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Primary intracellular currents give rise to volume currents
and a magnetic �eld

• Volume currents yield potential di�erences on the scalp that can be measured by
EEG

• MEG measures the changes in the magnetic �eld generated by an electric current
(Sarvas 1987, Hämäläinen 1993)

• These magnetic �elds are mainly induced by primary currents based on excitatory
activity (Okada et al. 1997)

Baillet: MEG consortium
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Forward models predict the M/EEG surface signals to
current dipoles in the brain
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Forward models can be described by lead�eld matrices

• Sources J are mapped to channels by subject-speci�c lead�eld matrices L:
Y = LJ + ε, with data Y , with noise ε

• Lead�eld matrix L depends on:

• the type/location/orientation of sensors
• the geometry of the head
• the conductivity of head tissues (in particular for EEG)
• the source space we are looking at (e.g. cortical surface or volumetric

image)
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Headmodels show di�erent degrees of complexity

• The simpler models are not su�cient to predict the electric potential di�erences
at the scalp

• Complex models are (1) computationally more expensive and (2) require more
prior knowledge about the anatomy and conductivity values and might be prone
to approximation errors
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MEG also may bene�t from using more complex
headmodels

Stenroos, Neuroimage 2014
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Canonical meshes

• Extracting the headmodel surfaces from MRI can be prone to approximation
errors

• The cortical surface in particular is di�cult due to the convoluted nature of the
brain (but: Freesurfer)

• Rather than extract surfaces from individuals MRIs, we can warp template
surfaces from an MNI brain based on spatial (inverse) normalisation
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Canonical meshes II

• By using canonical meshes we have a one-to-one mapping across subjects which
can be used for group statistics and group-inversion schemes

• Allows for multi-model data integration as source solutions live in MNI space

Mattout et al. 2007
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The forward and inverse problem from a Bayesian
perspective
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Equivalent Current Dipole Solutions for a small number of
cortical current sources

• For small number of Equivalent Current Dipoles (ECD)
the inverse problem is linear in the orientation of the
sources, but non-linear in location: Y = L(r)j + ε

• Standard ECD approaches iterate location/orientation
(within a brain volume) until �t to sensor data is
maximised (i.e, error minimised)

• But there remains the issue of local minima and the
question of how many dipoles we should use?

• And how can we incorporate prior knowledge?
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Generative model for the Variational Bayesian ECD
approach

• Forward model for a few dipolar sources:
Y = L(r)j + ε

• The locations r and moments j are
drawn from normal distributions with
precisions γs and γw

• ε is white observation noise with
precision γε

• These precisions in turn are drawn from
a prior gamma distribution

• We assume that the probabilities
factorise: p

(
Y , r , j ,λr ,λj ,λε |m

)
=

p (Y | r , j ,λr ,λε )p (λε |m)p (r | λr ,m)p (λr |m)p
(
j | λj ,m

)
p
(
λj |m

)
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Use a Variational Bayesian scheme with the Free Energy
as a cost function

• Use a multi-start procedure to avoid being stucked in local minima

• Compare evidence for models with di�erent number of dipoles or with di�erent
priors (Kiebel et al., 2008)
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A linear forward model for distributed M/EEG source
analysis

• Given p sources �xed in location (e.g, on a cortical mesh) and orientation, the

forward model turns linear: Y = LJ+E with E∼ N
(
0,C(e)

)
• But: there are many more possible sources than sensor data. We thus need some

form of regularisation to solve this under-determined problem
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The classical L2 or weighted minimum norm approach

• Y = LJ+ ε with ε ∼ N
(
0,C(e)

)
• J= argmin

{
‖C−1/2e (Y−LJ)‖2 + λ‖WJ‖2

}
• Tikhonov solution: J=

(
WTW

)−1
LT
[
L
(
WTW

)−1
LT + λCε

]−1
Y

Weighting matrices

W = I Minimum Norm

W = DDT Loreta (D =Laplacian)

W = diag
(
LTL

)−1
Depth-weighted

Wp = diag
(
LTp C

−1
y Lp

)−1
Beamformer

Philipps et al., 2002
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And its Parametric Empirical Bayes (PEB) generalisation

Hierarchical linear model

Y = LJ +Ee with Ee ∼ N (0,Ce) and Ce = n×n sensor error covariance matrix
J = 0+Ej with Ej ∼ N

(
0,Cj

)
and Cj = p×p source prior covariance matrix

Bayesian terms

Likelihood: p (Y | J) = N (LJ,Ce)
Prior: p (J) = N

(
0,Cj

)
Posterior: p (J | Y ) ∝ p (Y | J)p (J)

Maximum A Posteriori estimate

MAP estimate:
ˆ

J = CjL
T
[
LCjL

T +Ce

]−1
Y

For Cj =
(
WTW

)−1
, this corresponds to the classical weighted minimum norm

solution:
ˆ

J =
(
WTW

)
LT
[
L
(
WTW

)
LT + λCe

]−1
Y

See Phillips et al (2005), Neuroimage
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Sensor and source level covariance components

Covariance priors C are speci�ed as the sum of sensor and source components Qi ,
weighted by hyperparameters λi : C = ∑

i
λiQi

Sensor components, Q
(e)
i (error):

"IID" (White noise) Empty room:

Source components, Q
(j)
i :

"IID" (Minimum Norm):
Multiple Sparse

Priors (MSP):

Friston et al., 2008
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Source covariance matrices
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Hyperpriors

• When multiple Q's are correlated, estimation of hyperparameters λ can be
di�cult (e.g. local maxima), and they can become negative (improper for
covariances)

• impose positivity on hyperparameters: αi = ln (λi )⇐⇒ λi = exp (αi )
• impose shrinkage hyperpriors: p (α)∼ N (η ,Ω) with η =−4 and Ω = aI ,

a = 16

• Uniformative priors are 'turned o�': αi →−∞⇐⇒ λi → 0
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Negative Free energy provides a cost function for the
hyperparameters

• Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters λ by maximising the variational (negative) Free energy F :

λ̂ = max
λ

p (Y | λ ) = max
λ

F

• A �nal expectation step gives us Maximum A Posteriori (MAP) estimates of

source parameters J: Ĵ = max
λ

p
(
J | Y , λ̂

)
= max

λ

F

• Maximal Free energy F approximates the Bayesian log model evidence for a
model m, and in doing so takes accuracy and complexity of the model into
account

• Note: a large set of priors does not necessarily mean that the model has a large
complexity (as the according hyperparameters may have eliminated the respective
components)
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λ

p
(
J | Y , λ̂

)
= max

λ

F

• Maximal Free energy F approximates the Bayesian log model evidence for a
model m, and in doing so takes accuracy and complexity of the model into
account

• Note: a large set of priors does not necessarily mean that the model has a large
complexity (as the according hyperparameters may have eliminated the respective
components)

Saskia Helbling | M/EEG origins 22/40



Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

Negative Free energy provides a cost function for the
hyperparameters

• Obtain Restricted Maximum Likelihood (ReML) estimates of the
hyperparameters λ by maximising the variational (negative) Free energy F :

λ̂ = max
λ

p (Y | λ ) = max
λ

F

• A �nal expectation step gives us Maximum A Posteriori (MAP) estimates of

source parameters J: Ĵ = max
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Multiple Sparse Priors
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Reducing the computational load

• The computation of the Maximum Free Energy is made computationally feasable
by using the sensor rather than the source level covariance matrix:

Σ = λ0Qε +
Nq

∑
i=1

λiLC
−1LT

• Project data to spatial and temporal subspaces by means of Singular Value
Decomposition
⇒ decreases computational cost of the gradient ascent
⇒ increases the signal to noise ratio by removing redundancy in the data and
reducing noise

• Reduce number of hyperparameters to be estimated in each step by applying a
heuristic optimisation step
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Automatic relevance detection and Greedy Search

• ARD: each covariance component has an associated hyperparameter;
components are pruned during the optimisation scheme

• GS: performs a single to many optimisation of hyperparameters and splits sets of
hyperparameters recursively

• In SPM you can either use one of these heuristics alone or apply a �nal
optimisation step on the ARD, GS and error covariance matrices to avoid local
minima
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PEB Summary

• Allows for multiple priors in the form of covariance components to the extent
that hundreds of sparse priors (MSP), multiple error components or multiple
fMRI priors can be incorporated

• The parametric empirical Bayes approach automatically �regularises� the inverse
problem in a principled fashion

• Furnishes estimates of model evidence which allow us to evaluate the di�erent
priors: on the level of sensor or source covariances, but also for the forward
models (Henson et al. 2009, Lopez et al., 2012)
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MEG and EEG data fusion

Henson et al., 2009

• Di�erent MEG sensors and EEG are sensitive to di�erent source con�gurations
and hence can provide (partly) independent information on the underlying sources

• Rescale concatenated data and lead�eld matrices to accommodate di�erent
scaling and measurement units across the di�erent sensor-types

• We apply the same source covariance priors across all modalities, but sensor
covariance priors are assumed to di�er
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MEG and EEG data fusion
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MEG and EEG data fusion

• The maximal sources recovered from fusion were a plausible combination of the
ventral temporal sources recovered by MEG and the lateral temporal sources
recovered by EEG (Henson et al., 2009, Neuroimage)
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Using fMRI priors in M/EEG source reconstruction

Henson et al. (2011) Frontiers in Human Neurosci
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Convert fMRI clusters into covariance components
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Using fMRI priors from a face perception task

Henson et al., 2010, HBM

Saskia Helbling | M/EEG origins 33/40



Forward Models VB-ECD Bayesian imaging approaches Multi-modal and multi-subject integration

Valid fMRI priors increase the log model evidence

From Henson et al., 2010
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fMRI priors counteract super�cial bias of L2-norm
solutions
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fMRI priors a�ect the variance but not the exact time
course
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Bayesian group inversion

• Concatenate data across subjects and re-aligned lead�elds to an average lead�eld

• Common source priors C (j) = ∑λ
(j)
k

Q
(j)
k

, but subject speci�c sensor level priors

C
(e)
i = ∑λ

(e)
ik

AiQ
(e)
k

AT
i , with alignment matrices Ai

• Group increases the detection of di�erences at the group or between subject level
without applying additional smoothing

Litvak & Friston (2008) Neuroimage
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Bayesian group inversion

From Henson et al., 2011Saskia Helbling | M/EEG origins 38/40
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Summary

• SPM o�ers a range of standard forward models (via FieldTrip) and supports
canonical headmodels

• O�ers unique Bayesian approaches to inversion and allows us to compare
di�erent sets of prior assumptions by using the log model evidence

• Variational Bayesian ECD
• A PEB approach to distributed imaging (e.g. MSP, MNE, Bayesian

Beamformer)

• PEB framework o�ers a natural way to conduct multi-subject and multi-modal
integration
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Main references

• Friston et al. (2008) Multiple sparse priors for the M/EEG inverse problem

• Henson et al. (2007) Population-level inferences for distributed MEG source
localization under multiple constraints: application to face-evoked �elds

• Henson et al. (2010) A Parametric Empirical Bayesian framework for
fMRI-constrained MEG/EEG source reconstruction

• Henson et al. (2011) A Parametric Empirical Bayesian Framework for the
EEG/MEG Inverse Problem: Generative Models for Multi-Subject and
Multi-Modal Integration.

• Kiebel et al. (2008) Variational Bayesian inversion of the equivalent current
dipole model in EEG/MEG

• Lopez et al. (2014) Algorithmic procedures for Bayesian MEG/EEG source
reconstruction in SPM

• Mattout et al. (2007) Canonical Source Reconstruction for MEG

• Phillips et al. (2005) An empirical Bayesian solution to the source reconstruction
problem in EEG
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