Bayesian Inference

"The true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man's mind."

James Clerk Maxwell (1850)

Jérémie Mattout

Lyon Neuroscience Research Center, France

With many thanks to

Jean Daunizeau
Guillaume Flandin
Karl Friston
Will Penny

Outline

- General principles
- The Bayesian way
- SPM examples

- General principles

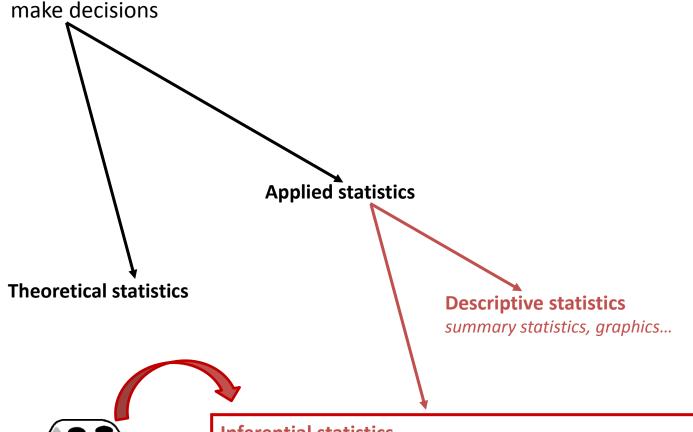
- The Bayesian way

- SPM examples

A starting point

Probability

Statistics: concerned with the collection, analysis and interpretation of data to make decisions



Inferential statistics

Data interpretations, decision making (Modeling, accounting for randomness and unvertainty, hypothesis testing, infering hidden parameters)

The notion(s) of probability

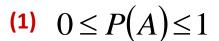
P. de Fermat (1601-1665)

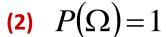
B. Pascal (1623-1662)

To express belief that an event has or will occur

 Ω : All possible events A_i : one particular event

Kolomogorov axioms





A.N. Kolmogorov (1903-1987)

A few consequences...

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(joint probability)

$$P(A\cap B)=0$$
 (if mutually exclusive events)

$$P(A \cap B) = P(A) \cdot P(B)$$
(if independent events)

The notion(s) of probability

Frequentist interpretation

- **Probability** = frequency of the occurrence of an event, given an infinite number of trials
- Is only defined for random processes that can be observed many times
- Is meant to be **Objective**

Bayesian interpretation

- Probability = degree of belief,measure of uncertainty
- Can be arbitrarily defined for any type of event
- Is considered as **Subjective** in essence

The notion(s) of probability

Frequentist interpretation

- **Probability** = frequency of the occurrence of an event, given an infinite number of trials
- Is only defined for random processes that can be observed many times
- Is meant to be **Objective**

Bayesian interpretation

- Probability = degree of belief,measure of uncertainty
- Can be arbitrarily defined for any type of event
- Is considered as **Subjective** in essence

Joint and conditional probabilities

- Joint probability of A and B $P(A \cap B) = P(A,B)$
- Conditional probability of A given B P(A|B)

$$P(A,B) = P(A|B)P(B)$$

Note that if A and B are independent

$$P(A|B) = P(A)$$

and

$$P(A,B) = P(A)P(B)$$

Joint and conditional probabilities

- Joint probability of A and B $P(A \cap B) = P(A,B)$
- Conditional probability of A given B $\ P(A|B)$

$$P(A,B) = P(A|B)P(B)$$

$$P(A,B) = P(B,A) = P(B|A)P(A)$$

$$P(A|B)P(B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

T. Bayes (1702-1761

Extension to multiple variables

$$P(A,B,C) = P(A,B|C)P(C) = P(A|B,C)P(B|C)P(C)$$
$$= P(B|A,C)P(A|C)P(C)$$

$$P(A|B,C) = \frac{P(B|A,C)P(A|C)}{P(B|C)}$$

T. Bayes (1702-1761)

Marginalisation

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Discrete case

$$P(B) = \sum_{A} P(A,B) = \sum_{A} P(B|A)P(A)$$

Continuous case

$$P(B) = \int P(A,B)dA = \int P(B|A)P(A)dA$$

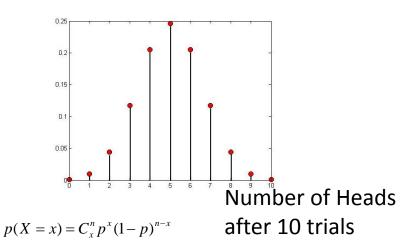
Probability distributions (quick reminder)

Discrete variable

(e.g. Binomial distribution)

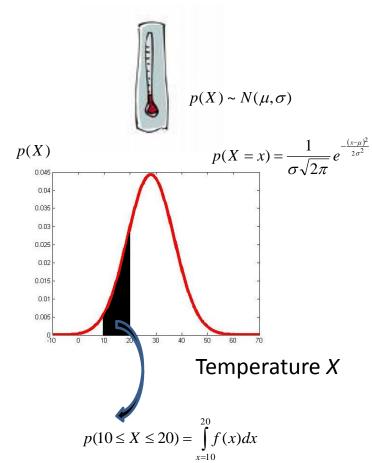
$$P(Heads) = 1 - P(Tails)$$

 $p(X \le x) = \sum_{i=1}^{n} f(x_i)$



Continuous variable

(e.g. Gaussian distribution)



- General principles

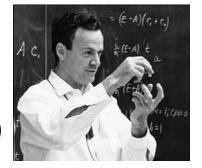
- The Bayesian way

- SPM examples

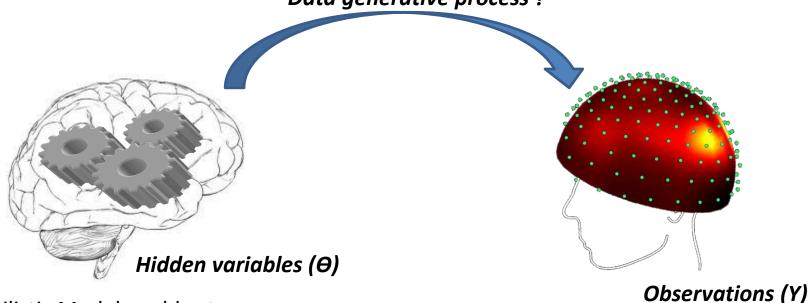
A word on generative models

What I cannot create, I do not understand.

Richard Feynman (1918 – 1988)



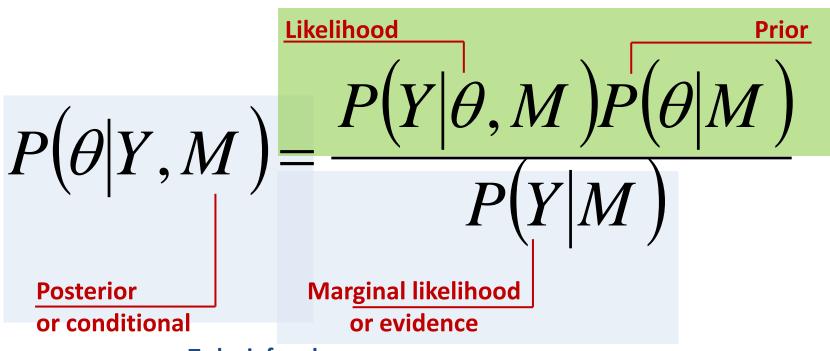
<u>Model:</u> mathematical formulation of a system or process (set of hypothesis and approximations) **Data generative process?**



A Probabilistic Model enables to:

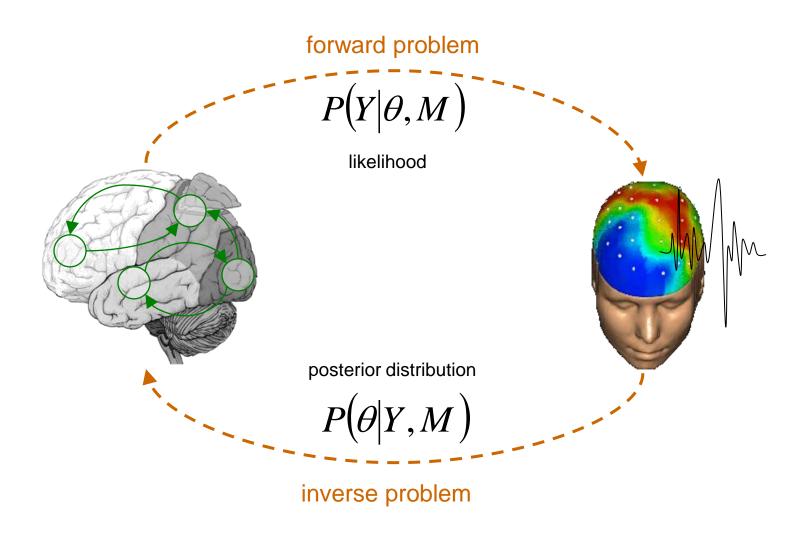
- Account for prior knowledge and uncertainty
 (due to randomness, noise, incomplete observations)
- Simulate data
- Make predictions
- Estimate hidden parameters
- Test Hypothesis

Another look at Bayes rule



To be infered

Another look at Bayes rule

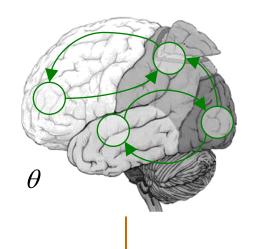


Likelihood function

$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Assumption

$$Y = f(\theta)$$



e.g. linear model $Y = X\theta$

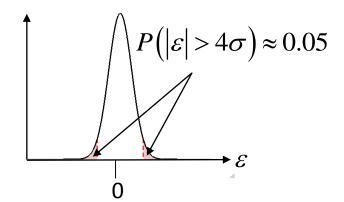
$$Y = X\theta$$

But data are noisy $Y = X\theta + \varepsilon$

$$Y = X\theta + \varepsilon$$



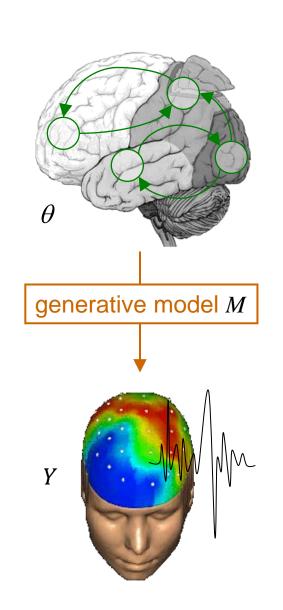
$$p(\varepsilon) \propto \exp\left(-\frac{1}{2\sigma^2}\varepsilon^2\right)$$



Distribution of data, given fixed parameters:

$$p(y|\theta) \propto \exp\left(-\frac{1}{2\sigma^2}(y-f(\theta))^2\right)$$

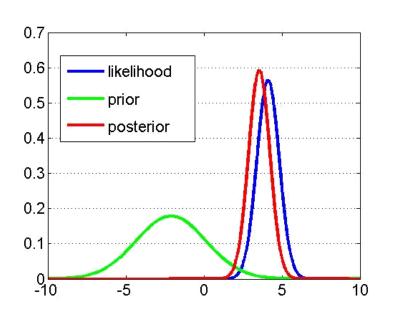
Adding priors: a simple example



$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Likelihood
$$Y = X\theta + \varepsilon$$
 $\varepsilon \sim N(0, \gamma)$

Prior
$$\theta \sim N(\mu, \sigma)$$



Qualifying priors

$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Shrinkage prior $\theta \sim N(0, \sigma)$

Uninformative (objective) prior $\theta \sim N(0, \sigma)$ with large σ

Conjugate prior

when the prior and posterior distributions belong to the same family

<u>Likelihood dist.</u> <u>Conjugate prior dist.</u>

Binomiale Beta

Multinomiale Dirichlet

Gaussian Gaussian

Gamma Gamma

Hierarchical models and empirical priors

Likelihood
$$Y = X\theta_1 + \varepsilon \quad \varepsilon \sim N(0, \gamma)$$

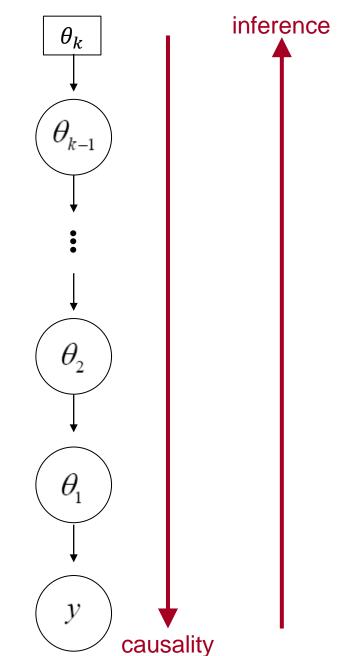
Prior
$$\theta = \{\theta_1, \theta_2, \dots, \theta_{k-1}\}$$

$$\theta_1 \sim N(\theta_2, \sigma_2)$$

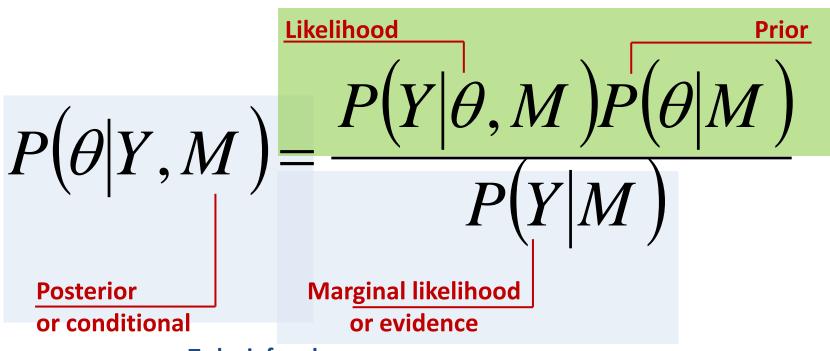
$$\theta_2 \sim N(\theta_3, \sigma_3)$$

$$\theta_{k-1} \sim N(\theta_k, \sigma_k)$$

Graphical representation



Another look at Bayes rule



To be infered

Model evidence and model posterior

$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Bayes rule again...
$$P(M|Y) = \frac{P(Y|M)P(M)}{P(Y)}$$

And with no prior in favor of one particular model... $P(M|Y) \propto P(Y|M)$

Model comparison

if
$$P(Y|M_1) > P(Y|M_2)$$
 , select model M_1

In practice, compute the Bayes Factor...

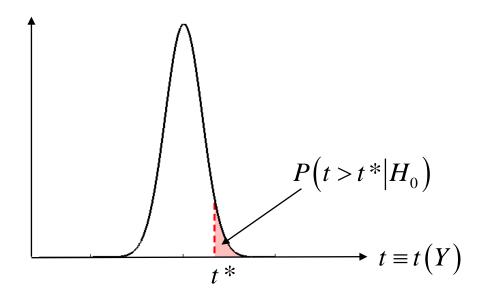
$$BF_{12} = \frac{P(Y|M_1)}{P(Y|M_2)}$$

... and apply the decision rule

B ₁₂	Evidence
1 to 3	Weak
3 to 20	Positive
20 to 150	Strong
≥ 150	Very strong

Hypothesis testing (classical way)

• given a null hypothesis, e.g.: H_0 : $\theta = 0$



• apply decision rule, i.e.:

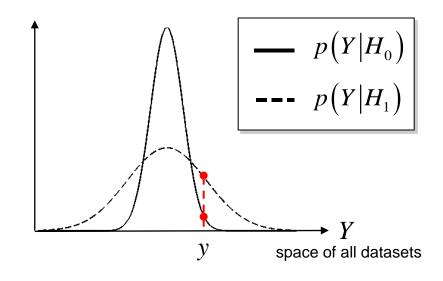
if
$$P(t > t * | H_0) \le \alpha$$
 then reject H0

Statistical Parametric Map (SPM)

Hypothesis testing (bayesian way)

• define the null and the alternative hypothesis in terms of priors, e.g.:

$$H_0: p(\theta|H_0) = \begin{cases} 1 & \text{if } \theta = 0 \\ 0 & \text{otherwise} \end{cases}$$
$$H_1: p(\theta|H_1) = N(0, \Sigma)$$



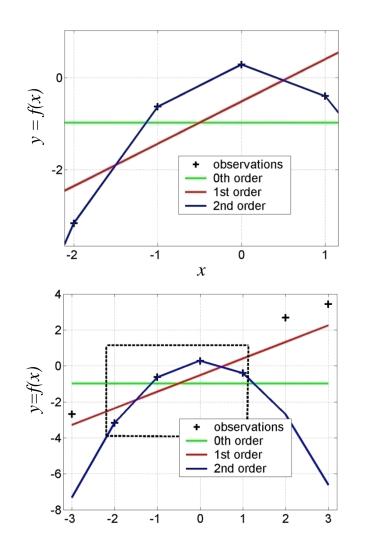
• apply decision rule, i.e.: if $\frac{P(y|H_0)}{P(y|H_1)} < u$ then reject H0

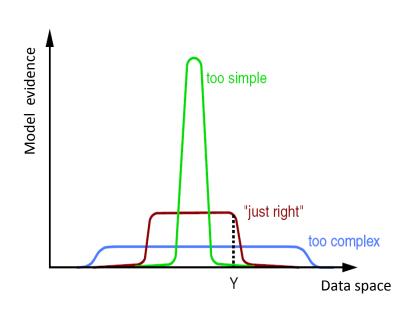
Principle of parsimony

$$P(\theta|Y,M) = \frac{P(Y|\theta,M)P(\theta|M)}{P(Y|M)}$$

Occam's razor

Complex models should not be considered without necessity





$$p(Y | M) = \int p(Y | \theta, M) p(\theta | M) d\theta$$

Usually no exact analytic solution !!

Approximations to the (log-)evidence

$$\Delta BIC = -2\log \left[\frac{\sup P(Y|\theta, M_1)}{\sup P(Y|\theta, M_2)}\right] - (n2 - n1)\log N$$

$$\Delta AIC = -2\log\left[\frac{\sup P(Y|\theta, M_1)}{\sup P(Y|\theta, M_2)}\right] - 2(n2 - n1)$$

Free energy F

Obtained from the Variational Bayes inference

Variational Bayes Inference

Variational Bayes (VB) ≡ Expectation Maximization (EM) ≡ Restricted Maximum Likelihood (ReML)

Main features

- Iterative optimization procedure
- Yields a twofold inference on parameters θ and models M
- Uses a fixed-form approximate posterior $q(\theta)$
- Make use of approximations (e.g. mean field, Laplace) to approach $P(\theta|Y,M)$ and P(Y|M)

The criterion to be maximized is the free-energy F

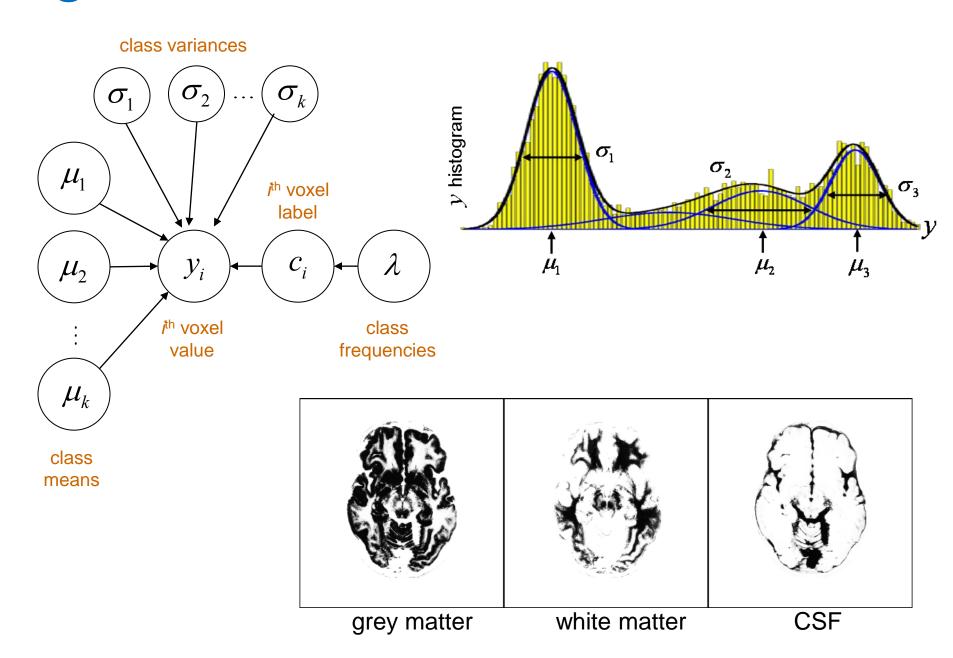
F is a lower bound to the log-evidence $F = \ln P(Y|M) - D_{KL}(Q(\theta); P(\theta|Y, M))$ $= \langle \ln P(Y|\theta, M) \rangle_Q - D_{KL}(Q(\theta); P(\theta|M))$ = accuracy - complexity

- General principles

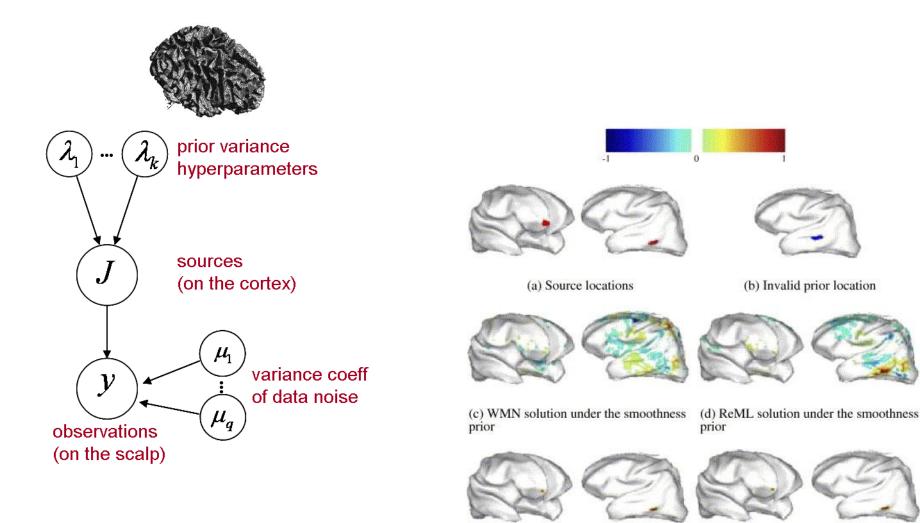
- The Bayesian way

- SPM examples

Segmentation of anatomical MRI



EEG/MEG source reconstruction



(e) ReML solution under the smoothness

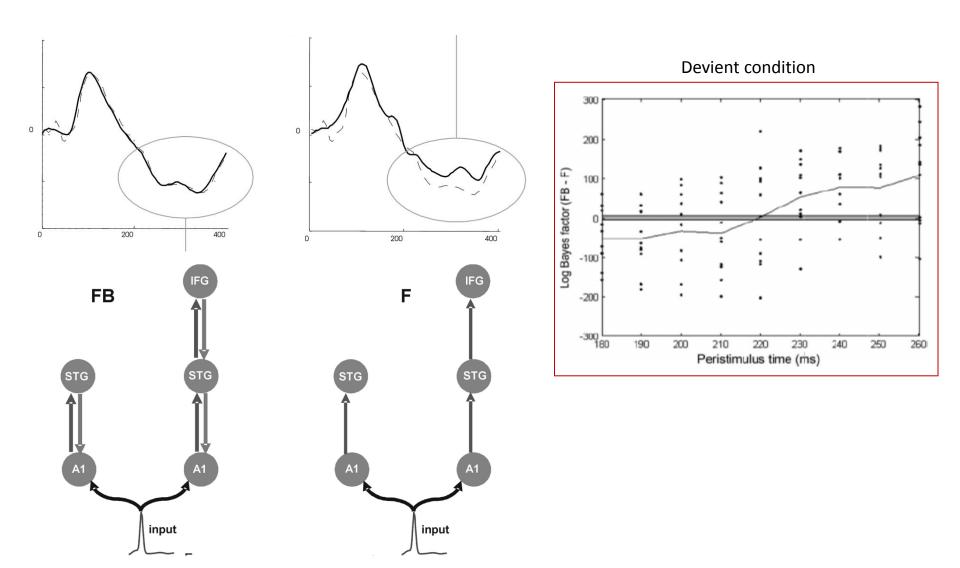
and valid priors

(f) ReML solution under the smoothness,

valid and invalid priors

Dynamic causal modelling of EEG data

Evidence for feedback loops (MMN paradigm)



Suggestions for further reading

