Dynamic Causal Modelling for evoked responses

J. Daunizeau

Institute for Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France

Overview

- 1 DCM: introduction
- 2 Neural ensembles dynamics
- 3 Bayesian inference
- 4 Conclusion

Overview

1 DCM: introduction

- 2 Neural ensembles dynamics
- 3 Bayesian inference
- 4 Conclusion

DCM: introduction

structural, functional and effective connectivity

- structural connectivity
 = presence of axonal connections
- *functional* connectivity
 = statistical dependencies between regional time series
- effective connectivity
 - = causal (directed) influences between neuronal populations

DCM: introduction

connections are recruited in a *context-dependent* fashion

• meta-analysis on single-word reading (Turkeltaub, 2002)

		Paper	Task	n	Within-Plane Res. (mm)	Between-Plane Res. (mm)	Filter (mm)	Critical Threshold	Foci
٠	1	Petersen et al, 1988	read vs silent read	17	18	1. E	1.1	p<.03	8
	2	Howard et al, 1992	read vs. falsefont aloud ("crime")	12	8	8.5	20	p<.001	2
	38	Price et al, 1994	read vs aloud faise font feature det (1000ms)	6	8	8.5	20	p≤ .001	3
	36		read vs aloud faise font feature det (150ms)						11
	4	Bookheimer et al, 1995	read vs. random line drawing viewing	16	6.5		6 ³ x10	p<.001	33
	5	Price et al, 1995a	read vs. rest (1000ms)	6	6	8.5	20	p< .001	20
	5	Price et al, 1995b	read vs rest (40 wps)	6	8	8.5	16	p<.001	12
	7a	Herbster et al, 1997	read irregular vs. aloud letter string ("hiya")	10			16	p<.001	5
	7b		read regular vs. aloud letter string ("hiya")						3
	8	Rumsey et al, 1997	read vs. fix (low freq. irregular)	14	6.5	5.5	20212	p< .001 & >8 voxels	14
	9	Jernigan et al, 1998	read (normal and degraded) vs fix	8	8.5	4.0	16	car. p<.06 (Z or extent)	8
	108	Flez et al, 1999	read vs fix (high freq consistent)	11	17			p<.0006	10
	106)	read vs fix (high freq inconsistent)						9
	100	1	read vs fix (low line; consistent)						9
	100	1	read vs fix (low freq inconsistent)						11
0	11	Hagoort et al, 1999	read vs slient read (German)	11	9	9	18	p< .05 & >40 voxels	17
									172

Introduction

DCM for evoked responses: auditory mismatch negativity

1 DCM: introduction

2 Neural ensembles dynamics

3 Bayesian inference

4 Conclusion

systems of neural populations

from micro- to meso-scale: mean-field treatment

 x_i : post-synaptic potential of j^{th} neuron within its ensemble

$$\frac{1}{N-1}\sum_{j'\neq j}H(x_{j'}-\theta) \xrightarrow{N\to\infty} \int H(x-\theta)p(x)dx$$
$$= \int_{\theta}^{\infty}p(x)dx \approx S(\mu) \qquad \text{mean firing rate}$$

mean membrane depolarization (mV)

Neural ensembles dynamics synaptic dynamics

intrinsic connections within the cortical column

from meso- to macro-scale: neural fields

local wave propagation equation:

$$\left(\frac{\partial^2}{\partial t^2} + 2\kappa \frac{\partial}{\partial t} + \kappa^2 - \frac{3}{2}c^2 \nabla^2 \right) \mu^{(i)} \left(\mathbf{r}, t \right) \approx c\kappa \varsigma^{(i)} \left(\mathbf{r}, t \right)$$
$$\varsigma^{(i)} = \sum_{i'} \gamma_{ii'} S \left(\mu^{(i')} \right)$$

extrinsic connections between brain regions

systems of neural populations

main DCM evolution parameters:

- action potential firing threshold + ensemble PSP spread
- synaptic time constants + axonal propagation delays
- effective coupling strengths + modulatory effects

the observation mapping

main DCM observation parameters:

- sources location/orientation (ECD) or spatial profile (distributed responses)
- relative contribution of cortical layers to measured signal

Neural ensembles dynamics a note on causality

- 1 DCM: introduction
- 2 Neural ensembles dynamics
- 3 Bayesian inference
- 4 Conclusion

Bayesian inference

forward and inverse problems

Bayesian inference deriving the likelihood function

- Model of data with unknown parameters:

$$y = \tilde{g}(\vartheta)$$
 e.g., GLM: $\tilde{g}(\vartheta) = X\vartheta$

- But data is noisy: $y = \tilde{g}(\vartheta) + \varepsilon$

- Assume noise/residuals is 'small':

 \rightarrow Distribution of data, given fixed parameters:

$$p(y|\vartheta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-\tilde{g}(\vartheta))^2\right)$$

Bayesian inference likelihood and priors

likelihood

 $p(y|\theta,m)$

prior

 $p(\vartheta|m)$

posterior

 $p(\mathcal{G}|y,m) = \frac{p(y|\mathcal{G},m)p(\mathcal{G}|m)}{p(y|m)}$

Bayesian inference

zooming in the VB algorithm

Frequentist versus Bayesian inference testing point hypotheses

• define the null and the alternative hypothesis in terms of priors, e.g.:

• Savage-Dickey ratios (nested models, i.i.d. priors):

$$p(y|H_0) = p(y|H_1) \frac{p(\theta = 0|y, H_1)}{p(\theta = 0|H_1)}$$

Bayesian inference

model comparison for group studies

fixed effect

assume all subjects correspond to the same model

random effect

assume different subjects might correspond to different models

Bayesian inference key DCM parameters

- $(\theta_{21}, \theta_{32}, \theta_{13})$ state-state coupling
 - θ_3^u input-state coupling
 - θ_{13}^{μ} input-dependent modulatory effect

- 1 DCM: introduction
- 2 Neural ensembles dynamics
- 3 Bayesian inference
- 4 Conclusion

Conclusion

back to the auditory mismatch negativity

t ~ 200 ms

Conclusion DCM for EEG/MEG: variants

Many thanks to:

Karl J. Friston (London, UK) Klaas E. Stephan (Zurich, Switzerland) Stefan J. Kiebel (Leipzig, Germany)

Bayesian inference

the variational Bayesian approach

$$\ln p(y|m) = \left\langle \ln p(\vartheta, y|m) \right\rangle_{q} + S(q) + D_{KL}(q(\vartheta); p(\vartheta|y,m))$$

free energy : functional of q

approximate (marginal) posterior distributions:

 $\left\{q\left(artheta_{1}
ight),q\left(artheta_{2}
ight)
ight\}$

Bayesian inference model comparison

Principle of parsimony : « plurality should not be assumed without necessity »

Model evidence:

$$p(y|m) = \int p(y|\vartheta,m) p(\vartheta|m) d\vartheta$$

"Occam's razor" :

