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Overview

• Intro: What is the M/EEG inverse problem?


• Unifying all M/EEG inversion algorithms with prior 
assumptions


• Multiple Sparse Priors


• Validating source inversion attempts with model evidence



Nchannels ≈ 300

Nsources ≈ 10,000



Figure credit: neuroelectrics.com

Problem statement

Easy!

Hard!

http://neuroelectrics.com


Formulation

Y = HX + E

where: 
 - the sensor level data, sensors x time 
 - the lead field matrix, sensors x sources 
 - the neural signals, sources x time 
 - non-brain signals, sensors x time

Y
H
X
E



The lead field matrix
In MEG:

- Head model choice (single sphere, multiple spheres or single 

shell) 

- Assumptions about the signal generators (layer V pyramidal 
neurons) 

- Can be constrained to sources oriented perpendicular to cortex  

- Physics - function of sensor/source displacement and 
orientation


In EEG:

- All of the above + choices about conduction models. Generally 

the same, but harder




Sensor/source position



Sensor/source orientation



The lead field matrix
Once computed, the lead field is our projector from each source in 
the brain to each of the sensors.


In words, each column of the lead field matrix tells us what 
magnetic field we would expect to measure if a source was active 
at that part of the brain, given a fixed orientation.


Nchannels ≈ 300

Nsources ≈ 10,000



Source reconstruction

X̂ = H−1Y ?
Y = HX + E

No! 
 

 isn’t square 
 has a maximum rank of 

Nsources > > Nchannels
H
H Nchannels



Source reconstruction
Three philosophies to proceed


1) Dipole fits: I want to get around the ill-posed problem 

2) Tomographic approaches: I want to reconstruct activity around the whole 
brain and explain variance 

3) Spatial filters (beamformers): I want to reconstruct activity at a set of 
locations, based upon some other mathematical criterion 


All of these approaches introduce some form of assumptions about the 
neural generators

a.k.a  Bayesian approaches



Bayesian Formulation
p(X |Y) =

p(Y |X)p(X)
p(Y)

Likelihood:  
Prior:  
Evidence:  

Posterior: 

p(Y |X)
p(X)

p(Y)

p(X |Y)
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For us:

Y are the recorded MEG data

X are the source currents



Bayesian Formulation

p(X |Y) ∝ p(Y |X)p(X)

Likelihood:  
Prior:  
Evidence:  

Posterior: 

p(Y |X)
p(X)
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Bayesian Formulation

p(X |Y) ∝ p(Y |X)p(X)
Likelihood:  
Prior:  

Posterior: 

p(Y |X) = MVN(Y |HX, CN)
p(X) = MVN(X |0,CX)

p(X |Y) ∝ exp [−0.5(HX − Y)TC−1
N (HX − Y) − 0.5XTC−1

X X]



Bayesian Formulation
Posterior: 


Doing some maths (take the log of the above expression, and 
differentiating with respect to X), we find that the maximum a posteriori 
solution is given simply by  


p(X |Y ) ∝ exp [−0.5(HX − Y )TC−1
N (HX − Y ) − 0.5XTC−1

X X]

X̂ = CXHT [Cn + HCXHT]−1 Y



Current estimates = f (Data covariance, Forward model, Recorded data)

x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y



x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y
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x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix



x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix

“What parts of the brain do I think are active 
during my recording?”



x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix

CX ∈ ℛNsources×Nsources

…big!
Voxels
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x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix

IID, “minimum norm”
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x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix

Dipole fit
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x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Source prior covariance matrix

eLORETA/sLORETA/local coherence
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“If my neighbour is 
active, I am also 
likely to be active”
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eLORETA/sLORETA/local coherence
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X̂ = CXHT [Cn + HCXHT]−1 Y
x̂(t) = Wy(t)
W = f(H)



Multiple Sparse Priors



eLORETA/sLORETA/local coherence

Dipole fit for dipole at vertex a

IID, “minimum norm”

CX = I

CX,ij = {1 if i, j = a
0 otherwise

CX = exp(σGL)  is from the graph Laplacian of the cortical mesh, i.e. distances 
between vertices 

 controls the smoothness of the source space

GL

σ



Source prior covariance matrix

CX =
K

∑
i

αiβi



Source prior covariance matrix

CX =
K

∑
i

αiβi



Source prior covariance matrix

CX =
K

∑
i

αiβi

α1 α2 α3 α4

α5 α6 α7 α8

+ + +

+ + +



Source prior covariance matrix

CX =
K

∑
i

αiβi

0.1 π 2 0.665

(eiπ)2 7.2 0.01 9

+ + +

+ + +



Source prior covariance matrix
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Source prior covariance matrix

CX =
K

∑
i

αiβi

X̂ = CXHT [Cn + HCXHT]−1 Y



Current estimates = f (Data covariance, Forward model, Recorded data)

x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y



Source prior covariance matrix

CX =
K

∑
i

αiβi

α1 α2 α3 α4

α5 α6 α7 α8

+ + +

+ + + ???



Each source prior has a representation at the 
sensor level

CX,1

CY,1

CX,2

CY,2



Problem: our posterior distribution (the thing that we 
want) is currently a function of the source space 
currents. This means our optimisation problem (i.e. 
learning the alphas) is in a very large space - the source 
space 

p(X, α |Y ) ∝ p(Y |X, α)p(X |α)p(α)

p(α |Y ) = ∫ p(X, α |Y )dX

= ∫ p(Y |X, α)p(X |α)p(α)dX

= ∫ p(Y |X, α)p(X |α)dXp(α)
…
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= ∫ p(Y |X, α)p(X |α)p(α)dX

= ∫ p(Y |X, α)p(X |α)dXp(α)
…

“Marginalisation”
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Problem: our posterior distribution (the thing that we 
want) is currently a function of the source space 
currents. This means our optimisation problem (i.e. 
learning the alphas) is in a very large space - the source 
space 

p(X, α |Y ) ∝ p(Y |X, α)p(X |α)p(α)

p(α |Y ) = ∫ p(X, α |Y )dX

= ∫ p(Y |X, α)p(X |α)p(α)dX

= ∫ p(Y |X, α)p(X |α)dXp(α)

= p(Y |α)p(α) ∝ exp [−0.5tr (YTC−1
Y Y)] p(α)

CY = HCXHT



Before: 

 

Now:  
Can just model the sensor level data covariance (i.e. the 
covariance of the data which we measure, ): 

CX =
K

∑
i

αiβi

ℂY

ℂY ≈ CY = HCXHT = H (
K

∑
i

αiβi) HT =
K

∑
i

αiβ̃i

These are the same alphas!



Each source prior has a representation at the 
sensor level

CX,1

CY,1

CX,2

CY,2

ℂY ≈ CY = HCXHT = H (
K

∑
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K

∑
i
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Aside: an introduction to Variational Free Energy



Variational Free Energy
We would like to calculate the true (marginalised) posterior distribution, 

. This can be hard to calculate in practice.


Instead, we approximate the true posterior with some simpler 
parameterised distribution(s), .


We then minimise the KL-divergence between the approximate posterior, 
, and the true posterior distribution, .

p(α |Y )

q(α)

q(α) p(α |Y )



Variational Free Energy
We can show that the KL divergence between the true and approximate 
posterior can be written as



log [p(Y )] = F + KL [q(α) | |p(α |Y )]

The KL divergence is strictly greater than or equal to zero. We would 
like to make this equal zero.


The log model evidence is a constant. 


Hence maximising the variational Free Energy, F, is equivalent to 
minimising the distance between the true and approximate posterior 
distribution. 



Variational Free Energy










F = log [p(Y)] − KL [q(α) | |p(α |Y)]
F = Log likelihood − KL [q(α) | |p(α)]
F = Accuracy − Complexity



Variational Free Energy










F = log [p(Y)] − KL [q(α) | |p(α |Y)]
F = Log likelihood − KL [q(α) | |p(α)]
F = Accuracy − Complexity

I want to explain my data well But not at any expense



Choosing between solutions
• No way of knowing the ground truth on real data


• Can use variance explained as a means of choosing between source priors 
Dangerous!

Figure credit: José David López  



Choosing between solutions
• If I maximise the Free Energy, the KL divergence will have to decrease

Figure credit: José David López  

F = log [p(Y )] − KL [q(α) | |p(α |Y )]



Multiple Sparse Priors
• Find the optimal set of ’s which maximises the Free Energyα

F = Accuracy − Complexity

0.1 π 2 0.665

(eiπ)2 7.2 0.01 9

+ + +

+ + +

ℂY ≈ CY = HCXHT = H (
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X̂ = α1CXHT [α2Cn + α1HCXHT]−1 Y

Point of note: we are always data driven in SPM, 
even when using an IID prior 

i.e. we learn  and α1 α2

X̂ = CXHT [Cn + HCXHT]−1 Y



X̂ = α1CXHT [α2Cn + α1HCXHT]−1 Y

Note! 

These algorithms (in SPM) are designed to work on 
averaged data. Cannot apply to resting state etc.

X̂ = CXHT [Cn + HCXHT]−1 Y



Recap

Figure credit: neuroelectrics.com

Easy!

Hard!

http://neuroelectrics.com


Current estimates = f (Data covariance, Forward model, Recorded data)

x̂(t) = Wy(t)

X̂ = CXHT [Cn + HCXHT]−1 Y

Recap



Recap



In practice



Not covered today
“Classic”/non-Bayesian source recon: beamformers, dipole fits, 
MUSIC etc


Group source reconstruction in SPM. See work by Wakeman and 
Henson.


Other software packages: MNE-Python, FieldTrip, EEGLab etc.


Other ways of quantifying performance. See work by Hauk et al., 
2011


Practical pre-processing steps: coreg, forward model choices, 
exporting to NIFTI etc.


DAISS toolbox
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Spatial filters/other
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