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1 Introduction

In this chapter we are concerned with making statistical inferences from func-
tional imaging studies involving many subjects. One can envisage two main
reasons for studying multiple subjects. The first is that one may be interested
in individual differences, as in many areas of psychology. The second, which is
the one that concerns us here, is that one is interested in what is common to
the subjects. In other words, we are interested in the stereotypical effect in the
population from which the subjects are drawn.

As every experimentalist knows, a subject’s response will vary from trial
to trial. Further, this response will vary from subject to subject. These two
sources of variability, within-subject (also called between-scan) and between-
subject, must both be taken into account when making inferences about the
population.

In statistical terminology, if we wish to take the variability of an effect into
account we must consider the effect as a ‘random effect’. In a 12-subject PET
study, for example, we can view those 12 subjects as being randomly drawn
from the population at large. The subject variable is then a random effect
and, in this way, we are able to take the sampling variability into account and
make inferences about the population from which the subjects were drawn.
Conversely, if we view the subject variable as a ‘fixed effect’ then our inferences
will relate only to those 12 subjects chosen.

The majority of early studies in neuroimaging combined data from multiple
subjects using a ‘Fixed-Effects’ (FFX) approach. This methodology only takes
into account the within-subject variability. It is used to report results as case
studies. It is not possible to make formal inferences about population effects
using FFX. Random-Effects (RFX) analysis, however, takes into account both
sources of variation and makes it possible to make formal inferences about the
population from which the subjects are drawn.

In this chapter we describe FFX and RFX analyses of a multiple-subject
PET study. In section 2, we show how the analyses are implemented and in sec-
tion 3 describe the underlying mathematical models. In neuroimaging, RFX is
implemented using the computationally efficient ‘summary-statistic’ approach.
We also show in section 3 that this is mathematically equivalent to the more
computationally demanding maximum likelihood procedure.
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2 Analysis of multi-subject data

Throughout this chapter we illustrate the different analysis methods using data
from a PET study of verbal fluency. These data come from 5 subjects and
were recorded under two alternating conditions. Subjects were asked to either
repeat a heard letter or to respond with a word that began with that letter.
These tasks are referred to as word shadowing and word generation and were
performed in alternation over 12 scans and the order randomized over subjects.
Both conditions were identically paced with one word being generated every two
seconds. PET images were re-aligned, normalised and smoothed with a 16mm
isotropic Gaussian kernel. 1

2.1 Fixed-Effects Analysis

Analysis of multiple-subject data takes place within the machinery of the Gen-
eral Linear Model (GLM) as described in earlier chapters. However, instead of
having data from a single-subject at each voxel we now have data from multiple
subjects. This is entered into a GLM by concatenating data from all subjects
into the single column vector Y . Commensurate with this augmented data
vector is an augmented multi-subject design matrix 2, X, which is shown in
Figure 1. Columns 1 and 2 indicate scans taken during the word shadowing
and word generation conditions respectively. Columns 3 to 10 indicate these
conditions for the other subjects. The time variables in columns 11 to 15 are
used to probe habituation effects. These variables are not of interest to us in
this chapter but we include them to improve the fit of the model. The GLM
can be written as

Y = Xβ + E (1)

where β are regression coefficients and E is a vector of errors. The effects
of interest can then be examined using an augmented contrast vector, c. For
example, for the verbal fluency data the contrast vector

c = [−1, 1,−1, 1,−1, 1,−1, 1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (2)

would be used to examine the differential effect of word generation versus word
shadowing, averaged over the group of subjects. The corresponding t-statistic,

t =
cT β̂√

Var[cT β̂]
(3)

where Var[] denotes variance, highlights voxels with significantly non-zero dif-
ferential activity. This shows the ‘average effect in the group’ and is a type
of fixed-effects analysis. The resulting Statistical Parametric Map is shown in
Figure 2(b).

It is also possible to look for differential effects in each subject separately
using subject-specific contrasts. For example, to look at the activation from
subject 2 one would use the contrast vector

c2 = [0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (4)
1This data set and full details of the pre-processing are available from

http : //www.fil.ion.ucl.ac.uk/spm/data.
2This design was created using the ‘Multi-subject: condition by subject interaction and

covariates’ option in SPM-99.
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The corresponding subject-specific SPMs are shown in Figure 2(a).
We note that we have been able to look at subject-specific effects because

the design matrix specified a ‘subject-separable model’. In these models the
parameter estimates for each subject are unaffected by data from other subjects.
This arises from the block-diagonal structure in the design matrix.

2.2 Random-Effects Analysis via Summary-Statistics

An RFX analysis can be implemented using the ‘Summary-Statistic (SS)’ ap-
proach as follows [3], [7].

1. Fit the model for each subject using different GLMs for each subject or
by using a multiple-subject subject-separable GLM (as described in the
last section). The latter approach may be procedurally more convenient
whilst the former is less computationally demanding. For the purposes
of RFX anaylsis the two approaches are mathematically identical as they
will produce the same contrast images.

2. Define the effect of interest for each subject with a contrast vector. Each
produces a contrast image containing the contrast of the parameter esti-
mates at each voxel.

3. Feed the contrast images into a GLM that implements a one-sample t-test.

Modelling in step 1 is referred to as the ‘first-level’ of analysis whereas modelling
in step 3 is referred to as the ‘second-level’. A balanced design is one in which all
subjects have identical design matrices, and is a requirement for the SS approach
to be valid.

If there are, say, two populations of interest and one is interested in making
inferences about differences between populations then a two-sample t-test is
used at the second level. It is not necessary that the numbers of subjects in
each population be the same, but it is necessary to have the same design matrices
for subjects in the same population ie. balanced designs at the first-level.

In Step 3, we have specified that only one contrast per subject be taken to
the second level. This constraint may be relaxed if one takes into account the
possibility that the contrasts may be correlated or be of unequal variance. This
is discussed further in [5].

An SPM of the RFX analysis is shown in Figure 2(c). We note that, as
compared to the SPM from the average effect in the group, there are far fewer
voxels deemed significantly active. This is because RFX analysis takes into
account the between-subject variability. If, for example, we were to ask the
question ’Would a new subject drawn from this population show any significant
posterior activity ?’, the answer would be uncertain. This is because three of
the subjects in our sample show such activity but two subjects do not. Thus,
based on such a small sample, we would say that our data do not show suffi-
cient evidence against the null hypothesis that there is no population effect in
posterior cortex. In contrast, the average effect in the group(in Figure 2(b)) is
significant over posterior cortex. But this inference is with respect to the group
of five subjects, not the population.

We end this section with a disclaimer, which is that the results presented
in section 2, have been presented for tutorial purposes only. This is because
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between-scan variance is so high in PET that results on single subjects are
unreliable. For this reason, we have used uncorrected thresholds for the SPMs
and, given that we have no prior anatomical hypothesis, this is not the correct
thing to do [2] (see Chapter 14). But as our concern is merely to present
a tutorial on the difference between RFX and FFX we have neglected these
otherwise important points.

3 Variance components

This section is intended for the reader wishing to understand the statistical basis
of the Summary Statistic approach to RFX and is written for the mathematically
inclined. We also show how RFX and FFX differ.

In what follows E[] denotes the expectation operator, Var[] denotes the vari-
ance and we will make use of the following results. Under a linear transform
y = ax + b, the variance of x changes according to

Var[ax + b] = a2Var[x] (5)

Secondly, if Var[xi] = Var[x] for all i then

Var

[
1
N

N∑
i=1

xi

]
=

1
N

Var[x] (6)

For background reading on expectations, variance transformations and intro-
ductory mathematical statistics see [9].

3.1 Random effects using maximum likelihood estimators

Underlying RFX analysis is a probability model defined as follows. We first
envisage that the mean effect in the population (ie. averaged across subjects)
is of size dpop and that the variability of this effect between subjects is σ2

b . The
mean effect for the ith subject (ie. averaged across scans), di, is then assumed
to be drawn from a Gaussian with mean dpop and variance σ2

b . This process
reflects the fact that we are drawing subjects at random from a large population.
We then take into account the within-subject (ie. across scan) variability by
modelling the jth observed effect in subject i as being drawn from a Gaussian
with mean di and variance σ2

w. Note that σ2
w is assumed to be the same for all

subjects. This two-stage process is shown graphically in Figure 3.
Given a data set of effects from N subjects with n replications of that effect

per subject, the population contrast is modelled by a two level process

dij = di + eij (7)
di = dpop + zi

where di is the true mean effect for subject i and dij is the jth observed effect
for subject i. For the PET data the effect is a differential effect (the difference
in activation between word generation and word shadowing). The first equation
captures the within-subject variability and the second equation the between-
subject variability.
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The within-subject Gaussian error eij has zero mean and variance Var[eij ] =
σ2

w. This assumes that the errors are independent over subjects and over repli-
cations within subject. The between-subject Gaussian error zi has zero mean
and variance Var[zi] = σ2

b . Collapsing the two levels into one gives

dij = dpop + zi + eij (8)

The maximum-likelihood estimate of the population mean is

d̂pop =
1

Nn

N∑
i=1

n∑
j=1

dij (9)

This estimate has a mean E[d̂pop] = dpop and a variance given by

Var[d̂pop] = Var

 N∑
i=1

1
N

n∑
j=1

1
n

(dpop + zi + eij)

 (10)

= Var

[
N∑

i=1

1
N

zi

]
+ Var

 N∑
i=1

1
N

n∑
j=1

1
n

eij


=

σ2
b

N
+

σ2
w

Nn

The variance of the population mean estimate contains contributions from both
the within-subject and between-subject variance.

3.2 Fixed Effects

Implicit in FFX analysis is a single-level model

dij = di + eij (11)

The parameter estimates for each subject are

d̂i =
1
n

n∑
j=1

dij (12)

which have a variance given by

Var[d̂i] = Var

 n∑
j=1

1
n

dij

 (13)

=
σ2

w

n

The estimate of the group mean is then

d̂pop =
1
N

N∑
i=1

d̂i (14)
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which has a variance

Var[d̂pop] = Var

[
N∑

i=1

1
N

d̂i

]
(15)

=
1
N

Var[d̂i]

=
σ2

w

Nn

The variance of the fixed-effects group mean estimate contains contributions
from within-subject terms only. It is not sensitive to between-subject variance.
We are not therefore able to make formal inferences about population effects
using FFX. We are restricted to informal inferences based on separate case
studies or summary images showing the average group effect (eg. Figure 2(a)
or Figure 2(b)).

3.3 Random effects using summary statistics

Implicit in the summary-statistic RFX approach is the two-level model

d̄i = di + ei (16)
di = dpop + zi

where di is the true mean effect for subject i, d̄i is the sample mean effect for
subject i and dpop is the true mean differential effect for the population.

The summary-statistic approach is of interest because it is computationally
much simpler to implement than the full random effects model of equation 7.
This is because it is based on the sample mean value, d̄i, rather than on all of
the samples dij . This is important for neuroimaging as the images are so large.

In the first level we consider the variation of the sample mean for each
subject around the true mean for each subject. The corresponding variance is
Var[ei] = σ2

w/n, where σ2
w is the within-subject variance. At the second level

we consider the variation of the true subject means about the population mean
where Var[zi] = σ2

b , the between-subject variance. We also have E[ei] = E[zi] =
0. Consequently

d̄i = dpop + zi + ei (17)

The population mean is then estimated as

d̂pop =
1
N

N∑
i=1

d̄i (18)

This estimate has a mean E[d̂pop] = dpop and a variance given by

Var[d̂pop] = Var

[
N∑

i=1

1
N

d̄i

]
(19)

= Var

[
N∑

i=1

1
N

zi

]
+ Var

[
N∑

i=1

1
N

ei

]

=
σ2

b

N
+

σ2
w

Nn
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Thus, the variance of the estimate of the population mean contains contributions
from both the within-subject and between-subject variances. Importantly, both
E[d̂pop] and Var[d̂pop] are identical to the maximum-likelihood estimates derived
in section 3.1. This validates the summary-statistic approach. Informally, the
validity of the summary-statistic approach lies in the fact that what is brought
forward to the second-level is a sample mean. It contains an element of within-
subject variability which when operated on at the second level produces just
the right balance of within and between subject variance.

4 Discussion

We have shown how neuroimaging data from multiple subjects can be analysed
using fixed-effects (FFX) or random-effects (RFX) analysis. FFX analysis is
used for reporting case studies and RFX is used to make inferences about the
population from which subjects are drawn. For a comparison of these and other
methods for combining data from multiple subjects see [8].

In neuroimaging, RFX is implemented using the computationally efficient
summary-statistic approach. We have shown that this is mathematically equiv-
alent to the more computationally demanding maximum likelihood procedure.
For unbalanced designs, however, the maximum-likelihood estimate of the pop-
ulation effect and its variance both change and the summary-statistic approach
is no longer equivalent. The robustness of the summary-statistic approach to
violations of these underlying assumptions is a topic covered in more detail in
the following chapter.

For more advanced treatments of random effects analysis 3 see eg. [12].
These allow, for example, for subject-specific within-subject variances, unbal-
anced designs and for Bayesian inference [1]. For a recent application of these
ideas to neuroimaging, readers are referred to Chapter 17 in which hierarhical
models are applied to single and multiple subject fMRI studies. As groundwork
for this more advanced material readers are encouraged to first read the tutorial
in Chapter 13.

A general point to note, especially for fMRI, is that because the between-
subject variance is larger than the within-subject variance your scanning time
is best used to scan more subjects rather than to scan individual subjects for
longer. In practice, this must be traded off against the time required to recruit
and train subjects [11].

4.1 Further points

We have so far described how to make inferences about univariate effects in a
single population. This is achieved in the summary statistic approach by taking
forward a single contrast image per subject to the second level and the using a
one sample t-test.

This methodology carries over naturally to more complex scenarios where
we may have multiple populations or multivariate effects. For two populations,
for example, we perform two-sample t-tests at the second level. An extreme
example of this approach is the comparison of a single case study with a control

3Strictly, what in neuroimaging is known as random effects analysis is known in statistics
as mixed effects analysis as the statistical models contain both fixed and random effects.
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group. Whilst this may sound unfeasible, as one population has only a single
member, a viable test can in fact be implemented by assuming that the two
populations have the same variance.

For multivariate effects we take forward multiple contrast images per subject
to the second level and perform an analysis of variance. This can be implemented
in the usual way with a GLM but, importantly, we must take into account the
fact that we have repeated measures for each subject and that each characteristic
of interest may have a different variability. Methods for handling such cases are
dealt with in Chapters 9 and 17.

As well as testing for whether univariate population effects are significantly
different from hypothesized values (typically zero) it is also possible to test
whether they are correlated with other variables of interest. In [10], for example,
Ward et al. test to see whether task-related activation in the motor system
correlates with age.

It is also possible to look for conjunctions at the second level. In [6], for
example, Gottfried et al. test for areas that are conjointly active for pleasant,
unpleasant and neutral odour valences. For a statistical test involving conjunc-
tions of contrasts it is necessary that the contrast effects be uncorrelated. This
can be ensured by taking into account the covariance structure at the second
level.

The validity of all of the above approaches relies on the same criteria that
underpin the univariate single population summary statistic approach. Namely,
that the variance components and estimated parameter values are, on average,
identical to those that would be obtained by the equivalent two-level maximum
likelihood model.
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Figure 1: Design matrix for five subject FFX analysis of PET data. There are
60 rows, 12 for each subject. The first ten columns contain indicator variables
showing which condition (word shadowing or word generation) relates to which
scan. Columns 11 to 15 contain time variables, columns 16 to 20 subject-specific
offsets and the last 5 columns the global effect at each scan.
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Figure 2: Analysis of PET data showing active voxels (p < 0.001 uncor-
rected).The maps in (a) show the significance of subject-specific effects whereas
map (b) shows the significance of the average effect over the group. Map (c)
shows the significance of the population effect from an RFX analysis.
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Figure 3: Synthetic data illustrating the probability model underlying random
effects analysis. The dotted line is the Gaussian distribution underlying the
second level model with mean dpop, the population effect, and variance σ2

b , the
between-subject variance. The mean subject effects, di, are drawn from this
distribution. The solid lines are the Gaussians underlying the first level models
with means di and variances σ2

w. The crosses are the observed effects dij which
are drawn from the solid Gaussians.
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