M/EEG source analysis

Gareth R. Barnes

Key points:

- What is an ill-posed inverse problem
- Prior knowledge- links to popular algorithms.
- Validation of prior knowledge/ Model evidence

The forward problem

The Inverse problem

*Assuming no correlated sources

fMRI data

Maybe...

Some popular priors

SAM,DICs Beamformer

LORETA

?

Multiple Sparse Priors (MSP/ Greedy Search (GS) Automatic relevance determination (ARD))

Summary

- MEG inverse problem requires prior information in the form of a source covariance matrix.
- Different inversion algorithms- SAM, DICS, LORETA, Minimum Norm, dSPM... just have different prior source covariance structure.
- Historically- different MEG groups have tended to use different algorithms/acronyms.

See

Mosher et al. 2003, Friston et al. 2008, Wipf and Nagarajan 2009, Lopez et al. 2013

Software

- SPM12: <u>http://www.fil.ion.ucl.ac.uk/spm/software/spm12/</u>
- DAiSS- SPM12 toolbox for Data Analysis in Source Space (beamforming, minimum norm and related methods), developed by Vladimir Litvak: <u>https://github.com/spm/DAiSS</u>
- Fieldtrip : <u>http://fieldtrip.fcdonders.nl/</u>
- Brainstorm: http://neuroimage.usc.edu/brainstorm/
- MNE: <u>http://martinos.org/mne/stable/index.html</u>

Which priors should I use ?

• Compare to other modalities..

Singh et al. 2002

MEG beamformer

fMRI

• Use model comparison... rest of the talk.

Prior

Estimated Current flow

Predicted data

Variance explained

11 %

96%

How do we chose between priors ?

Measurement (Y)

Use prior info (possible ingredients)

Possible priors

Which is most likely prior (which prior has highest evidence)?

Consider 3 generative models

Space of possible datasets (Y)

Complexity

Prior

Estimated Current flow

Predicted data

Variance explained

11 %

96%

How do we chose between priors ?

How do we chose between priors ?

Muliple Sparse Priors (MSP), Champagne

Candidate Priors

1 2 3 4 5 6 7 8 9

Multiple Sparse priors

So now construct the priors to maximise model evidence

Key points :

- What is an ill-posed inverse problem
- Prior knowledge- links to popular algorithms.
- Validation of prior knowledge/ Model evidence

Conclusion

- M/EEG inverse problem can be solved.. If you have some prior knowledge.
- All prior knowledge encapsulated in a source covariance matrix.
- Can test between priors (or develop new priors) within a Bayesian framework.

References

- <u>Mosher et al., 2003</u>
- J. Mosher, S. Baillet, R.M. Leahi
- Equivalence of linear approaches in bioelectromagnetic inverse solutions
- IEEE Workshop on Statistical Signal Processing (2003), pp. 294–297
- <u>Friston et al., 2008</u>
- K. Friston, L. Harrison, J. Daunizeau, S. Kiebel, C. Phillips, N. Trujillo-Barreto, R. Henson, G. Flandin, J. Mattout
- Multiple sparse priors for the M/EEG inverse problem
- NeuroImage, 39 (2008), pp. 1104–1120
- Wipf and Nagarajan, 2009
- D. Wipf, S. Nagarajan
- A unified Bayesian framework for MEG/EEG source imaging
- NeuroImage, 44 (2009), pp. 947–966

Thank you

- Karl Friston
- Jose David Lopez
- Vladimir Litvak
- Guillaume Flandin
- Will Penny
- Jean Daunizeau

- Christophe Phillips
- Rik Henson
- Jason Taylor
- Luzia Troebinger
- Chris Mathys
- Saskia Helbling

And all SPM developers

Analytical approximation to model evidence

• Free energy= accuracy- complexity

 $F = -\begin{bmatrix} Model \\ error \end{bmatrix} -\begin{bmatrix} Size of model \\ covariance \end{bmatrix} -\begin{bmatrix} Num of data \\ samples \end{bmatrix} \\ -\begin{bmatrix} Error in \\ hyperparameters \end{bmatrix} +\begin{bmatrix} Error in covariance \\ of hyperparameters \end{bmatrix}.$

Cross validation or prediction of unknown data

Polynomial fit example

The more parameters in the model the more accurate the fit (to training data).

Polynomial fit example

The more parameters the more accurate the fit to training data, but more complex model may not generalise to new (test) data.

Fit to training data

More complex model fits training data better

Fit to test data

Simpler model fits test data better

Relationship between model evidence and cross validation

Can be approximated analytically...