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Degree of plausibility desiderata:

- should be represented using real numbers (D1)

- should conform with intuition (D2)

- should be consistent (D3)

a=2
b=5

a=2

• normalization:

• marginalization:

• conditioning :

(Bayes rule)

Bayesian paradigm
probability theory: basics



Bayesian paradigm
deriving the likelihood function

- Model of data with unknown parameters:

 y f  e.g., GLM:  f X 

- But data is noisy:  y f   

- Assume noise/residuals is „small‟:
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→ Distribution of data, given fixed parameters:
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Likelihood:

Prior:

Bayes rule:

Bayesian paradigm
likelihood, priors and the model evidence



generative model m



Bayesian paradigm
forward and inverse problems

 ,p y m

forward problem

likelihood

 ,p y m

inverse problem

posterior distribution



Principle of parsimony :

« plurality should not be assumed without necessity » 
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“Occam‟s razor” :
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space of all data sets

Model evidence:

Bayesian paradigm
model comparison



•••

hierarchy

causality

Hierarchical models
principle



Hierarchical models
directed acyclic graphs (DAGs)
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prior densities posterior densities

Hierarchical models
univariate linear hierarchical model
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• estimate parameters (obtain test stat.)

  
H

0
:  0• define the null, e.g.: 

• apply decision rule, i.e.:

classical SPM
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 0P H y if then accept H0

• invert model (obtain posterior pdf)
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• apply decision rule, i.e.:

Bayesian PPM

Frequentist versus Bayesian inference
a (quick) note on hypothesis testing
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• define the null and the alternative hypothesis in terms of priors, e.g.: 
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Frequentist versus Bayesian inference
what about bilateral tests?

 1p Y H

 0p Y H
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• Savage-Dickey ratios (nested models, i.i.d. priors):
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Sampling methods
MCMC example: Gibbs sampling



Variational methods
VB / EM / ReML

→ VB : maximize the free energy F(q) w.r.t. the “variational” posterior q(θ) 

under some (e.g., mean field, Laplace) approximation

 1 or 2q 

 1 or 2 ,p y m
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realignment smoothing

normalisation

general linear model

template

Gaussian 

field theory

p <0.05

statistical

inference

segmentation

and normalisation

dynamic causal

modelling

posterior probability

maps (PPMs)
multivariate

decoding
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aMRI segmentation
mixture of Gaussians (MoG) model



Decoding of brain images
recognizing brain states from fMRI
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fixation cross
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pace
response

log-evidence of X-Y sparse mappings:

effect of lateralization

log-evidence of X-Y bilateral mappings:

effect of spatial deployment 



fMRI time series analysis
spatial priors and model comparison

PPM: regions best explained

by short-term memory model

PPM: regions best explained 

by long-term memory model

fMRI time series

GLM coeff

prior variance

of GLM coeff

prior variance

of data noise
AR coeff

(correlated noise)

short-term memory

design matrix (X)

long-term memory

design matrix (X)
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Dynamic Causal Modelling
network structure identification
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DCMs and DAGs
a note on causality
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subjects

fixed effect

random effect

assume all subjects correspond to the same model

assume different subjects might correspond to different models

Dynamic Causal Modelling
model comparison for group studies



I thank you for your attention.



A note on statistical significance
lessons from the Neyman-Pearson lemma

• Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test
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is the most powerful test of size to test the null.  0p u H   

MVB (Bayes factor) 

u=1.09, power=56%

CCA (F-statistics)

F=2.20, power=20%

error I rate
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ROC analysis

• what is the threshold u, above which the Bayes factor test yields a error I rate of 5%?


