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Brain connectivity: types & definitions 

Anatomical connectivity 
Functional connectivity 
            Effective connectivity 
 

Dynamic causal models (DCMs) 

 Neuronal model 
         Hemodynamic model 

              Estimation: Bayesian framework  

 Applications & extensions of DCM to fMRI data 
  



Functional specialization Functional integration 

Principles of Organisation 



Structural, functional & effective connectivity 

• anatomical/structural connectivity 

= presence of axonal connections 

• functional connectivity  

= statistical dependencies between regional time series 

• effective connectivity  

= causal (directed) influences between neurons or neuronal populations 

Sporns 2007, Scholarpedia 

MECHANISM-FREE 

MECHANISTIC MODEL 



Anatomical connectivity 

Definition:  

presence of axonal connections 

• neuronal  communication via 
synaptic contacts 

• Measured with 

– tracing techniques 

 

– diffusion tensor imaging (DTI) 

 



Knowing anatomical connectivity is not enough... 

• Context-dependent recruiting of 
connections : 

– Local functions depend on network activity 

 

• Connections show synaptic plasticity 

– change in the structure and transmission 
 properties of a synapse 

– even at short timescales 

 

Look at functional and effective 
connectivity 



Definition: statistical dependencies between regional time series 

 

• Seed voxel correlation analysis 

• Coherence analysis 

• Eigen-decomposition (PCA, SVD) 

• Independent component analysis (ICA) 

• any technique describing statistical dependencies amongst 

regional time series 

Functional connectivity 



Seed-voxel correlation analyses 

• hypothesis-driven choice of a 

seed voxel  

• extract reference      

time series 

• voxel-wise correlation with 

time series from all other 

voxels in the brain 

seed voxel 



Pros & Cons of functional connectivity analysis  

• Pros: 
– useful when we have no experimental control over 

the system of interest and no model of what caused 
the data (e.g. sleep, hallucinations, etc.) 

 

• Cons: 
– interpretation of resulting patterns is difficult / arbitrary  

– no mechanistic insight 

– usually suboptimal for situations where we have a 
priori knowledge / experimental control 

 

 

 Effective connectivity 



Effective connectivity 

Definition:  causal (directed) influences between neurons or 
   neuronal populations 

 

• In vivo and in vitro stimulation and recording 

 
  

•   

   
 

• Models of causal interactions among neuronal populations 

– explain regional effects in terms of interregional connectivity 

 



Some models for computing effective connectivity 

from fMRI data 

• Structural Equation Modelling (SEM)  
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000 

• regression models  

(e.g. psycho-physiological interactions, PPIs) 
Friston et al. 1997 

• Volterra kernels  
Friston & Büchel 2000 

• Time series models (e.g. MAR, Granger causality) 
Harrison et al. 2003, Goebel et al. 2003 

• Dynamic Causal Modelling (DCM) 
bilinear: Friston et al. 2003;   nonlinear: Stephan et al. 2008 



Psycho-physiological interaction (PPI) 

• bilinear model of how the psychological context A changes 

the influence of area B on area C : 

  

   B x A  C 

• A PPI corresponds to differences in regression slopes 
for different contexts.  
 



Psycho-physiological interaction (PPI) 

We can replace one main effect in 

the GLM by the time series of an 

area that shows this main effect. 
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GLM of a 2x2 factorial design: 

main effect 
of task 

main effect 
of stim. type 

interaction 

main effect 
of task 

V1 time series 
 main effect 
of stim. type 

psycho- 
physiological 
interaction 

Friston et al. 1997, NeuroImage 
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Friston et al. 1997, NeuroImage 

Büchel & Friston 1997, Cereb. Cortex 

V1 x Att. 

= 

V5 

V5 

Attention 

Example PPI: Attentional modulation of 

V1→V5CC 



PPI: Interpretation 

Two possible 

interpretations 

of the PPI term: 

V1 

Modulation of V1V5  

by attention 

Modulation of the impact  

of attention on V5 by V1 

V1 V5 V1 V5 

attention 
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Pros & Cons of PPIs 

• Pros: 

– given a single source region, we can test for its context-dependent 

connectivity across the entire brain 

– easy to implement 

• Cons: 

– only allows to model contributions from a single area  

– operates at the level of BOLD time series (SPM 99/2). 

 SPM 5/8 deconvolves the BOLD signal to form the proper interaction term, 

and then reconvolves it. 

– ignores time-series properties of the data 

Dynamic Causal Models  

needed for more robust statements of effective connectivity. 



Dynamic causal models (DCMs) 

 Basic idea 
         Neuronal model 
 Hemodynamic model 
              Parameter estimation, priors & inference 

Brain connectivity: types & definitions 

Anatomical connectivity 
Functional connectivity 
            Effective connectivity 
 

Overview 

 Applications & extensions of DCM to fMRI data 
  



Basics of Dynamic Causal Modelling 

 DCM allows us to look at how areas within a network interact: 

 Investigate functional integration & modulation of specific cortical pathways 

– Temporal dependency of activity within and between areas (causality) 

 



Temporal dependence and causal relations 

Seed voxel approach, PPI etc.  Dynamic Causal Models 

timeseries (neuronal activity) 



Basics of Dynamic Causal Modelling 

 DCM allows us to look at how areas within a network interact: 

 Investigate functional integration & modulation of specific cortical pathways 

– Temporal dependency of activity within and between areas (causality) 

– Separate neuronal activity from observed BOLD responses 

 

 



• Cognitive system is modelled at its underlying 

neuronal level (not directly accessible for fMRI). 

• The modelled neuronal dynamics (Z) are 

transformed into area-specific BOLD signals (y) by 

a hemodynamic model (λ). 

λ 

Z 

y 

The aim of DCM is to estimate parameters 

at the neuronal level such that the modelled 

and measured BOLD signals are optimally 

similar. 

Basics of DCM:  

Neuronal and BOLD level 



Neuronal systems are represented by 

differential equations 

Input u(t) 

connectivity parameters  

system 

z(t) state  

State changes of the system 

states are dependent on: 

– the current state z 

– external inputs u 

– its connectivity θ 

– time constants & delays 

A System is a set of elements 

zn(t) which interact in a spatially 

and temporally specific fashion 

),,( uzF
dt

dz




DCM parameters = rate constants 
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Half-life 

Generic solution to the ODEs in DCM: 
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DCM parameters = rate constants 

1
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dz
sz

dt
 

Generic solution to the ODEs in DCM: 
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If AB is 0.10 s-1 this 

means that, per unit time, 

the increase in activity in 

B corresponds to 10% of 

the activity in A 

A 
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Linear dynamics: 2 nodes 
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Neurodynamics: 2 nodes with input 

u2 
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activity in z2 is coupled to z1 via coefficient a21 
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Neurodynamics: positive modulation 
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Neurodynamics: reciprocal connections 
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Haemodynamics: reciprocal connections 
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red:       bold response 
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h(u,θ) represents the BOLD response (balloon model) to input  
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(without noise) 

BOLD 

(without noise) 



0 20 40 60

0

2

4

0 20 40 60

0

2

4

seconds

Haemodynamics: reciprocal connections 

BOLD 

with  

Noise added 

BOLD 

with  

Noise added 

y1 

y2 

blue:     neuronal activity 

red:       bold response 

u1 

u2 
z1 

z2 

euhy  ),( 
y represents simulated observation of BOLD response, i.e. includes noise 



Bilinear state equation in DCM for fMRI 

state  
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The hemodynamic “Balloon” model 
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Friston et al. 2000, 

NeuroImage 
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Region-specific 
HRFs! 



fMRI data 

Posterior densities  

of parameters 

Neuronal  

dynamics 
Hemodynamics 

Model  

selection 

DCM roadmap 

Model inversion  

using 

Expectation-maximization 

State space  

Model 

Priors 



Constraints on 
•Haemodynamic parameters 

•Connections 

Models of 
•Haemodynamics in a single region 

•Neuronal interactions 

Bayesian estimation 

)(p

)()|()|(  pypyp 

)|( yp

posterior 

prior likelihood term 

Estimation: Bayesian framework 
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Overview: 

parameter estimation 

ηθ|y 

neuronal state 

equation   CuzBuAz j

j )(

• Specify model (neuronal and 
haemodynamic level) 

 

• Make it an observation model by 
adding measurement error e and 
confounds X (e.g. drift). 

 

• Bayesian parameter estimation 
using expectation-maximization. 

 

• Result: 
(Normal) posterior parameter 
distributions, given by mean ηθ|y 
and Covariance Cθ|y. 
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Bayesian single subject analysis 

• The model parameters are 

distributions that have a mean ηθ|y 

and covariance Cθ|y. 

– Use of the cumulative normal 

distribution to test the probability 

that a certain parameter is above a 

chosen threshold γ: 

 

 

 

 ηθ|y 

Classical frequentist test across groups 

• Test summary statistic: mean ηθ|y 

– One-sample t-test: Parameter > 0? 

   

– Paired t-test: 

 parameter 1 > parameter 2?  

 

– rmANOVA: e.g. in case of multiple 

sessions per subject 

Inference about DCM parameters 

Bayesian parameter averaging 



inference on model structure   or   inference on model parameters? 

inference on  

individual models   or   model space partition? 

comparison of model 

families using  

FFX or RFX BMS 

optimal model structure assumed to 

be identical across subjects? 

FFX BMS RFX BMS 

yes no 

inference on  

parameters of an optimal model   or   parameters of all models? 

BMA 

definition of model space 

FFX analysis of parameter 

estimates 

(e.g. BPA) 

RFX analysis of parameter 

estimates 

(e.g. t-test, ANOVA) 

optimal model structure assumed to 

be identical across subjects? 

FFX BMS 

yes no 

RFX BMS 

Stephan et al. 2010, NeuroImage 

Sequence of analysis 



Model comparison and selection 

Given competing hypotheses 

on structure & functional 

mechanisms of a system, which 

model is the best? 

For which model m does p(y|m) 

become maximal? 

Which model represents the 

best balance between model  

fit and model complexity? 

Pitt & Miyung (2002) TICS 



pmypAIC  ),|(log 

Logarithm is a 

monotonic function 

Maximizing log model evidence 

= Maximizing model evidence 
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In SPM2 & SPM5, interface offers 2 approximations: 

N
p

mypBIC log
2

),|(log  

Akaike Information Criterion: 

Bayesian Information Criterion: 

Log model evidence = balance between fit and complexity 

Penny et al. 2004, NeuroImage 

Approximations to the model evidence in DCM 

No. of  

parameters 

No. of 

data points 

AIC favours more complex models, 

BIC favours simpler models. 



The negative free energy approximation 

• The negative free energy F is a lower bound on the log model 

evidence: 

    mypqKLmypF ,|,)|(log 

F comprises the expected log likelihood and the Kullback-Leibler (KL) 
divergence between conditional and prior densities 



The complexity term in F 

• In contrast to AIC & BIC, the complexity term of the negative 
free energy F accounts for parameter interdependencies. Under 
gaussian assumptions: 

 

 

 

 

 

 

• The complexity term of F is higher 

– the more independent the prior parameters  

– the more dependent the posterior parameters 

– the more the posterior mean deviates from the prior mean 

• NB: SPM8 only uses F for model selection ! 
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Bayes factors 
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For a given dataset, to compare two models, we compare their 

evidences. 

B12 p(m1|y) Evidence 

1 to 3 50-75% weak 

3 to 20 75-95% positive 

20 to 150 95-99% strong 

 150  99% Very strong 

Kass & Raftery classification: 

Kass & Raftery 1995, J. Am. Stat. Assoc. 

or their log evidences 

2112)ln( FFB 



Inference on model space 

Model evidence: The optimal balance of fit and complexity 
 

Comparing models 

• Which is the best model? 
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Inference on model space 

Model evidence: The optimal balance of fit and complexity 
 

Comparing models 

• Which is the best model? 

 

Comparing families of models 

• What type of model is best? 

• Feedforward vs feedback  

• Parallel vs sequential processing 

• With or without modulation 
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Model evidence: The optimal balance of fit and complexity 
 

Comparing models 

• Which is the best model? 
 

Comparing families of models 

• What type of model is best? 

• Feedforward vs feedback  

• Parallel vs sequential processing 

• With or without modulation 
 

Only compare models with the same data 

 

 

   

 

1 2 3 4 5 6 7 8 9 10

model

lm
e

A 

D 

B 

C 

A 

B 

C 

Inference on model space 



To recap... so, DCM…. 

• enables one to infer hidden neuronal processes from fMRI data 

• allows one to test mechanistic hypotheses about observed effects 

– uses a deterministic differential equation to model neuro-dynamics (represented 

by matrices A,B and C). 

• is informed by anatomical and physiological principles. 

• uses a Bayesian framework to estimate model parameters 

• is a generic approach to modelling experimentally perturbed dynamic 

systems. 

– provides an observation model for neuroimaging data, e.g. fMRI, M/EEG 

– DCM is not model or modality specific (Models can change and the method extended to 

other modalities e.g. ERPs, LFPs) 



 Applications & extensions of DCM to fMRI data 

Brain connectivity: types & definitions 

Anatomical connectivity 
Functional connectivity 
            Effective connectivity 
 

Overview 

Dynamic causal models (DCMs) 

 Neuronal model 
         Hemodynamic model 

              Estimation: Bayesian framework  



V1 

V5 

SPC 
Photic 

Motion 

Time [s] 

Attention 

    We used this model to assess the site of attention 

modulation during visual motion processing in an 

fMRI paradigm reported by Büchel & Friston. 

Friston et al. 2003, 

NeuroImage 

Attention to motion in the visual system 

- fixation only   

- observe static dots + photic   V1  

- observe moving dots + motion   V5 

- task on moving dots + attention  V5 + parietal cortex 

? 



V1 

V5 

SPC 

Motion 

Photic 

Attention 
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0.57 -0.02 

1.36 
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0.23 

Model 1: 

attentional modulation 

of V1→V5 

V1 

V5 

SPC 

Motion 

Photic 
Attention 

0.86 

0.56 -0.02 

1.42 

0.55 

0.75 

0.89 

Model 2: 

attentional modulation 

of SPC→V5 

Comparison of two simple models 

Bayesian model selection:  Model 1 better than model 2 
 
 

→ Decision for model 1:    in this experiment, attention 

     primarily modulates V1→V5 

1 2log ( | ) log ( | )p y m p y m



Planning a DCM-compatible study 

• Suitable experimental design: 

– any design that is suitable for a GLM  

– preferably multi-factorial (e.g. 2 x 2) 

• e.g. one factor that varies the driving (sensory) input 

• and one factor that varies the contextual input 

•   Hypothesis and model: 

– Define specific a priori hypothesis 

– Which parameters are relevant to test this hypothesis? 

– If you want to verify that intended model is suitable to test this hypothesis, 

then use simulations 

– Define criteria for inference 

– What are the alternative models to test? 



Multifactorial design:  

explaining interactions with DCM 

Task factor 
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Let’s assume that an SPM analysis 

shows a main effect of stimulus in 

X1 and a stimulus  task interaction 

in X2.   

How do we model this using DCM? 
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Simulated data 
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Slice timing model 

• potential timing problem in DCM: 

 temporal shift between regional 

time series because of multi-slice 

acquisition 

• Solution: 

– Modelling of (known) slice timing of each area. 
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visual 

input 

Slice timing extension now allows for any slice timing differences!  

 

Long TRs (> 2 sec) no longer a limitation.  
 

(Kiebel et al., 2007) 
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DCM for Büchel & Friston 
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bilinear DCM 
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Bilinear state equation 

u1 
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nonlinear DCM 

Nonlinear state equation 

u2 

u1 

 Here DCM can model activity-dependent changes in connectivity; how 

connections are enabled or gated by activity in one or more areas. 

Nonlinear DCM for fMRI 
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MAP = 1.25 

Stephan et al. 2008, NeuroImage 

Can V5 activity during attention to motion be explained by 

allowing activity in PPC to modulate the V1-to-V5 connection? 

Nonlinear DCM for fMRI 



Daunizeau et al, 2009 

Friston et al, 2008 
Inversion: Generalised filtering (under the Laplace assumption) 
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Stochastic innovations: variance hyperparameter 

Stochastic DCMs 
More recent developments 

Although here 

driving inputs are 

not necessary... 



Bayesian Model Selection  

for large model spaces 

• for less constrained model 

spaces, search methods are 

needed 

• fast model scoring via the 

Savage-Dickey density ratio: 
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Friston & Penny 2011, NeuroImage 

Life easier for more  

exploratory approachs! 

More recent developments 



• DCM is not one specific model, but a framework for Bayesian 

inversion of dynamical systems 

 

• The default implementation in SPM is evolving over time: 

- better numerical routines for inversion 

- changes in prior to cover new variants 

 

To enable replication of your results, you should state which SPM 

version you are using! 

 

The evolution of DCM in SPM 



Some introductory references 
• The first DCM paper: Dynamic Causal Modelling (2003).  Friston et al. 

NeuroImage 19:1273-1302.  

• Physiological validation of DCM for fMRI: Identifying neural drivers with 

functional MRI: an electrophysiological validation (2008). David et al. PLoS 

Biol. 6 2683–2697 

• Hemodynamic model: Comparing hemodynamic models with DCM (2007). 

Stephan et al. NeuroImage 38:387-401 

• Nonlinear DCMs:Nonlinear Dynamic Causal Models for FMRI (2008). Stephan 

et al. NeuroImage 42:649-662 

• Two-state model: Dynamic causal modelling for fMRI: A two-state model 

(2008). Marreiros et al. NeuroImage 39:269-278 

• Group Bayesian model comparison: Bayesian model selection for group 

studies (2009). Stephan et al. NeuroImage 46:1004-10174 

• 10 Simple Rules for DCM (2010). Stephan et al. NeuroImage 52. 



 

Thank you for your attention!!! 


