

Dimitris Pinotsis City—University of London & MIT

pinotsis@mit.edu

Dynamic Causal Modelling for Steady State Responses

- ✓ Similar statistical features
- ✓ Summarize activity in a compact way

 Quantitative description in terms of a characteristic frequency

- ✓ Cannot describe nonlinear frequency coupling (DCM for IR)
- Changes oscillatory power and coherence may not yield information directly (DCM for SSR)

In SPM

🛃 SPM12b (6225): Menu 🗖 🗖 🗾 🔀	
Convert Time-frequ Images Preproces Average Other	
3D Source Reconstr. DCM Specify 1st-level Review Specify 2nd-level Estimate	
Results	
Displa Check Reg Render EEG Toolbox: PPIs ImCalo DICOM Import	
Help Utils Batch Ouit Copyler-Ster	

DCM for M/EEG

load

save

Study (DCM) filename

ERP

ERP

SSR

Ψ.

ERP

new data

Perception, attention, memory, executive control

 \checkmark Highly parallel processing by the brain

✓ Information transfer

✓ Synchronized neuronal discharges

✓ Select relevant information

Oscillations

- ✓ Working memory (Siegel et al. 2009,...)
- Visual attention (Feldman and Friston, 2010,...)
- ✓ Size, contrast (e.g. Pinotsis et al., 2014, Pinotsis et al., 2016,...)
- Binding Input to cortical representations (Schoffelen et al., 2005,...)
- Information propagation (e.g. Bastos et al. 2012, Tallon-Baudry et al., 1996...)
- Psychiatric diseases, Autism... (e.g. Uhlhaas and Singer, 2012, Dickinson et al., 2015,...)

Working Memory Task (Miller Lab, MIT)

WM performance

When more than 2 items were presented in the same hemifield, the animal's behavioral performance decreased dramatically

Buschman et al., PNAS, 2011

Changes in oscillatory power may not yield information

Load effects are weak (1-2% change)

Load effects are similar below and above WM Capacity Limit

→ Power is not informative about the reduction in performance and the mechanisms/network effects resulting in the WM Capacity Limit

Kornblith et al., Cerebral Cortex, 2015

Inferred model connectivity may explain behaviour

Above capacity – Ipsilateral only where performance is impaired

- FB from PFC broke down— Could explain reduced performance that load effects on power did not explain.
- Predictive Coding model \rightarrow No predictions from areas that contain memories
- No memories \rightarrow The animal cannot perform the task

Pinotsis et al., Cerebral Cortex, 2018

Steps

Cross Spectral Density

EEG - MEG – LFP <u>Time Series</u>

Summarizes brain response
 In terms of power at each
 frequency

Frequency (Hz)

Power (mV²)

A few LFP channels or EEG/MEG spatial modes

From Time Series to Cross Spectral Densities

Vector Auto-regression *p***-order model:**

Linear prediction formulas that attempt to predict an output y[n] of a system based on the previous outputs

$$y_{n} = \alpha_{1}y_{n-1} + \alpha_{2}y_{n-2} + \alpha_{p}y_{n-p} + e_{n}$$

Resulting in a matrices for c Channels

$$H_{ij}(\omega) = \frac{1}{\alpha_{1}^{ij}e^{i\omega} + \alpha_{2}^{ij}e^{i\omega + 2} + \dots + \alpha_{p}^{ij}e^{i\omega p}}$$

$$y_{n} = \alpha_{1}y_{n-1} + \alpha_{2}y_{n-2} + \alpha_{p}y_{n-p} + e_{n}$$

$$\{\alpha_{1\dots,p} \in A(p) : \{c \times c\}\}$$

$$g(\omega)_{ij} = f(A(p))$$

$$g(\omega)_{ij} = f(A(p))$$

$$g(\omega)_{ij} = H_{ij}(\omega) \prod_{ij} H(\omega)_{ij}^{*}$$

A Brain Area as an Input - Output System

Same Neural Mass Models as ERP

EEG/MEG/LFP signal

From DCM for ERPs talk in this course (Ryszard Auksztulewicz)

Roadmap

Bayesian Model Inversion

$$\mathbf{g}_{Y}(\omega) = g_{Y}(\omega, \theta) + g_{N}(\omega, \theta) + \varepsilon(\omega)$$
$$g_{N}(\omega, \theta) = \alpha_{N} + \frac{\beta_{N}}{\omega}$$
$$\operatorname{Re}(\varepsilon) \sim \mathcal{N}(0, \Sigma(\omega, \lambda)) \quad \operatorname{Im}(\varepsilon) \sim \mathcal{N}(0, \Sigma(\omega, \lambda))$$

$$p(\theta, m) = N(\mu_{\theta}, \Sigma_{\theta})$$

 $p(G \mid \theta, m) = N(\mathbf{g}_{Y}(\omega), \Sigma(\omega, \lambda))$ $p(G \mid m) = \int p(G \mid \theta, m) p(\theta) d\theta$ $p(\theta \mid G, m) = \frac{p(G \mid \theta, m) p(\theta, m)}{p(G \mid m)}$

Bayesian Model Inversion

Measured data

Specify generative forward model (with prior distributions of parameters)

Variational Laplace Algorithm

Maximize a free energy bound to model evidence :

 $F = \log p(y|m) - D(q(\theta) \| p(\theta|y,m))$

 $= <\log p(y|\theta,m) >_{q} -D(q(\theta) \| p(\theta|m))$

- 1. Compute model response using
current set of parameters and
hyperparameters
 - 2. Compare model response with data
 - 3. Improve parameters and hyperparameters

Model comparison via Bayes factor:

$$BF = \frac{p(y \mid m_1)}{p(y \mid m_2)}$$

$$q(\theta) \approx p(\theta | y, m)$$

Maximum accuracy over complexity constraints

Data fits have **two** parts: real and imaginary

Example 1: Pharmacological Manipulation of Glutamate and GABA

Question:

✓ Are our estimates of excitation and inhibition truthful?

 H_e, H_i

AIM:

NOT to explain mechanisms of isoflurane BUT

- to exploit isoflurane to <u>induce</u> known changes in synaptic transmission and THEN
- ✓ use LFP recordings and DCM for SSR to <u>infer</u> synaptic changes

Moran et al., *PLoSONE, 2011*

Pharmacological Manipulation of Glutamate and GABA

- ✓ Use animal LFP recordings from primary auditory cortex (A1) & posterior auditory field (PAF)
- ✓ Manipulate neurotransmitter processing via anaesthetic agent Isoflurane
- ✓ 4 levels of anaesthesia: each successively decreasing glutamate and increasing GABA (Larsen *et al* Brain Research 1994; Lingamaneni *et al* Anesthesiology 2001; Caraiscos *et al* J Neurosci 2004 ; de Sousa *et al* Anesthesiology 2000
- ✓ White noise stimulus & Silence

From DCM for ERPs talk in this course

Pharmacological Manipulation of Glutamate and GABA

DCM for SSR recovers known drug-induced changes

frontiers in COMPUTATIONAL NEUROSCIENCE

Neural masses and fields in dynamic causal modeling

Rosalyn Moran^{1,2,3}*[†], Dimitris A. Pinotsis^{1†} and Karl Friston¹

¹ Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK

² Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA

³ Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

Taxonomy – I

With or Without Ion Channels ?

- Characterize nonlinear synaptic transmission or linear convolution effects.
- Explain the relation between channel-specific conductances and observed cortical responses.

Conductance-based Mass Model

- More realistic parameterization of synaptic currents
- ✓ Same architecture
- ✓ A capacitor stores electric charges
- \checkmark Neuronal population as a capacitor
- \checkmark g=1/R
- ✓ V=IR (Ohms law) or
 - V =I/g or gV=I

$$q(t) = CV(t)$$
$$I(t) = CV(t)$$

- Response of each population is determined by a set of synaptic time constants corresponding to opening and closing of channels and receptors
- Predicted dynamics are defined over these timescales <u>and</u> non-linear interaction between membrane potential and conductance

Pinotsis et al., Frontiers Comp Neuro, 2013

Neuropsychopharmacology (2015) 40, 268–277 & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15

www.neuropsychopharmacology.org

Losing Control Under Ketamine: Suppressed Cortico-Hippocampal Drive Following Acute Ketamine in Rats

mPFC

SPys

DPys

Rosalyn JMoran*,^{1,2,6}, Matthew W Jones^{3,6}, Anthony JBlockeel³, Rick A Adams², Klaas E Stephan^{2,4,5} and Karl JFriston²

Gamma enhancement in hippocampus and neocortex.

Connectivity changes under Ketamine

- ✓ Parametric effects of ketamine were consistent across theta and gamma ranges
- NMDAR-mediated responses decreased parametrically with dose from HPC to mPFC and from mPFC to HPC
- ✓ AMPAR-mediated forward connection from CA1 to mPFC increased with dose

Moran et al., Neuropsychophrmacology, 2015

Taxonomy – II

With or Without Spatial Dynamics ?

- Characterize point or spatially extended neuronal processes
- Explain the relation between temporal or spatiotemporal properties of cortical sources and observed brain dynamics

Neural Field Models

Wave equations describing propagation of afferent input between points on the cortex and equations for voltages

Example 3 : Hierarchical models and PEB with neural fields, cf. also Peter Zeidman's talk next

Size induced intersubject variability of amplitude of visually induced gamma oscillations

 $\begin{aligned} \ln p(g(\omega), \theta^{(1)}, \theta^{(2)}) &= \sum_{i} \ln p(g(\omega)_{i} \mid \theta^{(1)}) + \ln p(\theta^{(1)} \mid \theta^{(2)}) + \ln p(\theta^{(2)}) \\ p\left(g(\omega)_{i} \mid \theta^{(1)}\right) &= \mathcal{N}(\Gamma_{i}(\theta^{(1)}), \Sigma_{i}(\theta^{(1)})) \\ p\left(\theta^{(1)} \mid \theta^{(2)}\right) &= \mathcal{N}(\Gamma(\theta^{(2)}), \Sigma(\theta^{(2)})) \\ p\left(\theta^{(2)}\right) &= \mathcal{N}(\eta, \Sigma) \\ \theta^{(1)} &= (X \otimes I)\theta^{(2)} + \varepsilon^{(2)} \\ \theta^{(2)} &= \eta + \varepsilon^{(3)} \end{aligned}$

$$g_{lm}(\omega) = \hat{g}_{lm}(\omega) + g_n(\omega) + \varepsilon^{(1)}$$
$$\hat{g}_{lm}(\omega) = \sum_k T_l(k,\omega)g_u(k,\omega)T_m(k,\omega)^{T}$$

$$T_{q}(k,\omega) = L_{q}(k,\varphi)Q \cdot T(k,\omega,\theta^{(1)})$$
$$g_{n}(\omega) = \alpha_{n} + \beta_{n}/\omega$$
$$g_{u}(\omega) = \alpha_{u} + \beta_{u}/\omega$$

 $\operatorname{Re}(\varepsilon^{(1)}) \sim \mathcal{N}(0, \Sigma(\omega, \lambda)) \quad \operatorname{Im}(\varepsilon^{(1)}) \sim \mathcal{N}(0, \Sigma(\omega, \lambda))$

- Gamma oscillations important for visual perception and affected by stimulus properties
- Gamma amplitude increases with size, cf. surround suppression , figure background segmentation, contour integration...(Super et al, 2010, Hess...)
- ✓ Either linear increase or saturation with size
- What determines an individual's spectral response?

Individual differences in oscillatory power reveal commonalities and differences across subjects

Posterior estimates for 2nd level parameters

✓ Microscopic stimates of cortical function and structure obtained non-invasively

 Amplitude differences over subject best explained by individual differences in the intrinsic connectivity to and from inhibitory interneurons

 \checkmark This reflects differences in the excitation to inhibition balance

 In accord with PC where size effects are mediated by differences in cortical excitability

…and PING networks:
 local inhibition drives gamma oscillations

Pinotsis et al., Human Brain Mapping, 2016

Summary

- ✓ DCM is a generic framework for asking mechanistic questions based on neuroimaging data (e.g. drug-induced changes in the balance of synaptic transmission)
- ✓ Neural mass models parameterise intrinsic and extrinsic ensemble connections and synaptic measures (time constants, effective connectivity, neuromodulation...)
- ✓ DCM for SSR provides a compact characterisation of multi- channel LFP or M/EEG data in the frequency domain
- Bayesian inversion provides parameter estimates and allows model comparison for competing hypothesised architectures
- ✓ DCM for SSR uses power spectra to make inferences about hidden neuronal states and parameter. It has been validated using simulations, pharmacological interventions and developmental manipulations

Thanks to

...and thank you !

Karl Friston Rick Adams Ryszard Auksztulewicz Gareth Barnes Martin Dietz **Guillaume Flandin** Amir Jafarian Vladimir Litvak Chris Mathys Rosalyn Moran Ashwini Oswal Will Penny **Richard Rosch** Klaas Stephan Bernadette van Wijk Peter Zeidman