Bayesian inference

J. Daunizeau

Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France

Overview of the talk

1 Probabilistic modelling and representation of uncertainty

- 1.1 Bayesian paradigm
- 1.2 Hierarchical models
- 1.3 Frequentist versus Bayesian inference
- 2 Numerical Bayesian inference methods
 - 2.1 Sampling methods
 - 2.2 Variational methods (ReML, EM, VB)

3 SPM applications

- 3.1 aMRI segmentation
- 3.2 Decoding of brain images
- 3.3 Model-based fMRI analysis (with spatial priors)
- 3.4 Dynamic causal modelling

Overview of the talk

1 Probabilistic modelling and representation of uncertainty

- 1.1 Bayesian paradigm
- 1.2 Hierarchical models
- 1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods

- 2.1 Sampling methods
- 2.2 Variational methods (ReML, EM, VB)

3 SPM applications

- 3.1 aMRI segmentation
- 3.2 Decoding of brain images
- 3.3 Model-based fMRI analysis (with spatial priors)
- 3.4 Dynamic causal modelling

Bayesian paradigm probability theory: basics

Degree of plausibility desiderata:

- should be represented using real numbers
- should conform with intuition
- should be consistent

(D1)

(D2)

(D3)

- marginalization:
- conditioning :
 (Bayes rule)

 $P(b) = \sum_{a} P(a,b)$ P(a,b) = P(a|b)P(b)= P(b|a)P(a)

Bayesian paradigm deriving the likelihood function

- Model of data with unknown parameters:

$$y = f(\theta)$$
 e.g., GLM: $f(\theta) = X\theta$

- But data is noisy: $y = f(\theta) + \varepsilon$

- Assume noise/residuals is 'small':

 \rightarrow Distribution of data, given fixed parameters:

$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-f(\theta))^2\right)$$

Bayesian paradigm likelihood, priors and the model evidence

Likelihood:

 $p(y|\theta,m)$

Prior:

 $p(\theta|m)$

Bayes rule:

 $p(\theta|y,m) = \frac{p(y|\theta,m) p(\theta|m)}{p(y|m)}$

Bayesian paradigm

forward and inverse problems

inverse problem

Bayesian paradigm model comparison

Principle of parsimony : « plurality should not be assumed without necessity »

"just right"

Y

too complex

space of all data sets

Hierarchical models

 $p(\theta_2|\theta_3,m)$

 θ_1

 $p(\theta_1|\theta_2,m)$

 $p(y|\theta_1,m)$

Hierarchical models

directed acyclic graphs (DAGs)

Hierarchical models

univariate linear hierarchical model

Frequentist versus Bayesian inference

a (quick) note on hypothesis testing

- estimate parameters (obtain test stat.)
- apply decision rule, i.e.:

if
$$P(t > t^* | H_0) \le \alpha$$
 then reject H0

classical SPM

• invert model (obtain posterior pdf)

- define the null, e.g.: $H_0: \theta > 0$
- apply decision rule, i.e.:
- if $P(H_0|y) \ge \alpha$ then accept H0

Bayesian PPM

Frequentist versus Bayesian inference what about bilateral tests?

• define the null and the alternative hypothesis in terms of priors, e.g.:

• Savage-Dickey ratios (nested models, i.i.d. priors):

$$p(y|H_0) = p(y|H_1) \frac{p(\theta = 0|y, H_1)}{p(\theta = 0|H_1)}$$

Overview of the talk

1 Probabilistic modelling and representation of uncertainty

- 1.1 Bayesian paradigm
- 1.2 Hierarchical models
- 1.3 Frequentist versus Bayesian inference

2 Numerical Bayesian inference methods

- 2.1 Sampling methods
- 2.2 Variational methods (ReML, EM, VB)

3 SPM applications

- 3.1 aMRI segmentation
- 3.2 Decoding of brain images
- 3.3 Model-based fMRI analysis (with spatial priors)
- 3.4 Dynamic causal modelling

Sampling methods MCMC example: Gibbs sampling

Variational methods

$$\ln p(y|m) = \underbrace{\left\langle \ln p(\theta, y|m) \right\rangle_q + S(q) + D_{KL}(q(\theta); p(\theta|y, m))}_{\text{free energy } F(q)}$$

 \rightarrow VB : maximize the free energy F(q) w.r.t. the "variational" posterior $q(\theta)$ under some (e.g., *mean field, Laplace*) approximation

Overview of the talk

1 Probabilistic modelling and representation of uncertainty

- 1.1 Bayesian paradigm
- 1.2 Hierarchical models
- 1.3 Frequentist versus Bayesian inference
- 2 Numerical Bayesian inference methods
 - 2.1 Sampling methods
 - 2.2 Variational methods (ReML, EM, VB)

3 SPM applications

- 3.1 aMRI segmentation
- 3.2 Decoding of brain images
- 3.3 Model-based fMRI analysis (with spatial priors)
- 3.4 Dynamic causal modelling

aMRI segmentation

mixture of Gaussians (MoG) model

class variances

Decoding of brain images

recognizing brain states from fMRI

log-evidence of X-Y sparse mappings: effect of lateralization

log-evidence of X-Y bilateral mappings: effect of spatial deployment

fMRI time series analysis

spatial priors and model comparison

PPM: regions best explained by short-term memory model

Dynamic Causal Modelling

network structure identification

DCMs and DAGs

a note on causality

Dynamic Causal Modelling

model comparison for group studies

fixed effect

assume all subjects correspond to the same model

random effect

assume different subjects might correspond to different models

I thank you for your attention.

A note on statistical significance

lessons from the Neyman-Pearson lemma

• Neyman-Pearson lemma: the likelihood ratio (or Bayes factor) test

$$\Lambda = \frac{p(y|H_1)}{p(y|H_0)} \ge u$$

is the most powerful test of size $\alpha = p(\Lambda \ge u | H_0)$ to test the null.

• what is the threshold *u*, above which the Bayes factor test yields a error I rate of 5%?

