

Jérémie Mattout Lyon Neuroscience Research Center

"Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for efficient cooperation to be possible"

Jacques Hadamard (mathematician, 1865-1963)

SPM for MEEG course – London – May 2016

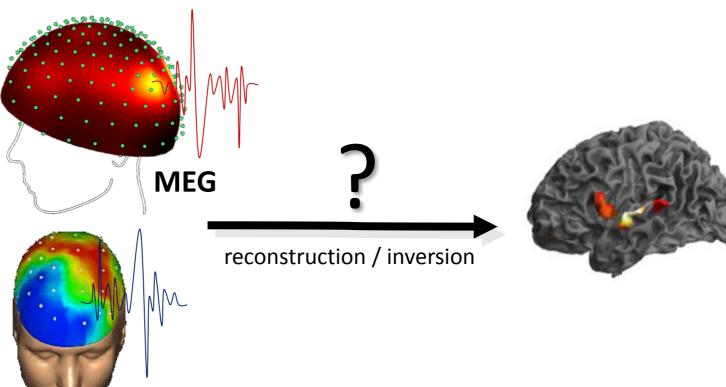
Introduction Ill-posed inverse problem Why a Bayesian approach?

Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

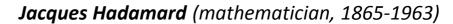


Well-posed inverse problem:

- a solution exists
- the solution is unique

EEG

- the solution is stable



Introduction

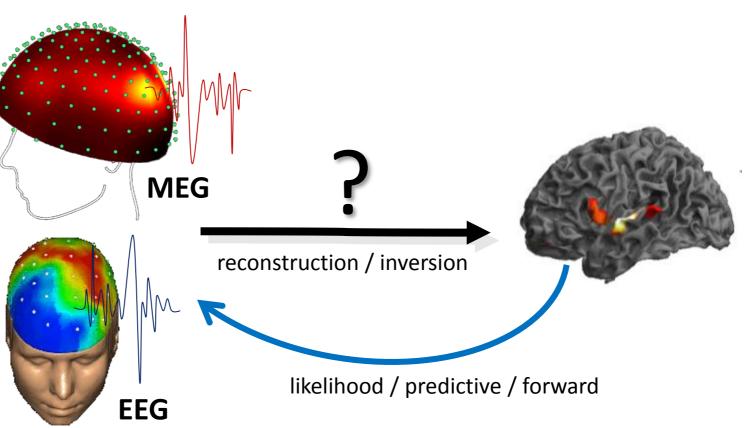
Introduction Ill-posed inverse problem Why a Bayesian approach?

Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference



Bayesian inference enables:

- to incorporate priors on the solution
- to account for uncertainty through probabilitic distributions
- to yield a unique and optimal solution given a likelihood model and priors over model parameters

Introduction

Introduction

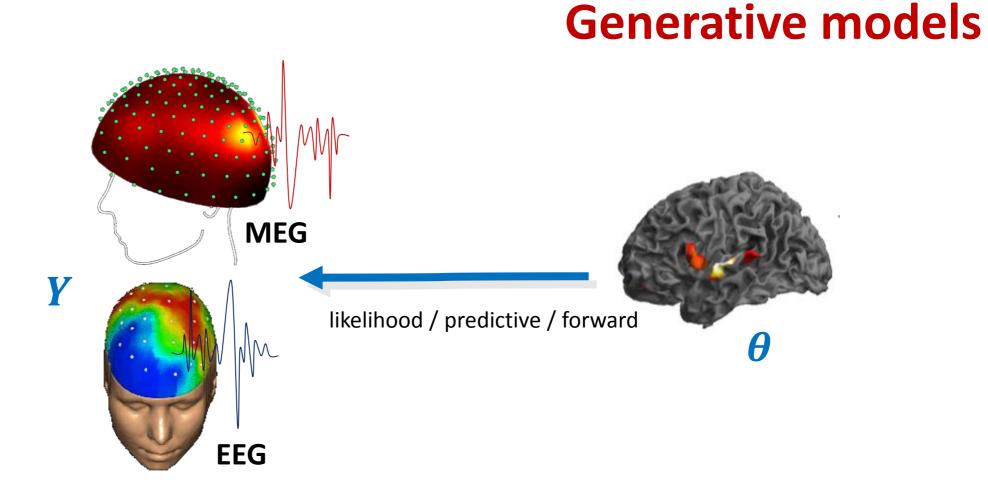
Ill-posed inverse problem Why a Bayesian approach?

Generative models Sources From sources to sensors Sensors

Bayesian inference

ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

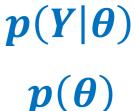
Example MMN study Group multimodal inference



A particular generative model is fully defined by:

- A data likelihood density function

- A prior distribution over **source** parameters $oldsymbol{ heta}$



Introduction

Ill-posed inverse problem Why a Bayesian approach?

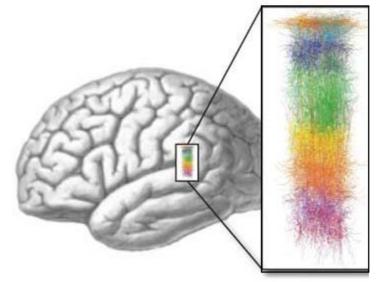
Generative models Sources From sources to sensors Sensors

Bayesian inference

ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference Observable from scalp:

the synchronous and additive activities of numorous neighbouring neurons



Cortical macro-column

Current dipole

- *θ*:
- Dipole location (x, y, z)
- Dipole orientation (Ox, Oy, Oz)
 - Dipole strength

Sources

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models Sources From sources to sensors Sensors

Bayesian inference

- ECD model Imaging models Setting priors Empirical Bayes
- Comparing models
- Group inference
- EEG/MEG fusion

Example

MMN study Group multimodal inference

Equivalent Current Dipole (ECD)

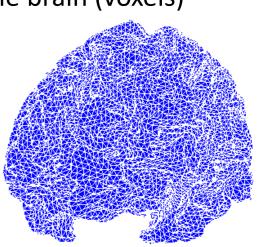
- Only a few activated sources
- Each source corresponds to a fairly large brain area
- Each source activity is modelled by one current dipole
 - Only a few parameters θ to be estimated (location, orientation and strength)

e.g. early response to auditory stimulus

Distributed or imaging approach

- The whole brain/cortex may be active
- The source space is discretized using a grid over the whole brain (voxels) or a cortical mesh (nodes)
- Each voxel or node is the location of a dipolar source
- Each dipole models the activity of a small brain region

Many parameters θ to be estimated (strength only)



Sources

e.g. MRI-derived cortical mesh

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models Sources From sources to sensors Sensors

Bayesian inference

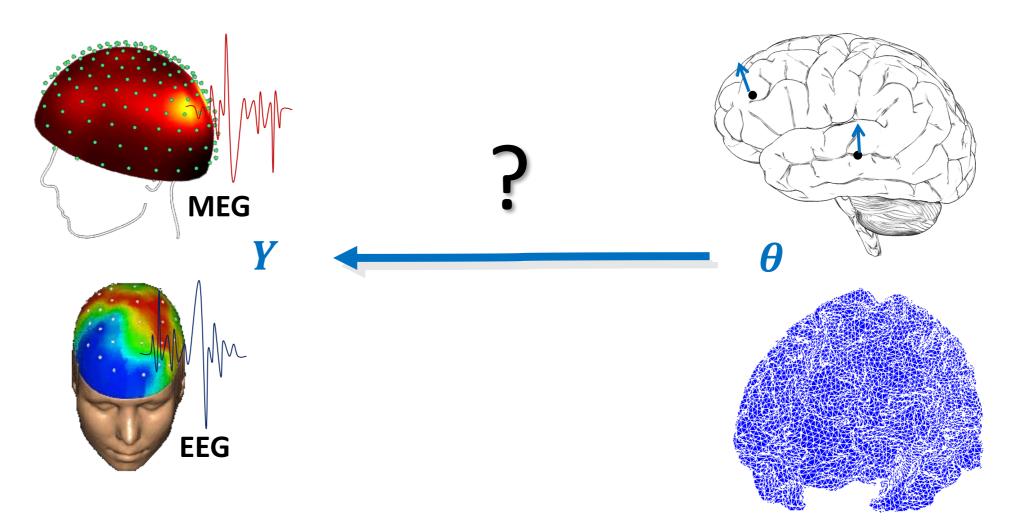
ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

James Clerk Maxwell (1831 - 1879)

From sources to sensors

- Predicting the sensor data Y from known source parameters θ :
 - requires solving the Maxwell's equations in a quasi-static regime
 - amounts to solving a well-posed forward problem
 - involves approximations



Introduction Ill-posed inverse problem Why a Bayesian approach?

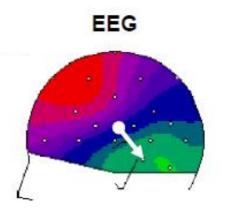
Generative models Sources From sources to sensors Sensors

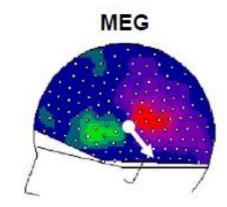
Bayesian inference

ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

From sources to sensors

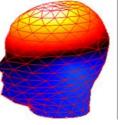


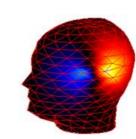


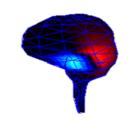
• EEG is sensitive to both radial and tangential sources

EEG is sensitive to conductivities

٠







 MEG is barely sensitive to radial sources

• MEG is barely sensitive to conductivities

Introduction

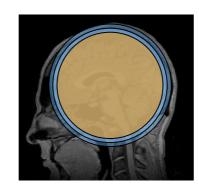
Ill-posed inverse problem Why a Bayesian approach?

Generative models Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

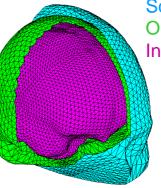
Simple Head Model



Concentric spheres

From sources to sensors

Realistic Head Model



Scalp (skin-air boundary) Outer Skull (bone-skin boundary) Inner Skull (CSF-bone boundary)

Boundary element method (BEM)

<u>Pros :</u>	Fast analytic solution	Realistic geometry
<u>Cons :</u>	Heads are not spherical	Slow approximate numerical solutions

Introduction

Ill-posed inverse problem Why a Bayesian approach?

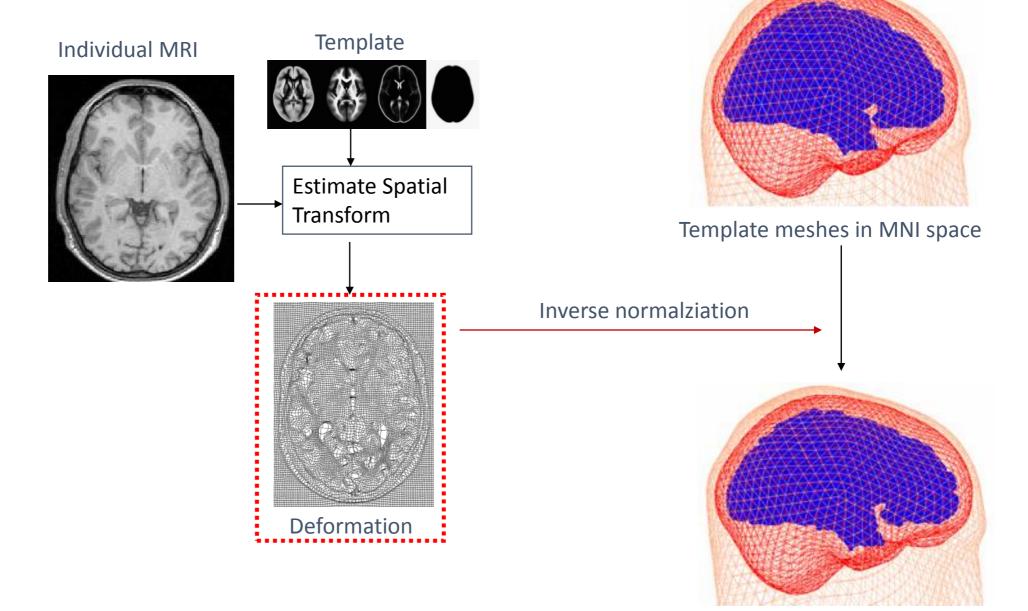
Generative models Sources From sources to sensors Sensors

Bayesian inference

ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

Automated extraction of individual meshes



Canonical (individual) mesh

From sources to sensors

Mattout et al., Comp. Int & Neuro, 2007

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models Sources From sources to sensors Sensors

Bayesian inference

ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

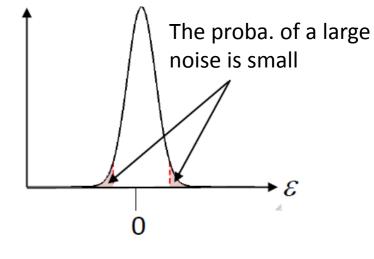
Example MMN study Group multimodal inference

- Data features <u>Y</u> to be fitted/explained
 - Evoked response
 - Induced response
 - Steady-state response

• Accounting for noise ε in the data $Y = g(\theta) + \varepsilon$

> Gaussian noise $p(\varepsilon) = N(0, C_{\varepsilon})$

Data likelihood $p(Y|\theta) = N(g(\theta), C_{\varepsilon})$



Sensors

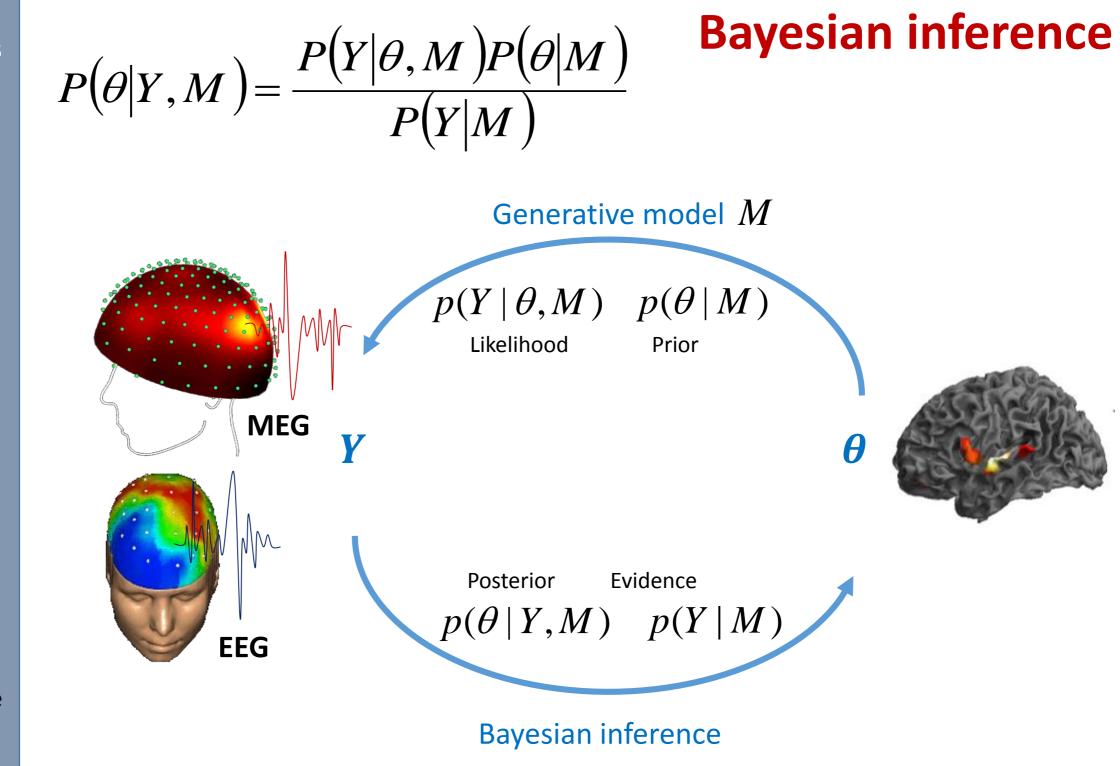
Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

- Sources From sources to sensors Sensors
- Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference



Introduction

Ill-posed inverse problem Why a Bayesian approach?

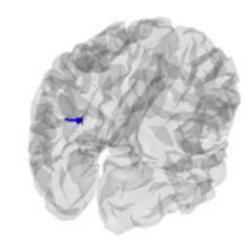
Generative models

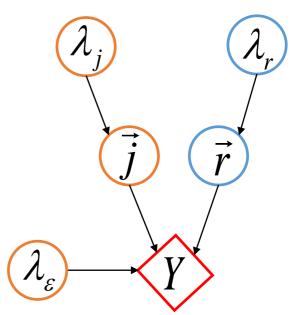
Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

- A Bayesian model for Equivalent Current Dipole (ECD) solutions
 - Enables to put priors on source parameters
 - Enables formal model comparison (e.g. on number of sources or initial conditions)





ECD model

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

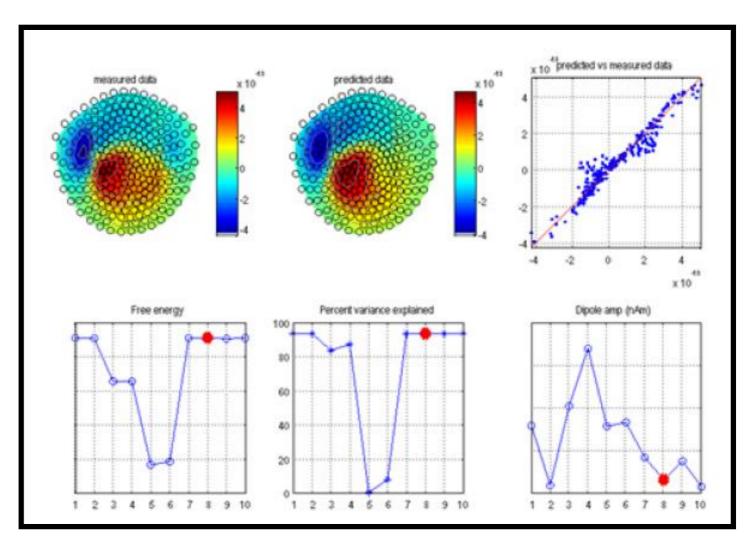
Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

A Bayesian model for Equivalent Current Dipole (ECD) solutions

- Enables to put priors on source parameters
- Enables formal model comparison (e.g. on number of sources or initial conditions)



Kiebel et al., NeuroImage, 2008

ECD model

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

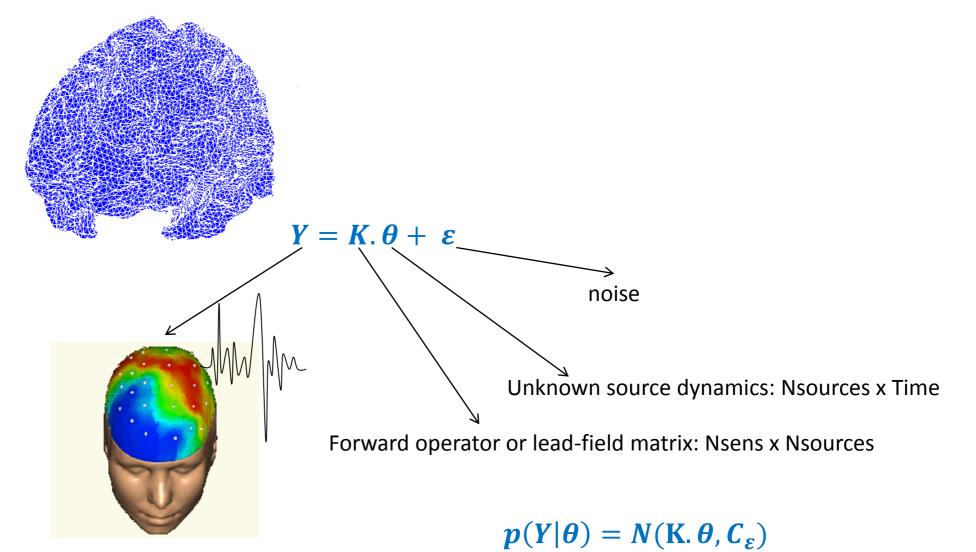
Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

• <u>A Bayesian model for Distributed / Imaging solutions</u>

- Many dipoles with fixed location and orientation
- Dipole strength ? -> linear model



Evoked EEG response: Nsens x Time

Imaging models

Setting priors

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

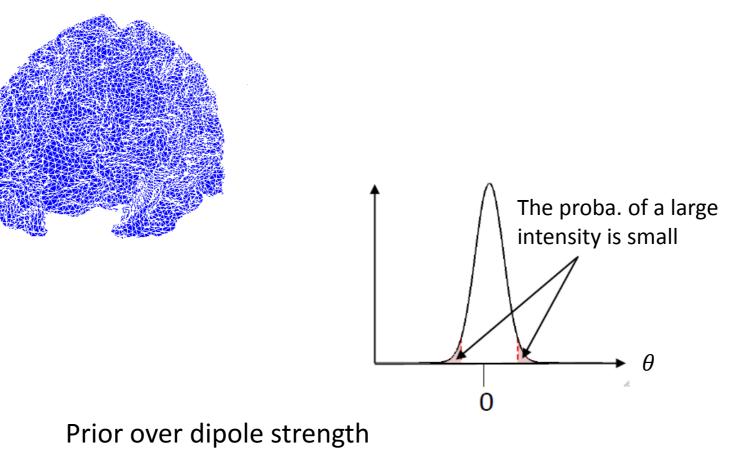
Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

• <u>A Bayesian model for Distributed / Imaging solutions</u>

- Many dipoles with fixed location and orientation
- Dipole strength ? -> linear model



 $\boldsymbol{p}(\boldsymbol{\theta}) = \boldsymbol{N}(0, \boldsymbol{C}_{\boldsymbol{\theta}})$

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

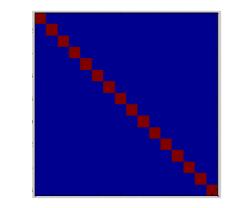
Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

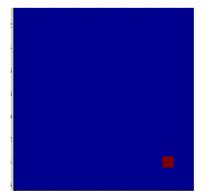
Example MMN study Group multimodal inference Alternative priors correspond to alternative prior covariance matrices

 $p(\theta) = N(0, C_{\theta})$ Ndip x Ndip

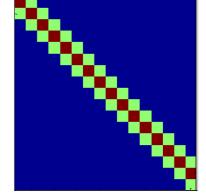
<u>Typical priors</u>



i.i.d or Minimum norm



Single dipole



Smoothness (like LORETA)

Introduction

Ill-posed inverse problem Why a Bayesian approach?

Generative models

Sources From sources to sensors Sensors

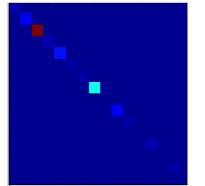
Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

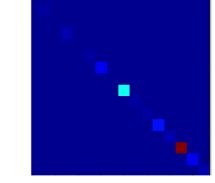
Alternative priors correspond to alternative prior covariance matrices

 $\boldsymbol{p}(\boldsymbol{\theta}) = \boldsymbol{N}(0, \boldsymbol{C}_{\boldsymbol{\theta}})$ Ndip x Ndip

More advanced priors



fMRI based



Data or Lead-field based e.g. (Beamformer or MSP)

Henson et al., Hum. Brain Map., 2010

Mattout et al., NeuroImage, 2005

Setting priors

Introduction

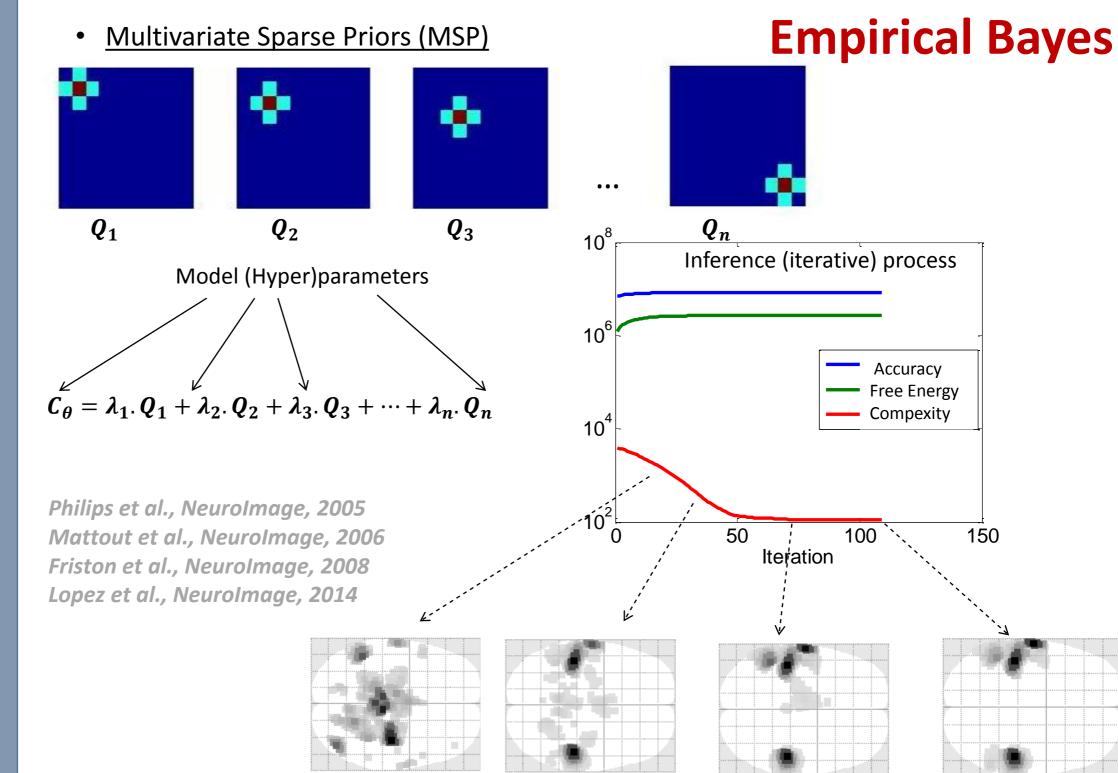
Ill-posed inverse problem Why a Bayesian approach?

Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference



Introduction

Ill-posed inverse problem Why a Bayesian approach?

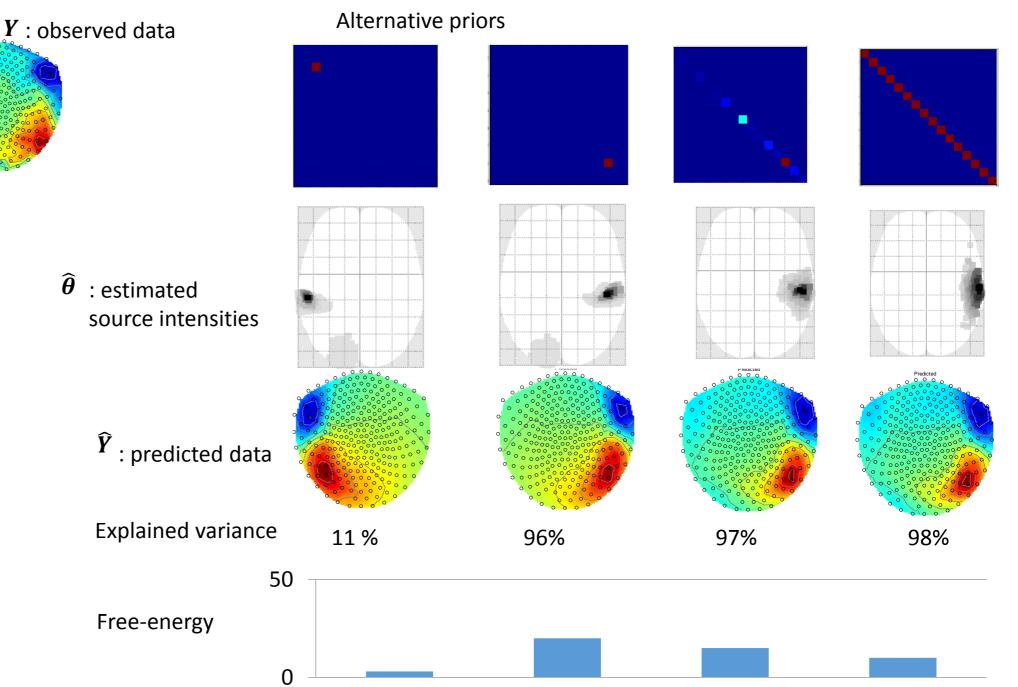
Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

• Comparing priors using log-evidence (free energy) $F \cong p(Y|M)$



Comparing models

Comparing models

M/EEG source analysis

Introduction

Ill-posed inverse problem Why a Bayesian approach?

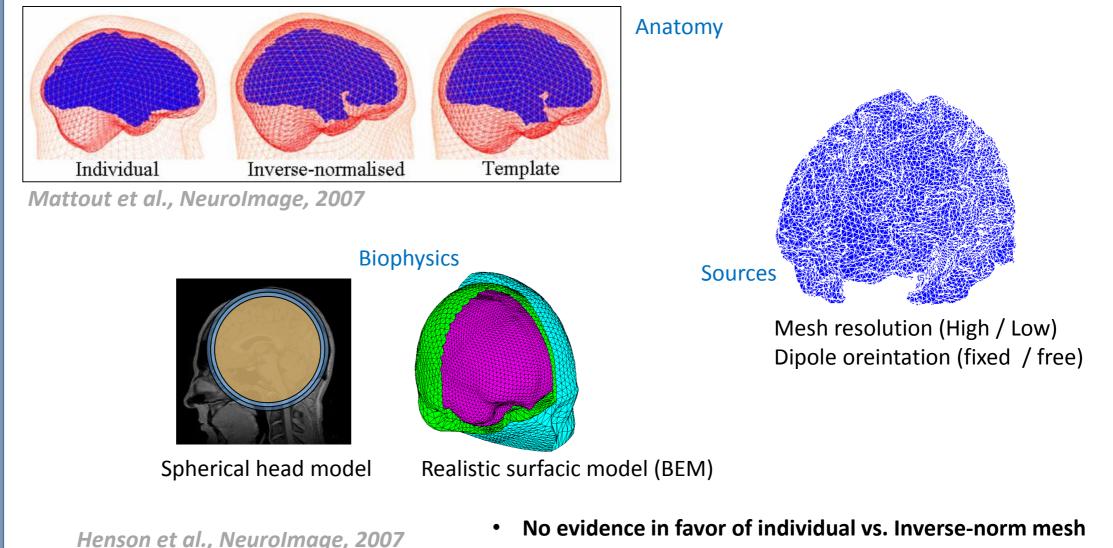
Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference • <u>Any assumption (part of model M) can be formally tested on real data</u> <u>using Bayesian model comparison</u>

Henson et al., NeuroImage, 2009



- Evidence in favor of BEM head model
- Evidence in favor of high + fixed vs. low + free

Introduction

Ill-posed inverse problem Why a Bayesian approach?

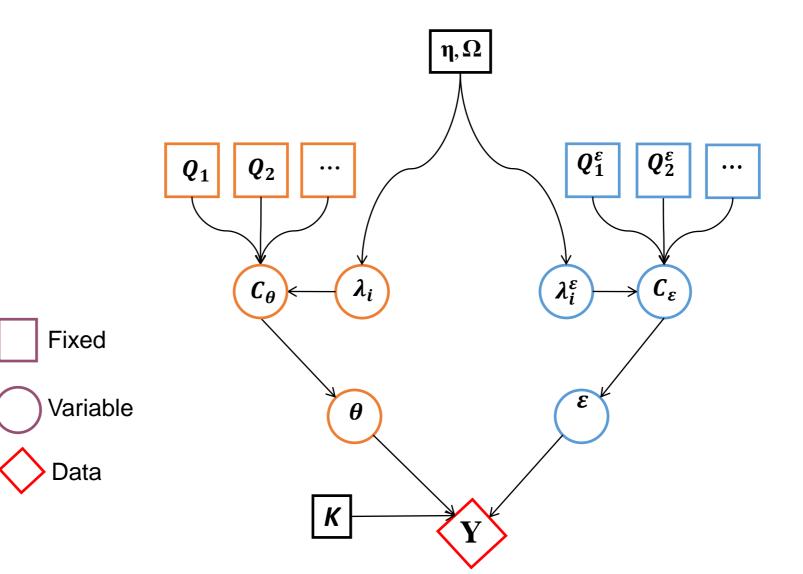
Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

MSP based source reconstruction for a single subject



Friston et al., NeuroImage, 2008

Group inference

Group inference

M/EEG source analysis

Introduction

Ill-posed inverse problem Why a Bayesian approach?

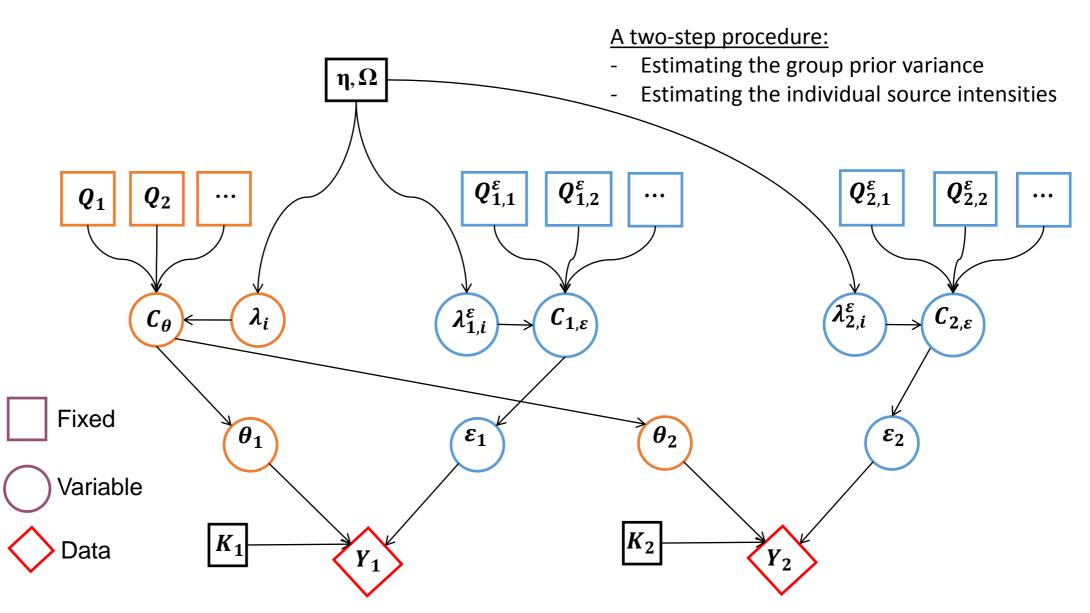
Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors Empirical Bayes Comparing models Group inference EEG/MEG fusion

Example MMN study Group multimodal inference

MSP based source reconstruction for multiple subjects



Introduction

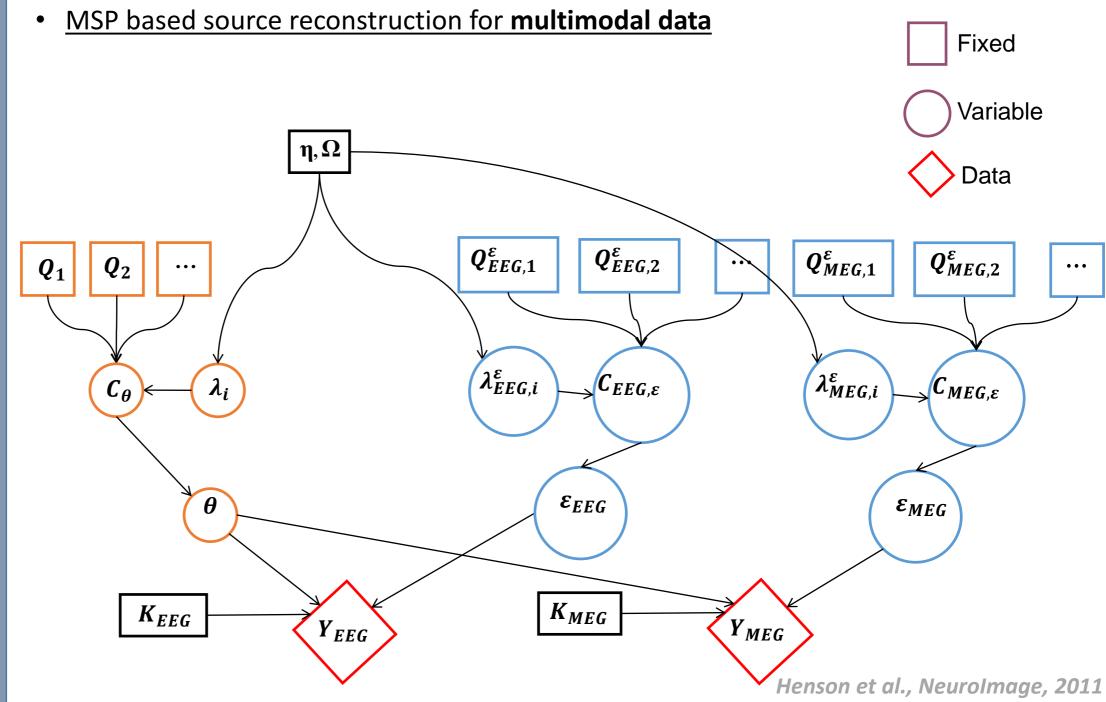
Ill-posed inverse problem Why a Bayesian approach?

Generative models

Sources From sources to sensors Sensors

Bayesian inference ECD model Imaging models Setting priors **Empirical Bayes Comparing models** Group inference EEG/MEG fusion

Example MMN study Group multimodal inference



EEG/MEG fusion

...

Acknowledgements

Gareth Barnes Anne Caclin Jean Daunizeau **Guillaume Flandin Karl Friston Rik Henson Stefan Kiebel Françoise Lecaignard Vladimir Litvak Christophe Philips**