s(u(t)) + γ1s(vp(t)) −

2

τe
cs −

1

τ2
e

vs

v̇pe = cpe

ċpe =
He

τe
γ2s(vs(t)) −

2

τe
cpe −

1

τ2
e

vpe

v̇pi = cpi

ċpi =
Hi

τi
γ4s(vi (t)) −

2

τi
cpi −

1

τ2
i

vpi

v̇p = cpe − cpi
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Intrinsic Connectivity
Based on the relative counts of numbers of synapses in
cat and mouse visual and somato-sensory cortex Jansen
and Rit (1995) determined the following connectivity
values.

γ1 = C
γ2 = 0.8C
γ3 = 0.25C
γ4 = 0.25C
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Nonlinear Regression

We consider the framework implemented in the SPM
function spm-nlsi-GN.m. It implements Bayesian
estimation of nonlinear models of the form

y = g(w) + e

where g(w) is some nonlinear function of parameters w ,
and e is zero mean additive Gaussian noise with
covariance Cy . The likelihood of the data is therefore

p(y |w , λ) = N(y ; g(w),Cy )

where N denotes a multivariate normal density.
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Nonlinear Regression

The precision is the inverse of the variance.

The error precision matrix is assumed to decompose
linearly

C−1
y =

∑
i

exp(λi)Qi

where Qi are known precision basis functions and λ are
hyperparameters eg Q = I, noise precision s = exp(λ).
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Priors

We allow Gaussian priors over model parameters

p(w) = N(w ;µw ,Cw )

where the prior mean and covariance are assumed
known.

The hyperparameters are constrained by the prior

p(λ) = N(λ;µλ,Cλ)

This is not Empirical Bayes.
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Joint Log Likelihood

The above distributions allow one to write down an
expression for the joint log likelihood of the data,
parameters and hyperparameters

L(w , λ) = log[p(y |w , λ)p(w)p(λ)]

Here it splits into three terms

L(w , λ) = log p(y |w , λ)

+ log p(w)

+ log p(λ)
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Joint Log Likelihood
The joint log likelihood is composed of sum squared
precision weighted prediction errors and entropy terms

L = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log |Cw | −
Nw

2
log 2π

− 1
2

eT
λ C−1

λ eλ −
1
2

log |Cλ| −
Nλ

2
log 2π

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mw )

ew = mw − µw

eλ = mλ − µλ
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VL Posteriors

The Variational Laplace (VL) algorithm, implemented in
spm-nlsi-GN.m, assumes an approximate posterior
density of the following factorised form

q(w , λ|y) = q(w |y)q(λ|y)

q(w |y) = N(w ; mw ,Sw )

q(λ|y) = N(λ; mλ,Sλ)

This is a fixed-form variational method (Bishop, 2006).
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Variational Energies

The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following (negative)
variational energies

I(w) =

∫
L(w , λ)q(λ)

I(λ) =

∫
L(w , λ)q(w)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of the variational energies at the
current parameter estimate, mw (old). For example, for
the parameters we have

jw (i) =
dI(w)

dw(i)

Hw (i , j) =
d2I(w)

dw(i)dw(j)

where i and j index the i th and j th parameters, jw is the
gradient vector and Hw is the curvature matrix. The
estimate for the posterior mean is then given by

mw (new) = mw (old) + ∆mw
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Adaptive Step Size

The change is given by

∆mw = −H−1
w jw

which is equivalent to a Newton update. This implements
a step in the direction of the gradient with a step size
given by the inverse curvature. Big steps are taken in
regions where the gradient changes slowly (low
curvature).



Principles of DCM

Will Penny

Introduction
DCM Library

Integration

Forward Model

Differential
Equations
Exponentials

Time constants

Matrix Exponential

Eigendecomposition

Dynamical Modes

Spiral

State space

Embedding

Kernels

Neural Mass Model

Bayesian
Estimation
Nonlinear Regression

Priors

Joint Log Likelihood

Posterior

Gradient Ascent

Adaptive Step Size

Example

References

Adaptive Step Size

The change is given by

∆mw = [exp(vHw )− I] H−1
w jw

This last expression implements a ‘temporal
regularisation’ with parameter v (Friston et al. 2007). In
the limit v →∞ the update reduces to

∆mw = −H−1
w jw

which is equivalent to a Newton update. This implements
a step in the direction of the gradient with a step size
given by the inverse curvature. Big steps are taken in
regions where the gradient changes slowly (low
curvature).
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Approach to Limit
State equation

τ v̇ = V0 + Va − v

Observation equation
y = v + e

For this case we have an analytic solution

y(t) = V0 + Va[1− exp(−t/τ)] + e(t)

Initial value v = V0 = −60.

Fixed point at v = V0 + Va which is approached with time
constant τ .
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Approach to Limit

y(t) = −60 + Va[1− exp(−t/τ)] + e(t)

Va = 30, τ = 8

Noise precision
s = exp(λ) = 1
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Prior Landscape

A plot of log p(w) where w = [log τ, log Va]

µw = [3,1.6]T ,Cw = diag([1/16,1/16]);
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Samples from Prior

The true model parameters are unlikely apriori

Va = 30, τ = 8
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Prior Noise Precision
Q = I. Noise precision s = exp(λ) with

p(λ) = N(λ;µλ,Cλ)

with µλ = 0. We used Cλ = 1/16 (left) and Cλ = 1/4
(right). True noise precision, s = 1.
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Posterior Landscape

A plot of log[p(y |w)p(w)]
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VL optimisation

Path of 6 VL iterations (x marks start)
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