

Dynamic Causal Modelling for Steady State Responses

Dimitris Pinotsis

SPM Course London May 2012

Dynamic Causal Modelling for SSR

A framework which uses Bayesian techniques to fit differential equations to steady – state data. It allows for comparison between competing models of brain architecture and furnishes estimates for parameters that are not measured directly by exploiting electrophysiological data.

Although it is based on sophisticated models from computational neuroscience, its application is straightforward and does not require mathematical training.

Brain activity retains similar statistical features (e.g.variance) and frequency content across measurement period
Cannot describe nonlinear coupling between frequencies → next talk

Advantages:

 Summarize activity in a compact way no need to fit long time series (computationally expensive)
 Describe brain function in terms of a characteristic frequency associated with the task under study

3. Which steps do we take when using **DCM for SSR**?

4.Where has DCM for SSR been applied ? **UCL**

DCM for SSR (Moran et al., Neuroimage, 2009)

• Anaesthesia: Anaesthetic Depth in Rodents (Moran et al., Plos One, 2011) Dopamine in working memory (Moran et al., Current Biol., 2011) □ Beta oscillations in PD (Moran et al., Plos CB, 2011) (Marreiros – yesterday's talk) □ Sleep and Coma (Boly et al., Science, 2011, J Neuro, 2012) **D***Extension*:

DCM for Neural Fields (Pinotsis et al., Neuroimage, 2011,2012)

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Current Source Density
- 6. DCM for Neural Fields

Cross Spectral Density

□Summarizes brain response in terms of power at each frequency

From Time Series to Cross Spectral Densities

From Time Series to Cross Spectral Densities

Vector Auto-regression *p***-order model:**

Linear prediction formulas that attempt to predict an output y[n] of a system based on the previous outputs

Resulting in *a* matrices for *c* Channels

 $\omega = 2\pi f$

$$\begin{cases} g(\omega)_{11} & g(\omega)_{12} & .. \\ g(\omega)_{12} & .. & \end{cases}$$

$$y_n = \alpha_1 y_{n-1} + \alpha_2 y_{n-2} \dots + \alpha_p y_{n-p} + e_n$$

$$\alpha_{1\dots p} \in A(p) : \{c \times c\}$$

$$g(\omega)_{ij} = f(A(p))$$

$$H_{ij}(\omega) = \frac{1}{\alpha_1^{ij} e^{i\omega} + \alpha_2^{ij} e^{i\omega^2} + \dots + \alpha_p^{ij} e^{i\omega p}}$$

$$g(\omega)_{ij} = H_{ij}(\omega) \prod_{ij} H(\omega)_{ij}^{*}$$

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Cross Spectral Density
- 6. DCM for Neural Fields

DCM Chain

A Brain Region as an Input - Output System

equations: determine the dynamics
(eg. limit cycles, transients, steady – state)
parameters: fine tune the dynamics
(e.g. faster, shorter)

$$\theta = \{H_e, H_i, \kappa_e, \kappa_i, \kappa_a, \gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, g, A_F, A_B, A_L, \lambda\}$$

Maximum PSP, time constants, intrinsic and extrinsic connectivity etc

Steady state responses

Pink line = Container (bowl)

If there is no external perturbation, the ball will stay at the centre

If there is, the container will be tilted and the ball will oscillate around the centre as shown

Now, imagine that the ball has a bell inside. If there is an external perturbation the bell will start ringing.

CAUSE of CONTAINER TILTING \longleftrightarrow NEURAL NOISE

CONTAINER ↔ MODEL (equations, parameters cf. shape/friction) STEADY STATE PERTURBATIONS means that

"the ball always stays very close to the centre" (while the bowl is tilted)

A Brain Region as an Input - Output System

Frequency Domain Generative Model (Perturbations about a fixed point)

Frequency Domain Generative Model (Perturbations about a fixed point)

ERP vs Steady State Responses

Neural Mass Model

Neural Mass Model: Equations for Voltage and Current

Neural Mass Model: Two Transformations

Neural Mass Model: 2nd Transformation

UCL

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Cross Spectral Density
- 6. DCM for Neural Fields

DCM Chain

Roadmap

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Cross Spectral Density
- 6. DCM for Neural Fields

Questions of Study:

□ Are our estimates of excitation and inhibition veridical,

e.g. H_e, H_i ?

□ Can we obtain hierarchical relationships between brain regions?

AIM:

NOT to explain mechanisms of isoflurane **BUT**

- to exploit isoflurane to induce known changes in synaptic transmission and THEN
- Use LFP recordings and DCM for SSR to infer changes

Moran, Tetsuya, Jung, Endepols, Graf, Dolan, Friston, Stephan, Tittgemeyer, *PLoSONE*, 2011

- □ Use animal LFP recordings from primary auditory cortex (A1) & posterior auditory field (PAF)
- □ Manipulate neurotransmitter processing via anaesthetic agent Isoflurane
- 4 levels of anaesthesia: each successively decreasing glutamate and increasing GABA (Larsen *et al* Brain Research 1994; Lingamaneni *et al* Anesthesiology 2001; Caraiscos *et al* J Neurosci 2004; de Sousa *et al* Anesthesiology 2000
- □ White noise stimulus & Silence

Data

DCM recovers known neuronatomy

Physiological Parameters

Parametric Effect of Isoflurane

DCM recovers known drug-induced changes

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Cross Spectral Density
- 6. DCM for Neural Fields

- 1. Interface Additions
- 2. New CSD routines, similar to SSR
- 3. SPM_NLSI_GN accommodates imaginary numbers, slopes, curvatures
- 4. A host of new results features, in channel and source space!

Friston, Bastos, Litvak, Stephan, Fries, Moran, Neuroimage, 2012

Interface Additions

DCM for M/EEG		
Ioad Study (save and design 1 200 time window (ms) detrend 1 subsample 1 modes 8	DCM) filename	ERP ERP F ERP new data SSR IND PHA blay > trials hanning
< MG onset[s] (ms) 60	electromagnetic n source names and locat	nodel dipoles >
< reset	neuronal mode	review priors

CM for M/EEG				l	
load	Study (DCM)	filename	ERP	▼ ERP	•
save				SEP	ch
data and d	esign			displ MFM	
1	200			trials) hanning
time window (ms) k	etween-trial effects		1	
detrend 1 subsample 1 modes 8		•			4
<	source	electromagnetic i	model tions: prior r	dipoles	>
IMG	–	*		A	
onset[s] (ms 60)	-		Ŧ	load
< res		neuronal mode	el	revi	ew priors
) dipolar symmet) optimise source	ry constraints e locations				
) lock trial-specif	ic effects frequ	uency window (Hz)	Wavelet r	umber	
Wavelet transf	form 4	48	5	ir	nage API

Frequency Domain Generative Model (Perturbations about a fixed point)

i² = -1

$$H(\omega) = F(f) = \int_{-\infty}^{\infty} f(t) e^{-2\pi\omega i t} dt$$

The Fourier transform of a signal is a continuous complex function

DCM for CSD: data fits have **two** parts: real and imaginary

DCM for SSR

UCL

DCM for Cross Spectral Density

DCM for Cross Spectral Density

Spectra Abs(H₁(ω) . H₁^{*}(ω)) , Abs(H₁(ω) . H₂^{*}(ω)) ...

Coherence $|(H_1(\omega), H_2^*(\omega))|^2 / \{ (H_1(\omega), H_1^*(\omega)) + (H_2(\omega), H_2^*(\omega)) \}$

Delay at particular frequencies $arg(H_1(\omega).H_2^*(\omega))/2\pi f$

Covariance (lags over time, collapsed across frequencies) Real ($\mathbf{F}^{-1}(\mathbf{H}_1(\omega).\mathbf{H}_2^*(\omega))$)

Can also optimize complex-valued quantities
 Understand how biophysical parameters affect conventional linear systems measures

Overview

- 1. Data Features
- 2. Generative Model
- 3. Bayesian Inversion: Parameter Estimates and Model Comparison
- 4. Example: Glutamate and GABA in Rodent Auditory Cortex
- 5. DCM for Cross Spectral Density
- 6. DCM for Neural Fields

New NFM routines

Pinotsis, Moran, Friston, Neuroimage 2012

□Main difference with previous models: Brain activity is deployed on a cortical *patch* as opposed to being centred around a *point*

 \Box Lead field modified to enable a mapping of spatially distributed activity (coloured waves) to a time series at *P*

Novelty of DCM for NFs: Can get estimates of parameters relating to spatial properties of sources when there is NO SPATIAL INFO in the data <u>A</u><u>B</u>

E – Primary Visual Cortex (V1)

a intrinsic connection strength

c spatial decay rate \leftrightarrow connection extent

Jansen and Rit Neural Field Models

Augment old equations with wave equations describing propagation of afferent spike rate between points on the cortex

Summary

- DCM is a generic framework for asking mechanistic questions based on neuroimaging data (e.g. drug-induced changes in balance of synaptic transmission)
- Neural mass models parameterise intrinsic and extrinsic ensemble connections and synaptic measures (time constants, effective connectivity,...)
- DCM for SSR and CSD provide a compact characterisation of multi- channel LFP or EEG data in the frequency domain
- Bayesian inversion provides parameter estimates and allows model comparison for competing hypothesised architectures
- Neural field models incorporate propagation of activity on a cortical patch, so one can distinguish between spatial effects and other factors such as cortico-thalamic interactions or intrinsic cell properties
- Neural field models yield estimates of parameters related to topographic properties of the sources such as spatial decay rate of synaptic connections and intrinsic conduction speed, even when using spatially unresolved data

Thanks to

FIL Methods Group

Karl Friston **Rick Adams** Harriet Brown Jean Daunizeau Marta Garrido **Guillaume Flandin** Stefan Kiebel Vladimir Litvak Andre Marreiros Jeremie Mattout **Rosalyn Moran** Ashwini Oswal Will Penny Ged Ridway **Klaas Stephan** Yen Yu ...and thank you !

$$L(x,\varphi) = \varphi_1 \exp\left(-\frac{x^2}{\varphi_2}\right)$$

$$(i\pi) = \varphi_1 \exp\left(-\frac{x^2}{\varphi_2}\right)$$

$$(i\pi) = \varphi_1 \exp\left(-\frac{x^2}{\varphi_2}\right)$$

$$(i\pi) = \varphi_1 \exp\left(-\frac{x^2}{\varphi_2}\right)$$

$$(i\pi) = \int L(x,\varphi) \cdot V(x,t) dx$$

$$(i\pi) = \int L(x,\varphi) \cdot V(x,t) dx$$

$$\mathbf{g}_{Y}(\omega) = g_{Y}(\omega,\theta) + g_{N}(\omega,\theta) + \varepsilon(\omega)$$

 $\operatorname{Re}(\varepsilon) \sim \mathcal{N}(0, \Sigma(\omega, \lambda)) \quad \operatorname{Im}(\varepsilon) \sim \mathcal{N}(0, \Sigma(\omega, \lambda))$

$$\mathbf{g}_{Y}(\omega) = g_{Y}(\omega,\theta) + g_{N}(\omega,\theta) + \varepsilon(\omega)$$

$$\mathbf{g}_{Y}(\omega) = g_{Y}(\omega,\theta) + g_{N}(\omega,\theta) + \varepsilon(\omega)$$

$$L(x,\varphi) = L(\eta)$$

$$\mathbf{g}_{Y}(\omega,\theta) \approx \sum_{k} L(\eta)T_{m}^{k}(\omega,\theta)g_{U}(\omega)T_{m'}(\omega,\theta)^{*}L(\eta)^{*}$$

$$\mathbf{g}_{N}(\omega,\theta) = \alpha_{N} + \frac{\beta_{N}}{\omega}$$

$$g_{U}(k,\omega) = \alpha_{U} + \frac{\beta_{U}}{\omega}$$

$$T_{m}^{k}(\omega,\theta) = \int \kappa_{m}^{k}(t,\theta)e^{-j\omega t}dt$$

$$\kappa_{m}^{k}(t,\theta) = \frac{\partial g}{\partial x}e^{3\tau}\mathfrak{T}^{-1}\frac{\partial f}{\partial u_{k}}$$

$$\operatorname{Re}(\varepsilon) \sim \mathcal{N}(0,\Sigma(\omega,\lambda)) \quad \operatorname{Im}(\varepsilon) \sim \mathcal{N}(0,\Sigma(\omega,\lambda))$$

Maximum postsynaptic depolarization 8, 32 (mV)

Postsynaptic time constants 1/4, 1/28 (ms⁻¹)

Amplitude of intrinsic connectivity kernels 2000, 8000, 2000, 1000

```
Intrinsic connectivity decay constant 0.32 (mm<sup>-1</sup>)
```

Sigmoid parameters(post synaptic firing rate function) 0.54, 0,0.135

Conduction velocity 3 m/s

Radius of cortical source 50 (mm)

 $D \otimes Q = \iint D(x - x', t - t') \cdot Q(x', t') dx' dt'$

Changing model parameters

□ New peaks appear:

- as intrinsic speed decreases
- as connectivity extent increases

Pinotsis, Moran, Friston, Neuroimage 2012

Roadmap

$$\begin{aligned} \mathbf{G}_{\text{enerative}} & \stackrel{\text{predicted}}{\underset{\text{hyperparameters}}{\text{parameters}}} & \text{Priors} & \stackrel{\text{variance}}{\text{Bayesian}} & \stackrel{\text{Model Evidence}}{\underset{\text{hosteniors}}{\text{Priors}}} & \stackrel{\text{Model Evidence}}{\underset{\text{hosteniors}}{\text{Hosteniors}}} & \stackrel{\text{Hosteniors}}{\underset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\text{Hosteniors}}}} & \stackrel{\text{Hosteniors}}{\underset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\text{Hosteniors}}} & \stackrel{\text{Hosteniors}}{\underset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\text{Hosteniors}}}} & \stackrel{\text{Hosteniors}}{\underset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{\text{Hosteniors}}{\overset{$$

Measured data

Specify generative forward model (with prior distributions of parameters)

Variational Laplace Algorithm

Maximize a free energy bound to model evidence : $F = \log p(y|m) - D(q(\theta) || p(\theta|y,m))$

 $= \langle \log p(y|\theta, m) \rangle_q - D(q(\theta) \| p(\theta|m))$

<u>Iterative procedure:</u>	1. 2. 3.	Compute model response using current set of parameters and hyperparameters Compare model response with data Improve parameters and hyperparameters
-----------------------------	----------------	---

Model comparison via Bayes factor:

$$BF = \frac{p(y \mid m_1)}{p(y \mid m_2)}$$

$$q(\theta) \approx p(\theta | y, m)$$

Maximum accuracy over complexity constraints