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• Structural connectivity

presence of axonal connections

• Functional connectivity 

statistical dependencies between regional time series (correaltion, choherence, etc)

• Effective connectivity 

causal influences between neuronal populations, and experimental contexts!

Structural connectivity Functional connectivity Effective connectivity

O. Sporns 2007, Scholarpedia



Dynamic causal modelling :generic pipeline

(a) Experimental design (b) Neuroimaging (c) Feature selection

(d) Model specification (e) Model identification (f) Structure learning

F

e.g., Bayesian model comparisonVariational LaplaceGenerative models & 
network structure

Jafarian et al, 2019



Experimental design 

(a) Experimental design (b) Neuroimaging 

A DCM study begins by articulating hypotheses about brain function and designing an experiment (e.g. 

factorial design) to test them.

Time (s) Garrido et al. 2009

Jafarian et al, 2019



Dynamic causal modelling

(c) Feature selection

(d) Model specification (e) Model identification (f) Dynamic causal modelling 

F

Bayesian model comparisonVariational Laplacegenerative Models & 
network structure

We select features in the collected data that are 

important (i.e., informative) from a modelling standpoint! 



EEG/MEG data feature:

event-related potential

Time (s)

9 to 36 tones

Duration: 700ms

Interval: 400-2000ms

Deviants: 0 to 6

Jafarian et al, 2019



EEG/MEG data feature:

time-frequency features

• Evoked oscillations are phase locked to the 

stimulus, whereas induced oscillations are 

otherwise! 

• Example of induced response:  voluntary finger 

movement which is not phased locked to the 

onset of the task.

Trends Cogn Sci. 1999 Apr;3(4):151-162

Evoked 𝜸 with 
fixed latency 

Induced 𝜸 with 
Jitter in latency 



EEG/MEG data feature:

(cross)power spectra
Anesthesia-induced loss of consciousness:

Condition A:  Wake

Condition B:  Mild sedation: responsive to command

Conditioin C: Deep sedation: loss of consciousness

Increased fast activity (e.g., beta to gamma power range) caused by infusion of  

propofol (vs wake)

Increased slow activity ( from delta to alpha)  power when consciousness is lost

Murphy et al. 2011

Anterior 
Cingulate/mPFC

Precuneus
/Posterior  Cingulate



Model specification:

Phenomenological: Model of Phase 

Coupling

Penny,  et al 2009

phase coupling between regions 
induced Synchronization! 



Dynamic Causal Modelling

(d) Model specification (e) Model identification (f) Dynamic causal modelling 

F

Bayesian model comparisonVariational LaplaceGenerative models & 
network structure

The hypotheses are then formally expressed in terms of biologically

informed model architectures, each describing possible interactions

between experimental inputs and neuronal dynamics.



•Physiological : biologically inspired model that can emulate different temporal, 
spectral and spatial features of E/MEG data. 

•Phenomenological: quantitative models that governs some aspects of E/MEG 
dynamics. 

Model specification:

model of brain region
A

Data in channel 
space
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Chen et al 2008



Model specification:

rHGlHG

rPT

rIFG

rPI

thalamic 

input

[-42 -28 8] [45 -22 8]

[69 -19 2][-69 -25 8]

[54 20 26]



Model specification:

phenomenological

1

?

?

Modelling dynamic changes in power spectral density  caused by external input and/or 

coupling strengths. (e.g., beta activity in region 1 leads to a gamma increase in region 2)

2

van Wijk et al, 2013,2018



Model specification:

phenomenological

Data in channel 
space
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Chen et al 2008

K frequency modes in j-th source



van Wijk ,2018
Chen et al, 2008

𝜏 ሶ𝑔 𝑡 = 𝐴 + ∑𝑢𝐵 𝑔 𝑡 + 𝐶𝑈Bi linear model of changes power spectrum 

TF analysis of one brain region decomposed into several modes
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van Wijk ,2018

How frequency K in 

region j affects 

frequency 1 in region i

𝜏 ሶ𝑔 𝑡 = 𝐴 + ∑𝑢𝐵 𝑔 𝑡 + 𝐶𝑈Bi linear model of changes power spectrum 



Model specification:

Phenomenological: Model of Phase 

Coupling

Penny,  et al 2009

phase coupling between regions 
induced Synchronization! 
Parameter of interest:
(frequency-dependent) coupling values



j 

j

i

Connections are 
modulated by 
experimental condition

ija

ija 

Penny,  et al 2009
van Wijk ,2018

𝑓𝑖 is intrinsic frequency in 𝑖𝑡ℎ region; 
𝜙𝑖 is the phase in the in 𝑖𝑡ℎ region and 
effective connectivity is denoted by 𝑎𝑖𝑗.

𝜙 ሶ𝑖 = 𝑓𝑖 + ∑𝑎𝑖,𝑗 sin(𝜙𝑖 − 𝜙𝑗)



Model specification:

biophysical models

Data in channel 
space

)(td

Inversion of 
electromagnetic 

model L

)(tu

kl

ijA

jg

input



)(tu

kl
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input

Model specification:

biophysical model: cortical column

≈10,000 neurons

Mountcastle 1957, Hubel and Wiesel 1959

Mountcastle

Hubel and Wiesel 

EEG

spiny stellate

Inhibitory 

interneurons

pyramidal cells



Model specification:

physiological (neural mass model)

spiny stellate

Superficial

pyramidal

cells

deep pyramidal cells

Inhibitory 

interneurons

cortex

thalamus
Forward connectionsBackward connections

2

4

1 3

1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells

Infragranular 

layer

Supragranular

layer

Granular layer

Abstract model



Model specification:

Physiological (neural mass model)

Top-down extrinsic afferents

Bottom up extrinsic afferents

2

4

1 3

1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells

Dynamics of each neuronal population is described by
two conversion operators
1- Mean potential to mean firing rates 
2- Firing rates to potential conversion

2
Example :Superficial pyramidal cells



Model specification:

physiological (neural mass model)

Mean firing rate (sigmoid function)

It is hoped that the relative simplicity of the model may serve as a basis for 

a better understanding of the functional significance of cortical complexity.

(Hugh Wilson and Jack Cowan, 1973)



Model specification:

physiological (neural mass model)
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Model specification:

physiological (neural mass model)

W. Freeman

Synapse 

Freeman 1975



synapse

synapse

Freeman 1975



Model specification:

Physiological (neural mass model)

Parameter 𝑎 is called intrinsic connectivity and 𝜅 is rate constant



Model specification:

multi-region interconnection
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Forward extrinsic connection

Backward extrinsic connection

Friston et al. 2017



Model specification:

Top-down extrinsic 

afferents

Bottom up extrinsic afferents

2

4

1 3

1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells

DCM: model equation

Neural state equations

Observation function



Model specification:

forward simulation

Top-down extrinsic 

afferents

Bottom up extrinsic afferents

2

4

1 3

1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells



Model specification:

forward simulation

Top-down extrinsic 

afferents

Bottom up extrinsic afferents

2

4

1 3

1. Spiny stellate cells

2. Superficial pyramidal cells

3. Inhibitory interneurons

4. Deep pyramidal cells
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Friston et al. 2017

Increasing the self-inhibition of spiny stellate cells

rapidly suppresses alpha activity and increases the

frequency of gamma activity until a bifurcation at a

peak gamma activity of about 80 Hz.

This phase transition is seen even earlier as the self-

inhibition of superficial pyramidal cells increases, with

a peak gamma of about 42 Hz.

The effects of increasing self-inhibition of inhibitory

interneurons and deep pyramidalcells are to suppress

alpha activity and convert it into fast activity.



Dynamic causal modelling

(a) Experimental design (b) Neuroimaging (c) Feature selection

(d) Model specification (e) Model identification (f) Structure learning

F

Bayesian model comparison

Bayesian model reduction

Variational Laplacegenerative Models & 
network structure



Model identification: F

• Forward simulation of the model : given a generative model (e.g., NMM) , we  change 
parameters and observe simulated brain activity. This is called prediction of the model for a
given set of parameters. 

• Inverse problem: given measured electrophysiological data, we would like to know what 
sorts of (biological) parameters (forward/backward connections, synaptic efficacy) are likely to
produce the measurement data. We would like to know which model among many, better 
explains the data.



Model identification: F

DCM: model structure

DCM: Bayesian inference (expectation-maximization)

Model evidence
or ‘Free Energy’

Posterior parameter estimates

“Accuracy - Complexity”

Priors on all parameters

Neural state equations

Observation function

 Likelihood



Model inversion:

rHGlHG

rPT

rIFG

rPI

thalamic 

input

Standards

Deviants

66 ms 199 ms 333 ms

Observed

66 ms 199 ms 333 ms

Predicted

66 ms 199 ms 333 ms

Observed

66 ms 199 ms 333 ms

Predicted

What should be added to the
estimated parameters of the
neuronal model that generates
the standard response to
produce the deviant response?



Model inversion:

condition specific inversion

rHGlHG

rPT

rIFG

rPI

thalamic 

input

Standards

Deviants

66 ms 199 ms 333 ms

Observed

66 ms 199 ms 333 ms

Predicted

66 ms 199 ms 333 ms

Observed

66 ms 199 ms 333 ms

Predicted



Model specification:

prediction of the model given the estimated parameters 

rHGlHG

rPT

rIFG

rPI

thalamic 

input
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Dynamic causal modelling

(a) Experimental design (b) Neuroimaging (c) Feature selection

(d) Model specification (e) Model identification (f) Structure learning

F

Bayesian model comparisonVariational Laplacegenerative Models & 
network structure



Model specification:

prediction of the model 

rHGlHG

rPT

rIFG

rPI

thalamic 

input

rHGlHG

rPT

rIFG

rPI

thalamic 

input

Which model better explains the underlying dynamics in the data ? 
Will be explained in the Bayesian model comparison Lecture 
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Model specification:

prediction of the model 

Many thanks for your attention. 

Please get in touch using SPM mailing list should you have any questions.



Appendix

From convolution to differential equation

Laplace transform 

Inverse Laplace transform 


