Dynamic causal modelling for fMRI

André Marreiros

Friday 18th May 2012

Statistical Parametric Mapping for fMRI 2012 course

Overview

Brain connectivity: types & definitions

Anatomical connectivity Functional connectivity Effective connectivity

Dynamic causal models (DCMs)

Neuronal model Hemodynamic model Estimation: Bayesian framework

Applications & extensions of DCM to fMRI data

Principles of Organisation

Functional specialization

Functional integration

Structural, functional & effective connectivity

Sporns 2007, Scholarpedia

- anatomical/structural connectivity
 - = presence of axonal connections
- functional connectivity
 - = statistical dependencies between regional time series
- effective connectivity

causal (directed) influences between neurons or neuronal populations

MECHANISTIC MODEL

Anatomical connectivity

Definition:

presence of axonal connections

- neuronal communication via synaptic contacts
- Measured with
 - tracing techniques

- diffusion tensor imaging (DTI)

Knowing anatomical connectivity is not enough...

- Context-dependent recruiting of connections :
 - Local functions depend on network activity
- Connections show synaptic plasticity
 - change in the structure and transmission properties of a synapse
 - even at short timescales
- → Look at functional and effective connectivity

Functional connectivity

Definition: statistical dependencies between regional time series

- Seed voxel correlation analysis
- Coherence analysis
- Eigen-decomposition (PCA, SVD)
- Independent component analysis (ICA)
- any technique describing statistical dependencies amongst regional time series

Seed-voxel correlation analyses

- hypothesis-driven choice of a seed voxel
- extract reference time series
- voxel-wise correlation with time series from all other voxels in the brain

Pros & Cons of functional connectivity analysis

• Pros:

 useful when we have no experimental control over the system of interest and no model of what caused the data (e.g. sleep, hallucinations, etc.)

• Cons:

- interpretation of resulting patterns is difficult / arbitrary
- no mechanistic insight
- usually suboptimal for situations where we have a priori knowledge / experimental control

Effective connectivity

Definition: causal (directed) influences between neurons or neuronal populations

• In vivo and in vitro stimulation and recording

- Models of causal interactions among neuronal populations
 - explain regional effects in terms of interregional connectivity

Some models for computing effective connectivity from fMRI data

- Structural Equation Modelling (SEM) McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000
- regression models

 (e.g. psycho-physiological interactions, PPIs)
 Friston et al. 1997

- Volterra kernels Friston & Büchel 2000
- Time series models (e.g. MAR, Granger causality) Harrison et al. 2003, Goebel et al. 2003
- Dynamic Causal Modelling (DCM)
 bilinear: Friston et al. 2003; *nonlinear:* Stephan et al. 2008

 bilinear model of how the psychological context A changes the influence of area B on area C :

$\mathsf{B} \mathsf{x} \mathsf{A} \to \mathsf{C}$

• A PPI corresponds to differences in regression slopes for different contexts.

Psycho-physiological interaction (PPI)

		Task	Task factor		
		Task A	Task B		
Stimulus factor	Stim 1	A1	B1		
	Stim 2	A2	B2		

GLM of a 2x2 factorial design:

We can replace one main effect in the GLM by the time series of an area that shows this main effect.

Friston et al. 1997, NeuroImage

Example PPI: Attentional modulation of V1→V5CC

Friston et al. 1997, *NeuroImage* Büchel & Friston 1997, *Cereb. Cortex*

Pros & Cons of PPIs

- Pros:
 - given a single source region, we can test for its context-dependent connectivity across the entire brain
 - easy to implement
- Cons:
 - only allows to model contributions from a single area
 - operates at the level of BOLD time series (SPM 99/2).

SPM 5/8 deconvolves the BOLD signal to form the proper interaction term, and then reconvolves it.

- ignores time-series properties of the data

Dynamic Causal Models

needed for more robust statements of effective connectivity.

Overview

Brain connectivity: types & definitions

Anatomical connectivity Functional connectivity Effective connectivity

Dynamic causal models (DCMs)

Basic idea Neuronal model Hemodynamic model Parameter estimation, priors & inference

Applications & extensions of DCM to fMRI data

Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways

- Temporal dependency of activity within and between areas (causality)

Temporal dependence and causal relations

Seed voxel approach, PPI etc.

Dynamic Causal Models

timeseries (neuronal activity)

Basics of Dynamic Causal Modelling

DCM allows us to look at how areas within a network interact:

Investigate functional integration & modulation of specific cortical pathways

- Temporal dependency of activity within and between areas (causality)
- Separate neuronal activity from observed BOLD responses

Basics of DCM: Neuronal and BOLD level

- Cognitive system is modelled at its underlying <u>neuronal level</u> (not directly accessible for fMRI).
- The modelled neuronal dynamics (Z) are transformed into area-specific BOLD signals (y) by a hemodynamic model (λ).

The aim of DCM is to estimate <u>parameters</u> <u>at the neuronal level</u> such that the modelled and measured BOLD signals are optimally similar.

Neuronal systems are represented by differential equations

A <u>System</u> is a set of elements $z_n(t)$ which interact in a spatially and temporally specific fashion

State changes of the system states are dependent on:

- the current state z
- external inputs u
- its connectivity θ
- time constants & delays

Input *u(t)* connectivity parameters θ $\frac{dz}{dt} = F(z, u, \theta)$

z(t) state

DCM parameters = rate constants

Generic solution to the ODEs in DCM:

$$\int_{27}^{s} \frac{dz_{1}}{dt} = -sz_{1} \implies z_{1}(t) = z_{1}(0) \exp(-st), \quad z_{1}(0) = 1$$
Half-life τ

$$z_{1}(\tau) = 0.5z_{1}(0)$$

$$= z_{1}(0) \exp(-s\tau)$$

$$\int_{0.5z_{1}(0)} s = \ln 2/\tau$$

$$\int_{0.5z_{1}(0)} s = \ln 2/\tau$$

$$\int_{0.5z_{1}(0)} s = \ln 2/\tau$$

DCM parameters = rate constants

Generic solution to the ODEs in DCM:

$$\int \frac{dz_1}{dt} = -sz_1 \quad \implies \quad z_1(t) = z_1(0) \exp(-st), \quad z_1(0) = 1$$

2

If $A \rightarrow B$ is 0.10 s⁻¹ this means that, per unit time, the increase in activity in B corresponds to 10% of the activity in A

Neurodynamics: 2 nodes with input

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = s \begin{bmatrix} -1 & 0 \\ a_{21} & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c \\ 0 \end{bmatrix} u_1 \qquad a_{21} > 0$$

activity in z_2 is coupled to z_1 via coefficient a_{21}

Neurodynamics: positive modulation

Neurodynamics: reciprocal connections

Haemodynamics: reciprocal connections

 $h(u,\theta)$ represents the BOLD response (balloon model) to input

Haemodynamics: reciprocal connections

 $y = h(u, \theta) + e$

Bilinear state equation in DCM for fMRI

$$\dot{z} = (A + \sum_{j=1}^{m} u_j B^j) z + C u$$

The hemodynamic "Balloon" model

DCM roadmap

Estimation: Bayesian framework

Overview: parameter estimation

- Specify model (neuronal and haemodynamic level)
- Make it an observation model by adding measurement error *e* and confounds *X* (e.g. drift).
- Bayesian parameter estimation using expectation-maximization.
- Result: (Normal) posterior parameter distributions, given by mean $\eta_{\theta/y}$ and Covariance $C_{\theta/y}$.

Parameter estimation: an example

Inference about DCM parameters

Bayesian single subject analysis

- The model parameters are distributions that have a mean $\eta_{\theta/y}$ and covariance $C_{\theta/y}$.
 - Use of the cumulative normal distribution to test the probability that a certain parameter is above a chosen threshold γ:

Classical frequentist test across groups

- Test summary statistic: mean $\eta_{\theta/\gamma}$
 - One-sample t-test: Parameter > 0?
 - Paired t-test:
 parameter 1 > parameter 2?
 - rmANOVA: e.g. in case of multiple sessions per subject

Bayesian parameter averaging

Model comparison and selection

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

Which model represents the best balance between model fit and model complexity?

For which model m does p(y|m) become maximal?

Approximations to the model evidence in DCM

Logarithm is a monotonic function

Maximizing log model evidence = Maximizing model evidence

Log model evidence = balance between fit and complexity log p(y | m) = accuracy(m) - complexity(m) $= log p(y | \theta, m) - complexity(m)$

No. of parameters

In SPM2 & SPM5, interface offers 2 approximations:

Akaike Information Criterion: $AIC = \log p(y | \theta, m) - p$

No. of data points

Bayesian Information Criterion: $BIC = \log p(y | \theta, m) - \frac{p}{2} \log N$

AIC favours more complex models, BIC favours simpler models.

The negative free energy approximation

• The negative free energy *F* is a lower bound on the log model evidence:

$$F = \log p(y \mid m) - KL[q(\theta), p(\theta \mid y, m)]$$

F comprises the expected log likelihood and the Kullback-Leibler (KL) divergence between conditional and prior densities

The complexity term in *F*

 In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies. Under gaussian assumptions:

$$KL[q(\theta), p(\theta \mid m)] = \frac{1}{2} \ln |C_{\theta}| - \frac{1}{2} \ln |C_{\theta|y}| + \frac{1}{2} (\mu_{\theta|y} - \mu_{\theta})^T C_{\theta}^{-1} (\mu_{\theta|y} - \mu_{\theta})$$

- The complexity term of *F* is higher
 - the more independent the prior parameters
 - the more dependent the posterior parameters
 - the more the posterior mean deviates from the prior mean
- NB: SPM8 only uses *F* for model selection !

Bayes factors

For a given dataset, to compare two models, we compare their evidences.

```
positive value, [0; \infty[
```

$$B_{12} = \frac{p(y \mid m_1)}{p(y \mid m_2)}$$

Kass & Raftery classification:

B ₁₂	p(m ₁ y)	Evidence
1 to 3	50-75%	weak
3 to 20	75-95%	positive
20 to 150	95-99%	strong
≥ 150	≥ 99%	Very strong

or their log evidences

Kass & Raftery 1995, J. Am. Stat. Assoc.

 $\ln(B_{12}) \approx F_1 - F_2$

Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Comparing families of models

- What type of model is best?
 - Feedforward vs feedback
 - Parallel vs sequential processing
 - With or without modulation

Inference on model space

Model evidence: The optimal balance of fit and complexity

Comparing models

• Which is the best model?

Comparing families of models

- What type of model is best?
 - Feedforward vs feedback
 - Parallel vs sequential processing
 - With or without modulation

Only compare models with the same data

To recap... so, DCM....

- enables one to infer hidden neuronal processes from fMRI data
- allows one to **test mechanistic hypotheses** about observed effects
 - uses a deterministic differential equation to model neuro-dynamics (represented by matrices A,B and C).
- is informed by anatomical and physiological principles.
- uses a **Bayesian framework** to estimate model parameters
- is a generic approach to modelling experimentally perturbed dynamic systems.
 - provides an observation model for neuroimaging data, e.g. fMRI, M/EEG
 - DCM is not model or modality specific (Models can change and the method extended to other modalities e.g. ERPs, LFPs)

Overview

Brain connectivity: types & definitions

Anatomical connectivity Functional connectivity Effective connectivity

Dynamic causal models (DCMs)

Neuronal model Hemodynamic model Estimation: Bayesian framework

Applications & extensions of DCM to fMRI data

Attention to motion in the visual system

We used this model to assess the site of *attention modulation* during *visual motion processing* in an fMRI paradigm reported by *Büchel & Friston*.

Comparison of two simple models

<u>Model 1:</u> attentional modulation of V1→V5

<u>Model 2:</u> attentional modulation of SPC \rightarrow V5

Bayesian model selection:

 \rightarrow Decision for model 1:

Model 1 better than model 2

 $\log p(y \mid m_1) \gg \log p(y \mid m_2)$

in this experiment, attention primarily modulates V1→V5

Planning a DCM-compatible study

• Suitable experimental design:

- any design that is suitable for a GLM
- preferably multi-factorial (e.g. 2 x 2)
 - e.g. one factor that varies the driving (sensory) input
 - and one factor that varies the contextual input
- <u>Hypothesis and model:</u>
 - Define specific *a priori* hypothesis
 - Which parameters are relevant to test this hypothesis?
 - If you want to verify that intended model is suitable to test this hypothesis, then use <u>simulations</u>
 - Define criteria for inference
 - What are the alternative models to test?

Multifactorial design: explaining interactions with DCM

Let's assume that an SPM analysis shows a main effect of stimulus in X_1 and a stimulus × task interaction in X_2 .

How do we model this using DCM?

-1 [_

secs

plus added noise (SNR=1)

Slice timing model

potential timing problem in DCM:
 temporal shift between regional
 time series because of multi-slice
 acquisition

- <u>Solution:</u>
 - Modelling of (known) slice timing of each area.

Slice timing extension now allows for any slice timing differences!

Long TRs (> 2 sec) no longer a limitation.

(Kiebel et al., 2007)

Two-state model

Model 1 - BCW

Nonlinear DCM for fMRI

nonlinear DCM

Bilinear state equationNonlinear state equation $\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)}\right)x + Cu$ $\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right)x + Cu$

Here DCM can model activity-dependent changes in connectivity; how connections are enabled or gated by activity in one or more areas.

Nonlinear DCM for fMRI

Can V5 activity during attention to motion be explained by allowing activity in PPC to modulate the V1-to-V5 connection?

Stephan et al. 2008, NeuroImage

More recent developments

Stochastic DCMs

0.5

Inversion: Generalised filtering (under the Laplace assumption)

Bayesian Model Selection for large model spaces

- for less constrained model spaces, search methods are needed
- fast model scoring via the Savage-Dickey density ratio: $\ln p(y | m_i)$ $\approx \ln q(\theta_i = 0 | m_i) - \ln p(\theta_i = 0 | m_F)$

Life easier for more exploratory approachs!

Friston et al. 2011, *NeuroImage* Friston & Penny 2011, *NeuroImage*

The evolution of DCM in SPM

- DCM is not one specific model, but a framework for Bayesian inversion of dynamical systems
- The default implementation in SPM is evolving over time:
- better numerical routines for inversion
- changes in prior to cover new variants

To enable replication of your results, you should state which SPM version you are using!

Some introductory references

- The first DCM paper: Dynamic Causal Modelling (2003). Friston et al. NeuroImage 19:1273-1302.
- Physiological validation of DCM for fMRI: Identifying neural drivers with functional MRI: an electrophysiological validation (2008). David et al. *PLoS Biol.* 6 2683–2697
- Hemodynamic model: Comparing hemodynamic models with DCM (2007). Stephan et al. *NeuroImage* 38:387-401
- Nonlinear DCMs:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan et al. *NeuroImage* 42:649-662
- **Two-state model:** Dynamic causal modelling for fMRI: A two-state model (2008). Marreiros et al. *NeuroImage* 39:269-278
- Group Bayesian model comparison: Bayesian model selection for group studies (2009). Stephan et al. *NeuroImage* 46:1004-10174
- 10 Simple Rules for DCM (2010). Stephan et al. NeuroImage 52.

Thank you for your attention !!!