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Abstract

Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer
cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI).
The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data
dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in
poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs) rarely
afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding
approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach
extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification
for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting
discriminative information encoded in ‘hidden’ physiological quantities such as synaptic connection strengths; and it affords
mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a
combination of dynamic causal models (DCMs) and SVMs. We propose a general procedure of DCM-based generative
embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for
unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical
example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions
during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and
significantly outperforms conventional activation-based and correlation-based methods. This example demonstrates how
disease states can be detected with very high accuracy and, at the same time, be interpreted mechanistically in terms of
abnormalities in connectivity. We envisage that future applications of generative embedding may provide crucial advances
in dissecting spectrum disorders into physiologically more well-defined subgroups.
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Introduction

Recent years have seen a substantial increase in the use of

functional neuroimaging data for investigating healthy brain

function and detecting abnormalities. The most popular type of

analysis is statistical parametric mapping (SPM), a mass-univariate

encoding model of fMRI data in which the statistical relationship

between experimental (or clinical) variables and haemodynamic

measurements of neural activity is examined independently for

every voxel in the brain [1]. While this approach has led to many

insights about functional abnormalities in psychiatric and

neurological disorders, it suffers from two limitations. First, since

univariate models are insensitive to spatially distributed patterns of

neural activity, they may fail to detect subtle, distributed

differences between patients and healthy controls that are not

expressed as local peaks or clusters of activity [2]. Second, while

encoding models such as SPM are excellent for describing regional

differences in brain activity across clinical groups, they are less well

suited for clinical decision making, where the challenge is to

predict the disease state of an individual subject from measured

brain activity [3–5].

An alternative approach is provided by multivariate decoding

methods, in particular classification algorithms. Unlike mass-

univariate encoding models, these methods predict an experimen-

tal variable (e.g., a trial-specific condition or subject-specific

disease state) from the activity pattern across voxels (see [6–10] for

reviews). Using multivariate decoding models instead of mass-

univariate encoding models has interesting potential for clinical

practice, particularly for diseases that are difficult to diagnose.

Consequently, much work is currently being invested in

constructing classifiers that can predict the diagnosis of individual

subjects from structural or functional brain data [11,3,12,13,4,14–

16]. Historically, these efforts date back to positron emission

tomography (PET) studies in the early 1990s [8]. Today, attempts
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of using multivariate classifiers for subject-by-subject diagnosis

largely focus on MRI and fMRI data [11,3,12,17].

Challenges for current classification approaches
Despite their increasing popularity, two challenges critically

limit the practical applicability of current classification methods for

functional neuroimaging data. First, classifying subjects directly in

voxel space is often a prohibitively difficult task. This is because

functional neuroimaging datasets (i) typically exhibit a low signal-

to-noise ratio, (ii) are obtained in an extremely high-dimensional

measurement space (a conventional fMRI scan contains more than

100,000 voxels), and (iii) are characterized by a striking mismatch

between the large number of voxels and the small number of

available subjects. As a result, even the most carefully designed

algorithms have great difficulties in reliably finding jointly

informative voxels while ignoring uninformative sources of noise.

Popular strategies include: preselecting voxels based on an

anatomical mask [18,19] or a separate functional localizer

[20,21]; spatial subsampling [22]; finding informative voxels using

univariate models [3,11,12] or locally multivariate searchlight

methods [23,24]; and unsupervised dimensionality reduction

[4,25]. Other recently proposed strategies attempt to account for

the inherent spatial structure of the feature space [23,26,27] or use

voxel-wise models to infer a particular stimulus identity [28–30].

Finally, those submissions that performed best in the Pittsburgh

Brain Activity Interpretation Competition (PBAIC 2007) high-

lighted the utility of kernel ridge regression [31] and relevance

vector regression [31,32]. The common assumption underlying all

of these approaches is that interesting variations of the data with

regard to the class variable are confined to a manifold that

populates a latent space of much lower dimensionality than the

measurement space.

The second challenge for classification methods concerns the

interpretation of their results. Most classification studies to date draw

conclusions from overall prediction accuracies [33,11], the spatial

deployment of informative voxels [19,34,18,35–39], the temporal

evolution of discriminative information [40,37,41,42,26], or patterns

of undirected regional correlations [43]. These approaches may

support discriminative decisions, but they are blind to the neuronal

mechanisms (such as effective connectivity or synaptic plasticity) that

underlie discriminability of brain or disease states. In other words:

while some conventional classification studies have achieved

impressive diagnostic accuracy [14], their results have not improved

our mechanistic understanding of disease processes.

Generative embedding
Generative embedding for model-based classification may

provide a solution to the challenges outlined above. It is based

on the idea that both the performance and interpretability of

conventional approaches could be improved by taking into

account available prior knowledge about the process generating

the observed data (see [44] for an overview). (The term generative

embedding is sometimes used to denote a particular model-induced

feature space, or so-called generative score space, in which case

the associated line of research is said to be concerned with generative

embeddings. Here, we will use the term in singular form to denote

the process of using a generative model to project the data into a

generative score space, rather than using the term to denote the

space itself.) Generative embedding rests on two components: a

generative model for principled selection of mechanistically

interpretable features and a discriminative method for classifica-

tion (see Figure 1).

Generative models have proven powerful in explaining how

observed data are caused by the underlying (neuronal) system.

Unlike their discriminative counterparts, generative models

capture the joint probability of the observed data and the class

labels, governed by a set of parameters of a postulated generative

process. One example in neuroimaging is dynamic causal modelling

(DCM) [45]. DCM enables statistical inference on physiological

quantities that are not directly observable with current methods,

such as directed interregional coupling strengths and their

modulation, e.g., by synaptic gating [46]. (We use the term

DCM to refer both to a specific dynamic causal model and to

dynamic causal modelling as a method.) From a pathophysiolog-

ical perspective, disturbances of synaptic plasticity and neuromo-

dulation are at the heart of psychiatric spectrum diseases such as

schizophrenia [47] or depression [48]. It is therefore likely that

classification of disease states could benefit from exploiting

estimates of these quantities. While DCM is a natural (and

presently the only) candidate for obtaining model-based estimates

of synaptic plasticity (cf. [46,49]), the most widely used approach

to classification relies on discriminative methods, such as support

vector machines (SVMs) [50,51]. Together, DCM and SVM

methods thus represent natural building blocks for classification of

disease states.

Generative embedding represents a special case of using

generative kernels for classification, such as the P-kernel [52] or the

Fisher kernel [53]. Generative kernels have been fruitfully

exploited in a range of applications [54–66] and define an active

area of research [67–70]. In the special case of generative

embedding, a generative kernel is used to construct a generative score

space. This is a model-based feature space in which the original

observations have been replaced by statistical representations that

potentially yield better class separability when fed into a

discriminative classifier. Thus, an unsupervised embedding step

is followed by a supervised classification step. In previous work, we

suggested a concrete implementation of this approach for the trial-

by-trial classification of electrophysiological recordings [61]. In this

paper, we propose a DCM-based generative-embedding approach

for subject-by-subject classification of fMRI data, demonstrate its

performance using a clinical data set, and highlight potential

methodological pitfalls (and how to avoid them).

Author Summary

Neurological and psychiatric spectrum disorders are
typically defined in terms of particular symptom sets,
despite increasing evidence that the same symptom may
be caused by very different pathologies. Pathophysiolog-
ical classification and effective treatment of such disorders
will increasingly require a mechanistic understanding of
inter-individual differences and clinical tools for making
accurate diagnostic inference in individual patients.
Previous classification studies have shown that functional
magnetic resonance imaging (fMRI) can be used to
differentiate between healthy controls and neurological
or psychiatric patients. However, these studies are typically
based on descriptive patterns and indirect measures of
neural activity, and they rarely afford mechanistic insights
into the underlying condition. In this paper, we address
this challenge by proposing a classification approach that
rests on a model of brain function and exploits the rich
discriminative information encoded in directed interre-
gional connection strengths. Based on an fMRI dataset
acquired from moderately aphasic patients and healthy
controls, we illustrate that our approach enables more
accurate classification and deeper mechanistic insights
about disease processes than conventional classification
methods.

Generative Embedding for fMRI
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DCM [45] views the brain as a nonlinear dynamical system of

interconnected neuronal populations whose directed connection

strengths are modulated by external perturbations (i.e., experi-

mental conditions) or endogenous activity. Here, we will use DCM

to replace high-dimensional fMRI time series by a low-

dimensional vector of parameter estimates. The discriminative

part of our approach will be based on an SVM with a linear

kernel. This algorithm learns to discriminate between two groups

of subjects by estimating a separating hyperplane in their feature

space. Since this paper brings together techniques from different

statistical domains that tend to be used by different communities,

we have tried to adopt a tutorial-like style and introduce basic

concepts of either approach in the Methods section.

Generative embedding for fMRI may offer three substantial

advantages over conventional classification methods. First, because

the approach aims to fuse the strengths of generative models with

those of discriminative methods, it may outperform conventional

voxel-based schemes, especially in those cases where crucial

discriminative information is encoded in ‘hidden’ quantities such

as directed (synaptic) connection strengths. Second, the construc-

tion of the feature space is governed and constrained by a

biologically motivated systems model. As a result, feature weights

can be interpreted mechanistically in the context of this model.

Incidentally, the curse of dimensionality faced by many conven-

tional feature-extraction methods may turn into a blessing when

using generative embedding: the higher the temporal and spatial

resolution of the fMRI data, the more precise the estimation of the

parameters of the generative model, leading to better discrimina-

bility. Third, our approach can be used to compare alternative

generative model architectures in situations where evidence-based

approaches, such as Bayesian model selection, are not applicable.

We will deal with these three points in more detail in the

Discussion.

Structure of this paper
The remainder of this paper is structured as follows. First, we

summarize the general ideas of generative embedding and the

specific generative and discriminative components used here, i.e.,

DCM and SVM. We then inspect different procedures of how

generative embedding could be implemented practically while

distinguishing between approaches with and without bias. Third,

we illustrate the utility of our approach, using empirical data

obtained during speech processing in healthy volunteers and

patients with moderate aphasia. These data have been explored in

a previous study, in which DCM and Bayesian model selection

(BMS) were applied to investigate the effective connectivity among

cortical areas activated by intelligible speech [71]. In a subsequent

study, we extended this analysis to patients with aphasia (Schofield

et al., in preparation). In the present paper, we ask whether subject-

specific directed connection strengths among cortical regions

Figure 1. Conceptual overview of generative embedding for fMRI. This schematic illustrates the key principles by which generative
embedding enables model-based classification for functional magnetic resonance imaging (fMRI). Initially, each subject is represented by a measure
of blood oxygen level dependent (BOLD) activity with one temporal and three spatial dimensions. In the first analysis step (model inversion), these
subject-specific data are used to estimate the parameters of a generative model, which represents a mapping of the data x[X onto a probability
distribution p(hjx,m) in a parametric family MH (see Sections ‘DCM for fMRI’ and ‘Model inversion’). In the second step (kernel construction), a kernel
function k

M
: MH|MH?R is defined that represents a similarity metric between any two fitted models mi and mj . This step can be split up into an

initial mapping MH?Rd followed by a conventional kernel k : Rd|Rd?R. The kernel implies a generative score space (or model-based feature
space; see Section ‘Kernel construction’), which provides a comprehensive statistical representation of every subject. In this illustrative participant, the
influence of region A on region B as well as the self-connection of region B were particularly strong. In the third step, a classifier is used to find a
separating hyperplane between groups of subjects, based exclusively on their model-based representations (see Section ‘Classification’). When using
a linear kernel, each feature corresponds to the coupling strength between two regions, which, in the fourth step, enables a mechanistic
interpretation of feature weights in the context of the underlying model (see Section ‘Interpretation of the feature space’). Here, the influence of A on
B and C were jointly most informative in distinguishing between groups. For a concrete implementation of this procedure, see Figure 2.
doi:10.1371/journal.pcbi.1002079.g001

Generative Embedding for fMRI
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involved in speech processing contain sufficiently rich discrimina-

tive information to enable accurate predictions of the diagnostic

category (healthy or aphasic) of a previously unseen individual. In

brief, we found that (i) generative embedding yielded a near-

perfect classification accuracy, (ii) significantly outperformed

conventional ‘gold standard’ activation-based and correlation-

based classification schemes, and (iii) afforded a novel mechanistic

interpretation of the differences between aphasic patients and

healthy controls during processing of speech and speech-like

sounds.

Methods

Ethics statement
The study was approved by the local research ethics committee

at UCL, and all participants gave informed consent.

Combining generative models and discriminative
methods

Most methods for classification attempt to find a linear function

that separates examples as accurately as possible in a space of

features (e.g., voxel-wise measurements). Such discriminative classi-

fication methods differ from generative methods in two ways. First,

rather than trying to estimate the joint density of observations and

class labels, which is not needed for classification, or trying to

estimate class-conditional probability densities, which can be

difficult, discriminative classifiers directly model the class an

example belongs to. Second, many discriminative methods do not

operate on examples themselves but are based on the similarity

between any two examples, expressed as the inner product

between their feature vectors. This provides an elegant way of

transforming a linear classifier into a more powerful nonlinear one.

(Note that the term discriminative methods is used here to collectively

describe the class of learning algorithms that find a discriminant

function for mapping an example x onto a class label c, typically

without invoking probability theory. This is in contrast to

discriminative models, which model the conditional probability

p(cjx), and generative models, which first model the full joint

probability p(x,c) and then derive p(cjx).)

The most popular classification algorithm of the above kind is the

‘2-norm soft-margin support vector machine (SVM) [50,51,72,73].

The only way in which examples xi[Rd (i~1,:::,n) enter an SVM is

in terms of an inner product Sxi,xjT. This product can be replaced

by the evaluation k(xi,xj) of a kernel function k : Rd|Rd?R, which

implicitly computes the inner product between the examples in a

new feature space, Sw(xi),w(xj)T.

The ‘2-norm SVM is a natural choice when the goal is maximal

prediction accuracy. However, it usually leads to a dense solution

(as opposed to a sparse solution) in which almost all features are

used for classification. This is suboptimal when one wishes to

understand which model parameters contribute most to distin-

guishing groups, which will be the focus in the Section

‘Interpretation of the feature space.’ In this case, an SVM that

enforces feature sparsity may be more useful. One simple way of

inducing sparsity is to penalize the number of non-zero coefficients

by using an ‘0-regularizer. Unlike other regularizers, the ‘0-norm

(also known as the counting norm) reduces the feature-selection bias

inherent in unbounded regularizers such as the ‘1- or ‘2-norm.

The computational cost of optimizing an ‘0-SVM objective

function is prohibitive, because the number of subsets of d items

which are of size k is exponential in k. We therefore replace the ‘0-

norm by a capped ‘1-regularizer which has very similar properties

[74]. One way of solving the resulting optimization problem is to

use a bilinear programming approach [75]. Here, we use a more

efficient difference-of-convex-functions algorithm (Ong & Thi,

under review).

In summary, we will use two types of SVM. For the purpose of

classification (Section ‘Classification’), we aim to maximize the

potential for highly accurate predictions by using an ‘2-norm

SVM. For the purpose of feature selection and interpretation

(Section ‘Interpretation of the feature space’), we will focus on

feature sparsity by using an approximation to an ‘0-norm SVM,

which will highlight those DCM parameters jointly deemed most

informative in distinguishing between groups.

Most current applications of classification algorithms in

neuroimaging begin by embedding the measured recordings of

each subject in a d-dimensional Euclidean space Rd . In fMRI, for

example, a subject can be represented by a vector of d features,

each of which corresponds to the signal measured in a particular

voxel at a particular point in time. This approach makes it possible

to use any learning algorithm that expects vectorial input, such as

an SVM; but it ignores the spatio-temporal structure of the data as

well as the process that generated them. This limitation has

motivated the search for kernel methods that provide a more

natural way of measuring the similarity between the functional

datasets of two subjects, for example by incorporating prior

knowledge about how the data were generated, which has led to

the idea of generative kernels, as described below.

Generative kernels are functions that define a similarity metric

for observed examples using a generative model. In the case of a

dynamic causal model (DCM), for example, the observed time

series are modelled by a system of parameterized differential

equations with Gaussian observation noise. Generative embedding

defines a generative kernel by transferring the models into a

vectorial feature space in which an appropriate similarity metric is

defined (see Figure 1). This feature space, which we will refer to as

a generative score space, embodies a model-guided dimensionality

reduction of the observed data. The kernel defined in this space

could be a simple inner product of feature vectors, or it could be

based on any other higher-order function, as long as it is positive

definite [76]. In conclusion, model-based classification via

generative embedding is a hybrid generative-discriminative

approach: it merges the explanatory abilities of generative models

with the classification power of discriminative methods.

The specific implementation for fMRI data proposed in this

paper consists of four conceptual steps which are summarized in

Figure 1 and described in the following subsections. First, a

mapping X?MH is designed that projects an example x[X from

data space onto a multivariate probability distribution in a

parametric family MH. In our case, we use the fMRI data from

each subject to estimate the posterior density of the parameters of

a DCM (Sections ‘DCM for fMRI’ and ‘Model inversion’).

Second, a probability kernel kM : MH|MH is constructed that

represents a similarity measure between two inverted DCMs.

Here, we use a simple linear kernel on the maximum a posteriori

(MAP) estimates of the model parameters (Sections ‘Strategies for

unbiased model specification and inversion’ and ‘Kernel construc-

tion’). Third, this kernel is used for training and testing a

discriminative classifier (Section ‘Classification’). Here, we employ

a linear SVM to distinguish between patients and healthy controls.

Fourth, the constructed feature space can be investigated to find

out which model parameters jointly contributed most to

distinguishing the two groups (Section ‘Interpretation of the

feature space’). We will conclude with an example in which we

distinguish between patients with moderate aphasia and healthy

controls (Sections ‘Experimental design, data acquisition, and

preprocessing,’ ‘Implementation of generative embedding,’ and

‘Comparative analyses’).

Generative Embedding for fMRI
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DCM for fMRI
DCM regards the brain as a nonlinear dynamic system of

interconnected nodes, and an experiment as a designed pertur-

bation of the system’s dynamics [45]. Its goal is to provide a

mechanistic model for explaining experimental measures of brain

activity. While the mathematical formulation of DCMs varies

across measurement types, common mechanisms modelled by all

DCMs include synaptic connection strengths and experimentally

induced modulation thereof [46,77–80]. Generally, DCMs strive

for neurobiological interpretability of their parameters; this is one

core feature distinguishing them from alternative approaches, such

as multivariate autoregressive models [81] which characterize

inter-regional connectivity in a phenomenological fashion.

DCMs consist of two hierarchical layers [82]. The first layer is a

neuronal model of the dynamics of interacting neuronal populations

in the context of experimental perturbations. Critically, its

parameters are neurobiologically interpretable, representing, for

example, synaptic weights and their context-specific modulation;

electrophysiological DCMs describe even more fine-grained

processes such as spike-frequency adaptation or conduction delays.

Experimental manipulations u enter the model in two different

ways: they can elicit responses through direct influences on specific

regions (e.g., sensory inputs), or they can modulate the strength of

coupling among regions (e.g., task demands or learning). The

second layer of a DCM is a biophysically motivated forward model

that describes how a given neuronal state translates into a

measurement. Depending on the measurement modality, this can

be a set of nonlinear differential equations (as for fMRI [83]) or a

simple linear equation (as for EEG [84]). While the forward model

plays a critical role in model inversion, it is the parameters of the

neuronal model that are typically of primary scientific interest.

In this paper, we will use the classical bilinear DCM for fMRI

[45] as implemented in the software package SPM8/DCM10,

dz(t)

dt
~f (z(t),hn,u(t))~(Az

X
j
uj(t)B

(j))z(t)zCu(t) ð1Þ

x(t)~g(z(t),hh)ze, ð2Þ

where z(t) represents the neuronal state vector z at time t, A is a

matrix of endogenous connection strengths, B(j) represents the

additive change of these connection strengths induced by

modulatory input mj , and C denotes the strengths of direct (driving)

inputs. These neuronal parameters hn~(A,B(1),:::,B(J),C) are rate

constants with units s{1.

The haemodynamic forward model is given by the function

g(z(t),hh), a nonlinear operator that links a neuronal state z(t) to a

predicted blood oxygen level dependent (BOLD) signal via

changes in vasodilation, blood flow, blood volume, and deox-

yhaemoglobin content (see [83] for details). This forward model

has haemodynamic parameters hh and Gaussian measurement

error e. The haemodynamic parameters primarily serve to account

for variations in neurovascular coupling across regions and

subjects and are typically not of primary scientific interest. In

addition, the haemodynamic parameters exhibit strong inter-

dependencies and thus high posterior covariances and low

precision [83], which makes it difficult to establish the distinct

contribution afforded by each parameter. For these reasons,

the model-induced feature spaces in this paper will be based

exclusively on the neuronal parameters hn.

In summary, DCM provides a mechanistic model for explaining

measured time series of brain activity as the outcome of hidden

dynamics in an interconnected network of neuronal populations

and its experimentally induced perturbations. Inverting such a

model (see next section) means to infer the posterior distribution of

the parameters of both the neuronal and the forward model from

observed responses of a specific subject. Its mechanistic interpret-

ability and applicability to single-subject data makes DCM an

attractive candidate for generative embedding of fMRI data.

Model inversion
Bayesian inversion of a given dynamic causal model m defines a

map X?MH that projects a given example x[X (i.e., data from a

single subject) onto a multivariate probability distribution p(hjx,m)
in a parametric family MH. The model architecture m specifies the

neuronal populations (regions) of interest, experimentally con-

trolled inputs u, synaptic connections, and a prior distribution over

the parameters p(hjm). Given the model m and subject-specific

data x, model inversion proceeds in an unsupervised and subject-

by-subject fashion, i.e., in ignorance of the subject label that will

later be used in the context of classification. (The literature on

DCM has adopted the convention of denoting the hidden states by

x and the data by y. Here, in order to keep the notation consistent

with the literature on classification, we use x for the data and c for

the labels. A distinct symbol for the hidden states is not required

here.) DCM uses a fully Bayesian approach to parameter

estimation, with empirical priors for the haemodynamic param-

eters and conservative shrinkage priors for the coupling param-

eters [85,45]. Combining the prior density over the parameters

p(hjm) with the likelihood function p(xjh,m) yields the posterior

density p(hjx,m). This inversion can be carried out efficiently by

maximizing a variational free-energy bound to the log model

evidence, ln p(xjm), under Gaussian assumptions about the

posterior (the Laplace assumption; see [86] for details). Given d
parameters, model inversion thus yields a subject-specific proba-

bility density p(hjx,m) that can be fully described in terms of a

vector of posterior means m̂m[Rd and a covariance matrix ŜS[Rd|d .

Model specification and selection is an important theme in

DCM [87]. In this paper we are not concerned with the question

of which of several alternative DCMs may be optimal for

explaining the data or for classifying subjects; these issues can be

addressed using Bayesian evidence methods [88,89] or by applying

cross-validation to the classifications suggested by each of the

models, respectively (see [61] for an example). However, an

important issue is that model specification cannot be treated in

isolation from its subsequent use for classification. Specifically,

some procedures for selecting time series can lead to biased

estimation of classification accuracy. In the next section, we

therefore provide a detailed assessment of different strategies for

time series selection in DCM-based generative embedding and

highlight those procedures which safeguard against obtaining

optimistic estimates of classification performance.

Strategies for unbiased model specification and inversion
For conventional fMRI classification procedures, good-practice

guidelines have been suggested for avoiding an optimistic bias in

assessing classification performance [8,10]. Generally, to obtain an

unbiased estimate of generalization accuracy, a classifier must be

applied to test data that have not been used during training. In

generative embedding, this principle implies that the specification

of the generative model cannot be treated in isolation from its use

for classification. In this section, we structure different strategies in

terms of a decision tree and evaluate the degree of bias they invoke

(see Figure 2).

The first distinction is based on whether the regions of interest

(ROIs) underlying the DCM are defined anatomically or functionally.

Generative Embedding for fMRI
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When ROIs are defined exclusively on the basis of anatomical

masks (Figure 2a), the selection of voxels is independent of the

functional data. Using time series from these regions, the model is

inverted separately for each subject. Thus, given n subjects, a

single initial model-specification step is followed by n subject-wise

model inversions. The resulting parameter estimates can be safely

submitted to a cross-validation procedure to obtain an unbiased

estimate of classification performance.

Whenever functional contrasts have played a role in defining

ROIs, subsequent classification may no longer be unbiased. This is

because a functional contrast introduces statistics of the data into

voxel selection, which usually generates a bias. In this case, we ask

whether contrasts are defined in an across-subjects or a between-groups

fashion. In the case of an across-subjects contrast (which does not

take into account group membership), one might be tempted to

follow the same logic as in the case of anatomical ROI definitions:

a single across-subjects contrast, computed for all subjects, guides

the selection of voxels, and the resulting DCM is inverted

separately for each subject (Figure 2b). Unfortunately, this

procedure is problematic. When using the resulting parameter

estimates in a leave-one-out cross-validation scheme, in every

repetition the features would be based on a model with regions

determined by a group contrast that was based on the data from

all subjects, including the left-out test subject. This means that

training the classifier would no longer be independent of the test

data, which violates the independence assumption underlying

cross-validation, a situation referred to as peeking [10]. In

consequence, the resulting generalization estimate may exhibit

an optimistic bias. To avoid this bias, model specification must be

integrated into cross-validation (Figure 2c). Specifically, in each

fold, we leave out one subject as a test subject and compute an

across-subjects group contrast from the remaining n{1 subjects.

The resulting choice of voxels is then used for specifying time series

in each subject and the resulting model is inverted separately for

each subject, including the left-out test subject. This procedure is

repeated n times, each time leaving out a different subject. In total,

the model will be inverted n2 times. In this way, within each cross-

validation fold, the selection of voxels is exclusively based on the

training data, and no peeking is involved. This is the strategy

adopted for the dataset analysed in this paper, as detailed in the

Section ‘Implementation of generative embedding’.

When functional contrasts are not defined across all subjects but

between groups, the effect of peeking may become particularly

severe. Using a between-groups contrast to define regions of

interest on the basis of all available data, and using these regions to

invert the model for each subject (Figure 2d) would introduce

information about group membership into the process of voxel

selection. Thus, feature selection for both training and test data

would be influenced by both the data and the label of the left-out

test subject. One way of decreasing the resulting bias is to integrate

model specification into cross-validation (Figure 2e). In this

procedure, the between-groups contrast is computed separately

Figure 2. Strategies for unbiased DCM-based generative embedding. This figure illustrates how generative embedding can be implemented
using dynamic causal modelling. Depending on whether regions of interest are defined anatomically, based on across-subjects functional contrasts,
or based on between-group contrasts, there are several possible practical procedures. Some of these procedures may lead to biased estimates of
classification accuracy (grey boxes). Procedures a, c, and f avoid this bias, and are therefore recommended (green boxes). The analysis of the
illustrative dataset described in this paper follows procedure c.
doi:10.1371/journal.pcbi.1002079.g002
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for each training set (i.e., based on n{1 subjects), and the resulting

regions are used to invert the model for the test subject. This

means that the class label of the test subject is no longer involved in

selecting features for the test subject. However, the test label

continues to influence the features of the training set, since these

are based on contrasts defined for a group that included the test

subject. This bias can only be removed by adopting the same

laborious procedure as with across-subjects contrasts: by using a

between-groups contrast involving n{1 subjects, inverting the

resulting model separately for each subject, and repeating this

procedure n times (Figure 2f). This procedure guarantees that

neither the training procedure nor the features selected for the test

subject were influenced by the data or the label of the test subject.

In summary, the above analysis shows that there are three

practical strategies for the implementation of generative embed-

ding that yield an unbiased cross-validated accuracy estimate. If

regions are defined anatomically, the model is inverted separately

for each subject, and the resulting parameter estimates can be

safely used in cross-validation (Figure 2a). Otherwise, if regions are

defined by a functional contrast, both the definition of ROIs and

model inversion for all subjects need to be carried out separately

for each cross-validation fold (Figure 2c,f).

Kernel construction
Given a set of inverted subject-specific generative models, the

kernel defines the similarity metric under which these models are

assessed within a discriminative classifier. In generative embed-

ding, the choice of an appropriate kernel depends on the definition

of the generative score space. A straightforward way to create a

Euclidean vector space from an inverted DCM is to consider the

posterior means or maximum a posteriori (MAP) estimates of model

parameters of interest (e.g., parameters encoding synaptic

connection strengths). More formally, we can define a mapping

MH?Rd that extracts a subset of MAP estimates m̂mMAP from the

posterior distribution p(hjx,m). This simple d-dimensional vector

space expresses discriminative information encoded in the

connection strengths between regions, as opposed to activity levels

within these regions. Alternatively, one could also incorporate

elements of the posterior covariance matrix into the vector space.

This would be beneficial if class differences were revealed by the

precision with which connection strengths can be estimated from

the data.

Once a generative score space has been created, any

conventional kernel k : Rd|Rd?R can be used to compare

two inverted models. The simplest one is the linear kernel

k(xi,xj)~Sxi,xjT, representing the inner product between two

vectors xi and xj . Nonlinear kernels, such as quadratic, polynomial

or radial basis function kernels, transform the generative score

space, which makes it possible to consider quadratic (or higher-

order) class boundaries and therefore account for possible

interactions between features. Nonlinear kernels, however, have

several disadvantages for generative embedding. As the complexity

of the kernel increases, so does the risk of overfitting. Furthermore,

feature weights are easiest to interpret in relation to the underlying

model when they do not undergo further transformation; then, the

contribution of a particular feature (i.e., model parameter) to the

success of the classifier can be understood as the degree to which

the neuronal mechanism represented by that parameter aids

classification. A simple linear kernel will therefore be our preferred

choice.

In summary, in this paper, we define a mapping MH?Rd from

a subject-specific posterior distribution of model parameters

p(hjx,m) to a feature vector m̂mMAP. We then use a linear kernel

k : Rd|Rd?R for this model-based feature space. Together,

these two steps define a probability kernel k
M

: MH|MH?R that

represents a similarity metric between two inverted models and

allows for mechanistic interpretations of how group membership

of different subjects is encoded by spatiotemporal fMRI data.

Classification
While a kernel describes how two subjects can be compared

using a generative model of their fMRI data, it does not specify

how such a comparison could be used for making predictions. This

gap is filled by discriminative classification methods. As described

in the Section ‘Combining generative models and discriminative

methods’, a natural choice is the ‘2-norm soft-margin support

vector machine (SVM), which currently represents the most widely

used kernel method for classification [72].

An estimate of classification performance with minimal variance

can be obtained by leave-one-out cross-validation. In each fold,

the classifier is trained on n{1 subjects and tested on the left-out

one. Using the training set only, the SVM can be fine-tuned by

carrying out a simple line search over the regularization

hyperparameter C (Eqn. 1), a procedure known as nested cross-

validation [90,91].

There are many ways of assessing the generalization perfor-

mance of a classifier. Here, we are primarily interested in the

balanced accuracy, that is, the mean accuracy obtained on either

class,

1

2

TP

TPzFN
z

TN

TNzFP

� �
, ð3Þ

where TP, FP, TN, and FN represent the number of true

positives, false positives, true negatives, and false negatives,

respectively [92]. The balanced accuracy represents the arithmetic

mean between sensitivity and specificity. If the classifier performs

equally well on either class, it reduces to the ordinary accuracy

(i.e., the ratio of correct predictions to all predictions). If, however,

the classifier has taken advantage of an imbalanced dataset, then

the ordinary accuracy will be inflated, whereas the balanced

accuracy will drop to chance (50%), as desired. The balanced

accuracy thus removes the bias from estimates of generalizability

that may arise in the presence of imbalanced datasets. A

probability interval can be computed by considering the

convolution of two Beta-distributed random variables that

correspond to the true accuracies on positive and negative

examples, respectively. A p-value can then be obtained by

computing the posterior probability of the accuracy being below

chance [92].

Interpretation of the feature space
Most classification algorithms can not only be used for making

predictions and obtaining an estimate of their generalization error;

they can also be used to quantify how much each feature has

contributed to classification performance. Such feature weights can

sometimes be of greater interest than the classification accuracy

itself. In the case of a generative score space, as defined above,

each feature is associated with a neurobiologically interpretable

model parameter. Provided there are no complex transformations

of feature weights (see above), they can be interpreted in the

context of the underlying model.

As described in the Section ‘Combining generative models and

discriminative methods’, the ‘2-norm soft-margin SVM is a

natural choice when the goal is maximal prediction accuracy.

However, its solution usually implies that almost all features are

used for classification. This is suboptimal when one wishes to
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understand which model parameters, and thus mechanisms,

contribute most to distinguishing groups. Therefore, for the

purposes of interpreting the model-induced feature space, we use

an ‘0-regularizer. This approach allows us to characterize the

feature space by counting how often a particular feature has been

selected in leave-one-out cross-validation.

Experimental design, data acquisition, and preprocessing
In order to illustrate the utility of generative embedding for

fMRI, we used data from two groups of participants (patients with

moderate aphasia vs. healthy controls) engaged in a simple speech-

processing task. The conventional SPM and DCM analyses of

these data are published elsewhere; we refer to [71] and Schofield

et al. (in preparation) for detailed descriptions of all experimental

procedures.

The two groups of subjects consisted of 26 right-handed healthy

participants with normal hearing, English as their first language,

and no history of neurological disease (12 female; mean age 54.1

years; range 26–72 years); and 11 patients diagnosed with

moderate aphasia due to stroke (1 female; mean age 66.1; range

45–90 years). The patients’ aphasia profile was characterized using

the Comprehensive Aphasia Test [93]. As a group, they had scores

in the aphasic range for: spoken and written word comprehension

(single word and sentence level), single word repetition and object

naming. It is important to emphasize that the lesions did not affect

any of the temporal regions which we included in our model

described below (see Schofield et al., in preparation, for detailed

information on lesion localization).

Subjects were presented with two types of auditory stimulus: (i)

normal speech; and (ii) time-reversed speech, which is unintelli-

gible but retains both speaker identity and the spectral complexity

of normal speech. Subjects were given an incidental task, to make

a gender judgment on each auditory stimulus, which they

indicated with a button press.

Functional T2*-weighted echo-planar images (EPI) with BOLD

contrast were acquired using a Siemens Sonata 1.5 T scanner (in-

plane resolution 3 mm63 mm; slice thickness 2 mm; inter-slice

gap 1 mm; TR 3.15 s). In total, 122 volumes were recorded in

each of 4 consecutive sessions. In addition, a T1-weighted

anatomical image was acquired. Following realignment and

unwarping of the functional images, the mean functional image

of each subject was coregistered to its high-resolution structural

image. This image was spatially normalized to standard Montreal

Neurological Institute (MNI152) space, and the resulting defor-

mation field was applied to the functional data. These data were

then spatially smoothed using an isotropic Gaussian kernel

(FWHM 8 mm). In previous work, these data have been analysed

using a conventional general linear model (GLM) and DCM; the

results are described in Schofield et al. (in preparation). Here, we re-

examined the dataset using the procedure shown in Figure 2c, as

described in detail in the next subsection.

Implementation of generative embedding
First-level analysis. The first level of our statistical analysis

employed a mass-univariate analysis in each subject. Each

auditory stimulus was modelled as a separate delta function, and

the resulting trains of auditory events were convolved with a

canonical haemodynamic response function. The first regressor in

the design matrix contained all auditory events (i.e., normal and

time-reversed speech stimuli); the second regressor modelled

intelligibility (normal vs. time-reversed speech) as a parametric

modulation. Beta coefficients were estimated for all brain voxels

using the general linear model [1]. To identify regions responding

to auditory stimulation per se, we used an ‘all auditory events’

contrast based on the first regressor (i.e., a contrast between

auditory stimuli and background scanner noise), designed to find

early auditory regions required for the perception of any broad-

band stimulus, whether it is speech or speech-like.

Second-level (group) analysis. The second level analysis

served to select regions whose voxels entered the subject-specific

DCMs (in terms of the first eigenvariate of their time series). In the

previous study of these data (Schofield et al., in preparation), we had

compared a set of 512 alternative DCMs that embodied competing

hypotheses about the architecture of the thalamo-temporal network

processing speech-like stimuli per se. Here, we focus on the model

which was found to have the highest evidence in our previous study,

i.e., the model providing the best trade-off between accuracy and

complexity in explaining the data [94,83,88]. Note that this

selection procedure is ignorant of subject labels, which prevents

test labels from influencing the training procedure. (An alternative,

computationally more expensive approach would be to select the

model that affords the best classification accuracy, and integrate this

selection step into an overall cross-validation scheme. See [61] for

an example.) In addition, the selection of time series remains

independent of the test data. The DCM we used contains 6 regions

(medial geniculate body, MGB; Heschl’s gyrus, HG; planum

temporale, PT), three in each hemisphere, and 14 interregional

connections (see Figure 3). Note that this model concerned

processing of acoustic stimuli with speech-like spectral properties

per se, not differentiating between normal and time-reversed speech;

therefore, it did not contain modulatory inputs (corresponding to an

empty B matrix, see Eqn. 4). Critically, instead of identifying regions

functionally by a group contrast, we pre-defined large anatomical

masks (16 mm616 mm616 mm) that specified only the rough

location of the 6 regions of interest (see Table 1 and Supplementary

Material). These masks served to guide the selection of time series,

using a leave-one-out approach to feature selection as described

below.

Model specification. To specify the exact location and

extent of our 6 regions of interest, and thus the exact time series

that would be modelled by DCM, we used a leave-one-out

approach to feature selection. For this purpose, we carried out n
separate second-level analyses, each time leaving out one subject,

and then used a conventional summary-statistic approach [95]

across the remaining n{1 subjects to find voxels that survived a

one-sample ‘all auditory events’ t-test with a statistical threshold of

p~0:001 (uncorrected), across all subjects, within the anatomical

masks described above. Note that this contrast is agnostic about

diagnostic status (corresponding to Figure 2c). (With the cross-

validation scheme used here, a between-group contrast could have

been used as well without risking bias; see Section ‘Strategies for

unbiased model specification and inversion’. This case would

correspond to Figure 2f.) Within each leave-one-out repetition, our

procedure yielded 6 voxel sets, one for each region of interest. We

used the first eigenvariate over voxels as a representative time

series for each region in DCM.

Model inversion. Inversion of the DCM was carried out

independently for each subject, and separately for each cross-

validation fold (i.e., each group contrast). With regions (and thus

modelled time series) differing each time depending on the current

set of n{1 subjects, this procedure resulted in a total of n2~1 369
fitted DCMs. We emphasize once more that model inversion was

carried out in an unsupervised fashion, i.e., without reference to

the subjects’ diagnostic status.

Kernel construction. A generative score space was

constructed on the basis of the MAP estimates of the neuronal

model parameters (hn in Eqn. 5). The rzzesulting space contained

22 features: 20 interregional connection strengths (A matrix), no
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modulatory parameters (as the B matrix was empty in the DCM

we used), and 2 input parameters (C matrix). All feature vectors

were normalized to unit length. To minimize the risk of overfitting

and enable a clear interpretation of feature weights, we used a

linear kernel. Consequently, the similarity between two subjects

was defined as the inner product between the normalized vectors

of the posterior means of their model parameters.

Classification. An ‘2-norm soft-margin linear support vector

machine (SVM) was trained and tested using leave-one-out cross-

validation. Specifically, in each fold j~1,:::,n, the classifier was

trained on all subjects except j, on the basis of the DCM parameter

estimates obtained from fitting the voxel time series selected by the

group analysis based on all subjects except j. The classifier was then

tested by applying it to DCM parameter estimates for the time series

from subject j (using the same voxels as the rest of the group).

Crucially, in this way, test data and test labels were neither used for

model specification nor for classifier training, preventing optimistic

estimates of classification performance. The principles of this

unbiased procedure are summarized in Figure 4.

Within each fold, the complexity penalty C of the SVM was

selected by a line search in log2 space, to minimize an estimate of

the generalization error on the training set (nested cross-

validation). To discourage the classifier from acquiring a bias in

favour of the majority class, the training set was balanced using a

stochastic oversampling strategy. We assessed the generalization

performance of the classifier by comparing its n predictions to the

n true subject labels (‘patient’ or ‘healthy control’), resulting in a

262 confusion matrix that forms the basis of various common

performance measures, such as the accuracy or the area under the

receiver-operator characteristic (ROC) curve.

Comparative analyses
We compared the performance of generative embedding to a

range of alternative approaches. To begin with, we examined

several conventional activation-based classification schemes. The

first method was based on a feature space composed of all voxels

within the predefined anatomical masks used for guiding the

specification of the DCMs. As above, we used a linear SVM, and

all training sets were balanced by oversampling. We will refer to

this approach as anatomical feature selection.

The second method, in contrast to the first one, was not only based

on the same classifier as in generative embedding but also used exactly

the same voxels. Specifically, voxels were selected on the basis of the

same ‘all auditory events’ contrast as above, which is a common

approach to defining a voxel-based feature space in subject-by-subject

classification [11,12,10]. In every cross-validation fold, only those

voxels entered the classifier that survived a t-test (a~0:001,

uncorrected) in the current set of n{1 subjects. Training sets were

Table 1. Regions of interest.

Region MNI coordinates

L.MGB left medial geniculate body 223 mm, 223 mm, 21 mm

L.HG left Heschl’s gyrus (A1) 247 mm, 226 mm, 7 mm

L.PT left planum temporale 264 mm, 223 mm, 8 mm

R.MGB right medial geniculate body 22 mm, 221 mm, 21 mm

R.HG right Heschl’s gyrus (A1) 48 mm, 224 mm, 6 mm

R.PT right planum temporale 65 mm, 222 mm, 3 mm

Speech processing can be modelled using a dynamic causal model (DCM) with
6 regions. The table lists the central coordinates of these regions in MNI152
space. These coordinates define the centre of the rough anatomical masks
(16 mm616 mm616 mm) that guided the specification of the exact location
and extent of the regions of interest underlying model inversion (see Section
‘Implementation of generative embedding’). For an illustration of these masks,
see Figure S1 in the Supplementary Material.
doi:10.1371/journal.pcbi.1002079.t001

Figure 3. Dynamic causal model of speech processing. The diagram illustrates the specific dynamic causal model (DCM) that was used for the
illustrative application of generative embedding in this study. It consists of 6 regions (circles), 15 interregional connections (straight arrows between
regions), 6 self-connections (circular arrows), and 2 stimulus inputs (straight arrows at the bottom). The specific set of connections shown here is the
result of Bayesian model selection that was carried out on the basis of a large set of competing connectivity layouts (for details, see Schofield et al., in
preparation). A sparse set of 9 out of 23 connectivity and input parameters (see Figure 10) was found to be sufficiently informative to distinguish
between aphasic patients and healthy controls with near-perfect accuracy (see Figure 5). The connections corresponding to these 9 parameters are
highlighted in red. Only three parameters were selected in all cross-validation folds and are thus particularly meaningful for classification (bold red
arrows); these refer to connections mediating information transfer from the right to the left hemisphere, converging on left PT, which is a key
structure in speech processing.
doi:10.1371/journal.pcbi.1002079.g003
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balanced by oversampling. We will refer to this method as contrast feature

selection.

The third activation-based method employed a locally multi-

variate ‘searchlight’ strategy for feature selection. Specifically, in

each cross-validation fold, a searchlight sphere (radius 4 mm) was

passed across all voxels contained in the anatomical masks

described above [23]. Using the training set only, a nested leave-

one-out cross-validation scheme was used to estimate the

generalization performance of each sphere using a linear SVM

with a fixed regularization hyperparameter (C~1). Next, all

spheres with an accuracy greater than 75% were used to form the

feature space for the current outer cross-validation fold, which

corresponds to selecting all voxels whose local neighbourhoods

allowed for a significant discrimination between patients and

healthy controls at a~0:01. Both outer and inner training sets

were balanced by oversampling. We will refer to this method as

searchlight feature selection. To illustrate the location of the most

informative voxels, we carried out an additional searchlight

analysis, based on the entire dataset as opposed to a subset of

size n{1, and used the results to generate a discriminative map

(see Figure S1 in the Supplementary Material).

The fourth conventional method was based on a principal

component analysis (PCA) to reduce the dimensionality of the

feature space constructed from all voxels in the anatomical masks

described above. Unlike generative embedding, PCA-based

dimensionality reduction finds a linear manifold in the data

without a mechanistic view of how those data might have been

generated. We sorted all principal components in decreasing order

of explained variance. By retaining the 22 top components, the

resulting dimensionality matched the dimensionality of the feature

space used in generative embedding.

In addition to the above activation-based methods, we

compared generative embedding to several approaches based on

undirected regional correlations. We began by averaging the

activity within each region of interest to obtain region-specific

representative time series. We then computed pairwise correlation

coefficients to obtain a 15-dimensional feature space of functional

connectivity. Next, instead of computing spatial averages, we

summarized the activity within each region in terms of the first

eigenvariate. Thus, in this approach, the exact same data was used

to estimate functional connectivity as was used by DCM to infer

effective connectivity. Finally, as suggested in [43], we created yet

another feature space by transforming the correlation coefficients

on eigenvariates into z-scores using the Fisher transformation [96].

In addition to conventional activation- and correlation-based

approaches, we also investigated the dependence of generative

embedding on the structure of the underlying model. Specifically,

we repeated our original analysis on the basis of three alternative

models. For the first model, we constructed a feedforward system by

depriving the original model of all feedback and interhemispheric

connections (Figure 5a); while this model could still, in principle,

explain neuronal dynamics throughout the system of interest, it

was neurobiologically less plausible. For the second and third

model, we kept all connections from the original model but

modelled either only the left hemisphere (Figure 5b) or only the right

hemisphere (Figure 5c).

In summary, we compared the primary approach proposed in

this paper to 4 conventional activation-based methods, 3

conventional correlation-based methods, and 3 generative-embed-

ding analyses using reduced and biologically less plausible models.

Results

Classification performance
The classification performance of generative embedding was

evaluated using the procedure described in Figure 2c. This

procedure was compared to several conventional activation-based

and correlation-based approaches. As an additional control,

generative embedding was carried out on the basis of three

biologically ill-informed models. In all cases, a leave-one-subject-

out cross-validation scheme was used to obtain the posterior

distribution of the balanced accuracy [92] as well as smooth

estimates of the underlying receiver-operating characteristic

(ROC) and precision-recall (PC) curves [97]. Results are presented

in Table 2 and Figure 6.

The strongest classification performance was obtained when

using generative embedding with the full model shown in Figure 3.

The approach correctly associated 36 out of 37 subjects with their

Figure 4. Practical implementation of generative embedding for fMRI. This figure summarizes the three core steps involved in the practical
implementation of generative embedding proposed in this paper. This procedure integrates the inversion of a generative model into cross-validation.
In step 1, within a given repetition j~1,:::,n, the model is specified using all subjects except j. This yields a set of time series fxi[Xg for each subject
i~1,:::,n. In step 2, the model is inverted independently for each subject, giving rise to a set of subject-specific posterior parameter means fm̂mig.
In step 3, these parameter estimates are used to train a classifier on all subjects except j and test it on subject j, which yields a prediction about the
class label of subject j. After having repeated these three steps for all j~1,:::,n, the set of predicted labels can be compared with the true labels,
which allows us to estimate the algorithm’s generalization performance. In addition, parameters that proved jointly discriminative can be interpreted
in the context of the underlying generative model. The sequence of steps shown here corresponds to the procedure shown in Figure 2c and 2f,
where it is contrasted with alternative procedures that are simpler but risk an optimistic bias in estimating generalization performance.
doi:10.1371/journal.pcbi.1002079.g004
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true disease state, corresponding to a balanced accuracy of 98%.

Regarding conventional activation-based methods, classification

based on anatomical feature selection did not perform significantly

above chance (balanced accuracy 62%, p<0.089). Contrast feature

selection (75%, p<0.003), searchlight feature selection (73%,

p<0.006), and PCA-based dimensionality reduction (80%,

p,0.001) did perform significantly above chance; however, all

methods were outperformed significantly by generative embedding

(p<0.003, p<0.001, and p<0.045, paired-sample Wald test).

Regarding conventional correlation-based methods, all three

approaches performed above chance, whether based on correlations

amongst the means (70%, p<0.011), correlations amongst eigen-

variates (83%, p,0.001), or z-transformed correlations amongst

eigenvariates (74%, p<0.002). Critically, however, all were

significantly outperformed by generative embedding (p,0.001,

p<0.045, p<0.006). Regarding generative embedding itself, when

replacing the original model shown in Figure 3 by a biologically less

plausible feedforward model (Figure 5a) or by a model that captured

the left hemisphere only (Figure 5b), we observed a significant

decrease in performance, from 98% down to 77% (p<0.002) and

81% (p<0.008), respectively, although both accuracies remained

significantly above chance (p<0.001 and p,0.001). By contrast,

when modelling the right hemisphere only (Figure 5c), performance

dropped to a level indistinguishable from chance (59.3%, p<0.134).

In order to provide a better intuition as to how the generative

model shown in Figure 3 created a score space in which examples

were much better separated than in the original voxel-based

feature space, we produced two scatter plots of the data (see

Figure 7). The first plot is based on the peak voxels of the three

most discriminative clusters among all regions of interest,

evaluated by a searchlight classification analysis. The second plot,

by analogy, is based on the three most discriminative model

parameters, as measured by two-sample t-tests in the (normalized)

generative score space. This illustration shows how the voxel-based

projection (left) leads to classes that still overlap considerably,

whereas the model-based projection (right) provides an almost

perfectly linear separation of patients and controls.

Characterization of the feature space
The low dimensionality of the model-based feature space makes

it possible to visualize each example in a radial coordinate system,

where each axis corresponds to a particular model parameter

(see Figure 8). When using parameters that represent directed

connection strengths, this form of visualization is reminiscent of

the notion of ‘connectional fingerprints’ for characterizing

individual cortical regions [98]. In our case, there is no

immediately obvious visual difference in fingerprints between

aphasic patients and healthy controls. On the contrary, the plot

gives an impression of the large variability across subjects and

suggests that differences might be subtle and possibly jointly

encoded in multiple parameters.

One way of characterizing the discriminative information

encoded in individual model parameters more directly is to

estimate class-conditional univariate feature densities (see Figure 9).

Here, densities were estimated in a nonparametric way using a

Gaussian kernel with an automatically selected bandwidth, making

no assumptions about the distributions other than smoothness

[99]. While most densities are heavily overlapping, a two-sample

t-test revealed significant group differences in four model

parameters (denoted by stars in Figure 9): the self-connection of

L.HG (parameter 4); the influence that L.HG exerts over L.PT

(parameter 5); the influence R.MGB on R.PT (parameter 13); and

the influence of R.HG on L.HG (parameter 14). All of these were

significant at the 0.001 level while no other parameter survived

p = 0.05. An extended plot of all bivariate feature distributions,

illustrating how well any two features jointly discriminated

between patients and healthy controls, can be found in the

Supplementary Material (Figure S2).

In order to better understand which DCM parameters jointly

enabled the distinction between patients and controls, we

examined the frequency with which features were selected in

leave-one-out cross-validation when using an SVM with a sparsity-

inducing regularizer [75,74] (see Figure 10). We found that the

classifier favoured a highly consistent and sparse set of 9 (out of 22)

model parameters; the corresponding synaptic connections are

highlighted in red in Figure 3. Notably, this 9-dimensional feature

space, when used with the original ‘2-norm SVM, yielded the

same balanced classification accuracy (98%) as the full 22-

dimensional feature space, despite discarding more than two

thirds of its dimensions.

The above representation disclosed interesting potential mech-

anisms. For example, discriminative parameters were restricted to

Figure 5. Biologically unlikely alternative models. To illustrate the specificity of generative embedding, the analysis described in the main text
was repeated on the basis of three biologically less plausible models. In contrast to the full model shown in Figure 3, these alternative models either
(a) contained no feedback or interhemispheric connections, (b) accounted for activity in the left hemisphere only, or (c) focussed exclusively on the
right hemisphere. For results, see Table 2 and Figure 6.
doi:10.1371/journal.pcbi.1002079.g005
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cortico-cortical and thalamo-cortical connection strengths, whereas

parameters representing auditory inputs to thalamic nuclei did not

contribute to the distinction between patients and healthy controls.

This finding implies that, as one would expect, low-level processing

of auditory stimuli, from brain stem to thalamus, is unimpaired in

aphasia and that processing deficiencies are restricted to thalamo-

cortical and cortico-cortical networks. In particular, the discrimi-

native connections included the top-down connections from planum

temporale to Heschl’s gyrus bilaterally; the importance of these

connections had also been highlighted by the previous univariate

analyses of group-wise DCM parameters in the study by Schofield et

al. (in preparation). Furthermore, all of the connections from the right

to the left hemisphere were informative for group membership, but

none of the connections in the reverse direction. This pattern is

interesting given the known specialization of the left hemisphere in

language and speech processing and previous findings that

language-relevant information is transferred from the right

hemisphere to the left, but not vice versa [100]. It implies that

aphasia leads to specific changes in connectivity, even in non-

lesioned parts of the language network, with a particular effect on

Table 2. Classification results.

Measure (n = 37)
Anatomical feature
selection

Contrast feature
selection

Searchlight feature
selection

PCA-based dimensionality
reduction

(1) Accuracy 0.649 0.757 0.730 0.865

(2) Balanced accuracy 0.619 0.748 0.729 0.799

(3) Significantly above chance p<0.089 p<0.003 p<0.006 p,0.001

(4) True positive rate (TPR;
sensitivity; recall)

0.545 0.727 0.727 0.636

(5) True negative rate (TNR;
specificity)

0.692 0.769 0.731 0.962

(6) Positive predictive
value (PPV; precision)

0.429 0.571 0.533 0.875

(7) Negative predictive
value (NPV)

0.783 0.870 0.864 0.862

(8) Area under the ROC curve
(AUC)

0.657 0.829 0.794 0.846

(9) Area under the PR curve
(average precision)

0.756 0.854 0.842 0.885

…
Region-means
correlations

Eigenvariates
correlations

Eigenvariates
z-correlations

0.730 0.865 0.784

0.703 0.825 0.741

p<0.011 p,0.001 p<0.002

0.636 0.727 0.636

0.769 0.923 0.846

0.538 0.800 0.636

0.833 0.889 0.846

0.804 0.958 0.857

0.873 0.945 0.914

…
Generative
embedding (full model)

Generative embedding
(feedforward model)

Generative embedding
(left hemisphere)

Generative embedding (right
hemisphere)

0.973 0.784 0.838 0.649

0.981 0.767 0.806 0.593

p,0.001 p<0.001 p,0.001 p<0.134

1.000 0.727 0.727 0.455

0.962 0.808 0.885 0.731

0.917 0.615 0.727 0.417

1.000 0.875 0.885 0.760

0.990 0.867 0.923 0.706

0.957 0.916 0.934 0.803

This table contrasts the classification results obtained through generative embedding with those afforded by three conventional methods. As described in the main
text, the underlying dataset serves illustrative purposes, and so, due to its small sample size (n = 37), all numbers are associated with considerable uncertainty. The
measure of primary interest is the balanced accuracy (2). Its uncertainty can be captured by computing a posterior probability interval (as shown in Figure 6a), or by
computing a p-value (3), which represents the probability with which the observed performance would have been obtained by chance.
doi:10.1371/journal.pcbi.1002079.t002
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inter-hemispheric transfer of speech information. This specificity is

seen even more clearly when considering only those three

parameters which were selected 100% of the time (i.e., in all

cross-validation folds) and are thus particularly meaningful for

classification (bold red arrows in Figure 3). The associated

connections mediate information transfer from the right to the left

Figure 6. Classification performance. Classification based on generative embedding using the model shown in Figure 3 was compared to ten
alternative methods: anatomical feature selection, contrast feature selection, searchlight feature selection, PCA-based dimensionality reduction, regional
correlations based on region means, regional correlations based on eigenvariates, regional z-transformed correlations based on eigenvariates, as well as
generative embedding using three biologically unlikely alternative models (see inset legends for abbreviations). (a) The balanced accuracy and its central
95% posterior probability interval show that all methods performed significantly better than chance (50%) with the exception of classification with
anatomical feature selection and generative embedding using a nonsensical model. Differences between activation-based methods (light grey) and
correlation-based methods (dark grey) were largely statistically indistinguishable. By contrast, using the full model shown in Figure 3, generative
embedding (blue) significantly outperformed all other methods, except when used with biologically unlikely models (Figure 5). (b) Receiver-operating
characteristic (ROC) curves of the eleven methods illustrate the trade-off between true positive rate (sensitivity) and false positive rate (1 – specificity)
across the entire range of detection thresholds. A larger area under the curve is better. (c) Precision-recall (PR) curves illustrate the trade-off between
positive prediction value (precision) and true positive rate (recall). A larger area under the curve is better. Smooth ROC and PR curves were obtained
using a binormal assumption on the underlying decision values [97]. For a numerical summary of all results, see Table 2.
doi:10.1371/journal.pcbi.1002079.g006

Figure 7. Induction of a generative score space. This figure provides an intuition of how a generative model transforms the data from a voxel-
based feature space into a generative score space (or model-based feature space), in which classes become more separable. The left plot shows how
aphasic patients (red) and healthy controls (grey) are represented in voxel space, based on t-scores from a simple ‘all auditory events’ contrast (see main
text). The three axes represent the peaks of those three clusters that showed the strongest discriminability between patients and controls, based on a
locally multivariate searchlight classification analysis. They are located in L.PT, L.HG, and R.PT, respectively (cf. Table 1). The right plot shows the three
individually most discriminative parameters (two-sample t-test) in the (normalized) generative score space induced by a dynamic causal model of speech
processing (see Figure 3). The plot illustrates how aphasic patients and healthy controls become almost perfectly linearly separable in the new space.
Note that this figure is based on normalized examples (as used by the classifier), which means the marginal densities are not the same as those shown in
Figure 9 but are exactly those seen by the classifier. A stereogram of the generative score space can be found in the Supplementary Material (Figure S4).
doi:10.1371/journal.pcbi.1002079.g007
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hemisphere and converge on the left planum temporale which is a

critical structure for processing of language and speech [101,102].

In summary, all selected features represented connectivity

parameters (as opposed to stimulus input), their selection was both

sparse and highly consistent across resampling repetitions, and their

combination was sufficient to afford the same classification accuracy

as the full feature set.

Discussion

Perspectives for generative embedding of fMRI data
Generative embedding for subject-by-subject classification

provides three potential advantages over conventional voxel-based

methods. The first advantage is that it combines the explanatory

strengths of generative models with the classification power of

discriminative methods. Thus, in contrast to purely discriminative

or purely generative methods, generative embedding is a hybrid

approach. It fuses a feature space that captures both the data and

their generative process with a classifier that finds the maximum-

margin boundary for class separation. Intuitively, this exploits the

idea that differences in the generative process between two

examples (observations) might provide optimal discriminative

information required to enable accurate predictions. In the case

of DCM for fMRI, this rationale should pay off whenever the

directed connection strengths between brain regions contain more

information about a disease state than regional activations or

undirected correlations. Indeed, this is what we found in our

analyses (cf. Figure 6). Using a DCM-informed data representation

might prove particularly relevant in psychiatric disorders, such as

schizophrenia or depression, where aberrant effective connectivity

and synaptic plasticity are central to the disease process [48,47].

Figure 8. Connectional fingerprints. Given the low dimensionality
of the model-induced feature space, subjects can be visualized in terms
of ‘connectional fingerprints’ [98] that are based on a simple radial
coordinate system in which each axis corresponds to the maximum a
posteriori (MAP) estimate of a particular model parameter. The plot
shows that the difference between aphasic patients (red) and healthy
controls (grey) is not immediately obvious, suggesting that it might be
subtle and potentially of a distributed nature.
doi:10.1371/journal.pcbi.1002079.g008

Figure 9. Univariate feature densities. Separately for patients (red) and healthy controls (grey), the figure shows nonparametric estimates of the
class-conditional densities of the maximum a posteriori (MAP) estimates of model parameters. The estimates themselves are shown as a rug along the
x-axis. The results of individual (uncorrected) two-sample t-tests, thresholded at p = 0.05, are indicated in the title of each diagram. Three stars (***)
correspond to p,0.001, indicating that the associated model parameter assumes very different values for patients and controls.
doi:10.1371/journal.pcbi.1002079.g009
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The second advantage of generative embedding for fMRI is that

it enables an intuitive and mechanistic interpretation of features

and their weights, an important property not afforded by most

conventional classification methods [103,104]. By using parameter

estimates from a mechanistically interpretable model for con-

structing a feature space, the subsequent classification no longer

yields ‘black box’ results but allows one to assess the relative

importance of different mechanisms for distinguishing groups (e.g.,

whether or not synaptic plasticity alters the strengths of certain

connections in a particular context). Put differently, generative

embedding embodies a shift in perspective: rather than represent-

ing sequential data in terms of high-dimensional and potentially

highly complex trajectories, we are viewing the data in terms of the

coefficients of a well-behaved model of system dynamics. Again,

this may be of particular importance for clinical applications, as

discussed in more detail below. It is also interesting to note that

models like DCM, when used in the context of generative

embedding, turn the curse of dimensionality faced by conventional

classification methods into a blessing: the higher the spatial and

temporal resolution of the underlying fMRI data, the more precise

the resulting DCM parameter estimates; this in turn should lead to

more accurate predictions.

The third advantage provided by generative embedding is

related to model comparison. For any given dataset, there is an

infinite number of possible dynamic causal models, differing in the

number and location of nodes, in connectivity structure, and in

their parameterization (e.g., priors). Competing models can be

compared using Bayesian model selection (BMS) [89,83,86,88],

where the best model is the one with the highest model evidence,

that is, the highest probability of the data given the model [105].

BMS is a generic approach to distinguish between different models

that is grounded in Bayesian probability theory and, when group-

specific mechanisms can be mapped onto distinct models,

represents a powerful technique for model-based classification in

itself. However, there are two scenarios in which BMS is

problematic and where classification based on generative embed-

ding may represent a useful alternative [61]. First, BMS requires

the data to be identical for all competing models. Thus, in the case

of current implementations of DCM for fMRI, BMS enables

dynamic model selection (concerning the parameterization and

mathematical form of the model equations) but not structural model

selection (concerning which regions or nodes should be included in

the model). Second, BMS is limited when different groups cannot

be mapped onto different model structures, for example when the

differences in neuronal mechanisms operate at a finer conceptual

scale than can be represented within the chosen modelling

framework. In this case, discriminability of subjects may be

afforded by differences in (combinations of) parameter estimates

under the same model structure (see [106] for a recent example).

In both these scenarios, the approach proposed in this paper

may provide a solution, in that the unsupervised creation of a

generative score space can be viewed as a method for biologically

informed feature extraction, and the performance of the classifier

reflects how much class information is encoded in the model

parameters. This view enables a form of model comparison in

which the best model is the one that enables the highest

classification accuracy. This procedure can be applied even when

(i) the underlying data (e.g., the chosen regional fMRI time series)

are different, or when (ii) the difference between two models lies

exclusively in the pattern of parameter estimates. In this paper, we

have illustrated both ideas: structural model selection to decide

between a full model and two reduced models that disregard one

hemisphere; and dynamic model selection to distinguish between

different groups of subjects under the same model structure.

In summary, BMS evaluates the goodness of a model with

regard to its generalizability for explaining the data, whereas

generative embedding evaluates a model in relation to an external

criterion, i.e., how well it allows for inference on group

membership of any given subject. This difference is important as

it highlights that the concept of a ‘good’ model can be based on

fundamentally different aspects, and one could imagine scenarios

where BMS and generative embedding arrive at opposing results.

If, for example, discriminability of groups relies on a small

subspace of the data, then one model (which provides a good

accuracy-complexity trade-off for most of the data except that

subspace) may have higher evidence, but another model that

describes this subspace particularly well but is generally worse for

the rest of the data may result in better classification performance

(cf. our discussion in [106]). We will examine the relation and

complementary nature of BMS and generative-embedding

approaches in future work.

As discussed in this paper, there are three valid strategies for the

implementation of generative embedding in fMRI that allow for

an unbiased estimate of classification accuracy (Figure 2). If

regions (and thus time series) are defined anatomically, the model

is inverted separately for each subject, and the resulting parameter

estimates can be safely used in cross-validation. If regions are

defined by a functional contrast, both time series selection and

model inversion for all subjects need to be carried out separately

for each cross-validation fold. These procedures clearly have

Figure 10. Discriminative features. A support vector machine with
a sparsity-inducing regularizer (capped ‘1-regularizer) was trained and
tested in a leave-one-out cross-validation scheme, resulting in n subsets
of selected features. The figure summarizes these subsets by visualizing
how often each feature (printed along the y-axis) was selected across
the n repetitions (given as a fraction on the x-axis). Error bars represent
central 95% posterior probability intervals of a Beta distribution with a
flat prior over the interval [0, 1]. A group of 9 features was consistently
found jointly informative for discriminating between aphasic patients
and healthy controls (see main text). An additional figure showing
which features were selected in each cross-validation fold can be found
in the Supplementary Material (Figure S3). Crucially, since each feature
corresponds to a model parameter that describes one particular
interregional connection strength, the group of informative features
can be directly related back to the underlying dynamic causal model
(see highlighted connections in Figure 3).
doi:10.1371/journal.pcbi.1002079.g010
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higher computational demands than conventional classification

techniques, but the subject-wise nature of model inversion means

that generative embedding for fMRI can exploit methods for

distributed computing and can thus be implemented even for

larger numbers of subjects.

Summary of our findings
In order to demonstrate the utility of generative embedding for

fMRI, we acquired and analysed a dataset consisting of 11 aphasic

patients and 26 healthy controls. During the experiment,

participants were listening to a series of speech and speech-like

stimuli. In an initial analysis (Schofield et al., in preparation), we

designed a dynamic causal model to explain observed activations

in 6 auditory regions of interest. Here, we extended this analysis by

examining whether patients and healthy controls could be

distinguished on the basis of differences in subject-specific

generative models. Specifically, we trained and tested a linear

support vector machine on subject-wise estimates of connection

strengths. This approach delivered two sets of results.

First, we found strong evidence in favour of the hypothesis that

aphasic patients and healthy controls may be distinguished on the

basis of differences in the parameters of a generative model alone.

Generative embedding did not only yield a near-perfect balanced

classification accuracy (98%). It also significantly outperformed

conventional activation-based methods, whether they were based

on anatomical (62%), contrast (75%), searchlight feature selection

(73%), or on a PCA-based dimensionality reduction (80%).

Similarly, our approach outperformed conventional correlation-

based methods, whether they were based on regional means (70%)

or regional eigenvariates (83% and 74%). Furthermore, it is

interesting to observe that group separability was reduced

considerably when using a less plausible feedforward model

(77%). Finally, performance decreased significantly when modelling

only the left hemisphere (81%), and it dropped to chance when

considering the right hemisphere by itself (60%), which is precisely

what one would expect under the view that the left hemisphere is

predominantly, but not exclusively, implicated in language

processing. Taken together, our findings provide strong support

for the central idea of this paper: that critical differences between

groups of subjects may be expressed in a highly nonlinear manifold

which remains inaccessible by methods relying on activations or

undirected correlations, but which can be unlocked by the nonlinear

transformation embodied by an appropriate generative model.

Second, since features correspond to model parameters, our

approach allowed us to characterize a subset of features (Figure 10)

that can be interpreted in the context of the underlying model

(Figure 3). This subset showed four remarkable properties.

(i) Discriminative parameters were restricted to cortico-cortical

and thalamo-cortical connection strengths. On the contrary,

parameters representing auditory inputs to thalamic nuclei did

not contribute to the distinction between patients and healthy

controls. (ii) We observed a high degree of stability across

resampling folds. That is, the same 9 (out of 22) features were

selected on almost every repetition. (iii) The set of discriminative

parameters was found to be sparse, not just within repetitions

(which is enforced by the underlying regularizer) but also across

repetitions (which is not enforced by the regularizer; see Figure S3

in the Supplementary Material). At the same time, the set was

considerably larger than what would be expected from univariate

feature-wise t-tests (Figure 9). (iv) The sparse set of discriminative

parameters proved sufficient to yield the same balanced classifi-

cation accuracy (98%) as the full set. These results are consistent

with the notion that a distinct mechanism, and thus few

parameters, are sufficient to explain differences in processing of

speech and speech-like sounds between aphasic patients and

healthy controls. In particular, all of the connections from the right

to the left hemisphere were informative with regard to group

membership, but none of the connections in the reverse direction.

This asymmetry resonates with previous findings that language-

relevant information is transferred from the right hemisphere to

the left, but not vice versa [100], and suggests that in aphasia

connectivity changes in non-lesioned parts of the language

network have particularly pronounced effects on inter-hemispheric

transfer of speech information from the (non-dominant) right

hemisphere to the (dominant) left hemisphere.

It is worthwhile briefly commenting on how the present findings

relate to those of the original DCM study by Schofield et al. (in

preparation). Two crucial differences are that the previous study (i)

applied Bayesian model averaging to a set of 512 models and (ii)

statistically examined each of the resulting average connection

strengths in a univariate fashion. They found group differences for

most connections, highlighting in particular the top-down connec-

tions from planum temporale to primary auditory cortex bilaterally.

In our multivariate analysis, these two connections were also

amongst the most informative ones for distinguishing patients from

controls (Figure 3). Schofield et al. also found group differences for

interhemispheric connection strengths between left and right

Heschl’s gyrus, but their univariate approach did not demonstrate

any asymmetries. In contrast, our multivariate approach yielded a

sparser set of discriminative connections, highlighting the asymme-

tries of interhemispheric connections described above (Figure 3).

Inference on mechanisms for clinical applications
The example described in this paper was chosen to illustrate the

implementation and use of generative embedding for fMRI. It is

important to emphasize that this example does not represent the

sort of clinical application that we envisage in the long term. Clearly,

there are few diagnostic problems when dealing with aphasia and

usually a clinical examination by the physician is sufficient.

However, this example is useful for demonstrating the utility of

generative embedding since the diagnostic status of each subject is

known without doubt and the networks involved in speech

processing are well characterized. In the future, we hope that our

approach will be useful for addressing clinical problems of high

practical relevance, for instance for dissecting psychiatric spectrum

disorders, such as schizophrenia, into physiologically defined

subgroups [47], or for predicting the response of individual patients

to specific drugs. While an increasing number of studies have tried

to describe neurobiological markers for psychiatric disorders

[22,107,108,3,109,110,14,15], we argue that these studies should

be complemented by model-based approaches for inferring

biologically plausible mechanisms. Such approaches will be useful

in two domains of application: they can be used to decide between

competing hypotheses (as in traditional applications of DCM and

BMS); and they can harvest the potentially rich discriminative

information encoded in aspects of synaptic plasticity or neuromo-

dulation to build classifiers that distinguish between different

subtypes of a psychiatric disorder on a physiological basis (using

techniques such as generative embedding).

In the case of the illustrative dataset analysed in this paper,

generative embedding yielded stronger classification performance

than conventional methods, whether they were based on activations

or regional correlations. One might think that this superior ability to

accurately classify individual subjects determines the clinical value

of the approach. Instead, we wish to argue that its clinical value will

ultimately depend on whether patients that share the same

symptoms can be differentially treated according to the underlying

pathophysiology of the disorder. Generative embedding, using

Generative Embedding for fMRI
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biologically plausible and mechanistically interpretable models, may

prove critical in establishing diagnostic classification schemes that

distinguish between pathophysiologically distinct subtypes of

spectrum diseases and allow for predicting individualized behav-

ioural and pharmacological therapy.

Supporting Information

Figure S1 Further characterization of the voxel-based
feature space. (1) Regions of interest. In order to illustrate

generative embedding for fMRI, a dynamic causal model was

constructed on the basis of 6 anatomical regions of interest. As

described in the paper, the exact location of these regions was

determined on the basis of an n{1 group contrast and hence varied

between cross-validation folds. Regions were defined by

16 mm616 mm616 mm cubes centred on the group maxima

(see Table 1 in the paper). The figure shows the location and extent

of the anatomical masks (green) that were used to define fold-specific

DCM regions. (2) Searchlight map. A conventional searchlight

analysis [23] was carried out to illustrate the degree to which a given

voxel and its local spherical environment (radius 4 mm) allowed for

a separation between aphasic patients and healthy controls. The

map is thresholded at p = 0.05 uncorrected and provides a

qualitative account of which regions were most informative.

(TIF)

Figure S2 Further characterization of the generative
score space. By analogy with the univariate feature densities

shown in Figure 9, the discriminative information encoded in

simple combinations of model parameters can be illustrated using

bivariate scatter plots. The figure indicates how well any two

features jointly discriminated between patients and healthy

controls. Note that the matrix is symmetric.

(TIF)

Figure S3 Feature selection using a sparse SVM. A

support vector machine with a sparsity-inducing regularizer [75]

was used to investigate, based on leave-one-out cross validation,

which features were typically selected across the underlying n folds.

(a) The left figure shows in detail which features were selected in

each repetition. For example, when based on all subjects but the

first, the classifier selected exactly those 9 features that were

selected most of the time; when based on all subjects but the last, a

slightly different group of 10 features was favoured. The figure

shows that the set of selected features is both sparse and highly

consistent across resampling repetitions. As described in the paper,

it afforded the same classification accuracy as the full set. (b) The

right figure shows the posterior variance of each model parameter,

separately for selected and discarded parameters. The data

provide no evidence that the algorithm simply selected those

parameters that were easier to fit, as would be indicated by a lower

posterior variance (two-tailed t-test, p<0.640).

(TIF)

Figure S4

Stereogram of the generative score space. Based on the

generative score space illustrated in the paper (see right plot in

Figure 7), we here show the same plot from two slightly different

angles. Readers are invited to try and focus an imaginary point

behind the two plots, or use a stereoscope, to recover a fully three-

dimensional impression.

(TIF)
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