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In Kilner et al. [Kilner, J.M., Kiebel, S.J., Friston, K.J., 2005. Applications of random field theory to electrophysiology.
Neurosci. Lett. 374, 174–178.] we described a fairly general analysis of induced responses—in electromagnetic
brain signals—using the summary statistic approach and statistical parametric mapping. This involves localising
induced responses—in peristimulus time and frequency—by testing for effects in time–frequency images that
summarise the response of each subject to each trial type. Conventionally, these time–frequency summaries
are estimated using post‐hoc averaging of epoched data. However, post‐hoc averaging of this sort fails when the
induced responses overlap or when there are multiple response components that have variable timing within
each trial (for example stimulus and response components associated with different reaction times). In these
situations, it is advantageous to estimate response components using a convolutionmodel of the sort that is stan-
dard in the analysis of fMRI time series. In this paper, we describe one such approach, based upon ordinary least
squaresdeconvolution of induced responses to input functions encoding theonset of different componentswithin
each trial. There are a number of fundamental advantages to this approach: for example; (i) one can disambiguate
induced responses to stimulus onsets and variably timed responses; (ii) one can test for the modulation of
induced responses—over peristimulus time and frequency—by parametric experimental factors and (iii) one
can gracefully handle confounds—such as slow drifts in power—by including them in the model. In what follows,
we consider optimal forms for convolutionmodels of induced responses, in terms of impulse response basis func-
tion sets and illustrate the utility of deconvolution estimators using simulated and real MEG data.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Time–frequency analysis is a widely used method for studying in-
duced neural responses, particularly in terms of oscillatory brain ac-
tivity. The standard procedure for time–frequency analyses involves
selecting data segments around events of interests (epochs) and
subjecting them to spectral analysis using a time-resolved method
(e.g. wavelet analysis (Tallon-Baudry et al., 1997), Hilbert transform
(Swettenham et al., 2009), windowed Fourier analysis (Mitra and
Pesaran, 1999)). This creates a two-dimensional image of spectral
power—for each epoch—over time and frequency. These time–frequency
images are then averaged, possibly transformed or baseline-corrected to
emphasise particular data features and subjected to statistical analysis
(Kilner et al., 2005;Maris and Oostenveld, 2007). This post‐hoc trial aver-
aging procedure is analogous to the analysis of evoked responses in the
time domain.While this approach has proved its usefulness in numerous
studies, it also has several limitations.

Unlike evoked responses—that decaywithin about half a second to a
second—induced changes in power can last for several seconds or even
longer (with sustained stimuli). Consequently, in many paradigms
for Neuroimaging, UCL Institute
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whose trials comprisemultiple events, the responses to different events
overlap and confound each other—making it difficult to characterise
them separately. Another problem arises when the paradigm involves
subject responses, which introduce an inevitable variability in reaction
times and associated neuronal responses (Gibbons and Stahl, 2007;
Yin and Zhang, 2011). This makes it difficult to interpret the average
(induced response) because a particular peristimulus time in different
trials may correspond to different stages of neural processing. One
possible solution—used in the literature for both time-domain and
frequency-domain data—is to sort trial-specific responses by reaction
time (Makeig et al., 2004). However, these sorted responses are not
pooled in any subsequent statistical analysis (e.g. to test for a differ-
ence between two experimental conditions, while modelling the
between-trial differences in timing). Variable latencies can also con-
found statistical analysis of experimental effects: if two conditions differ
systematically in the reaction time (e.g. trialswith valid and invalid cues
in the Posner task) there will be systematic differences in the corre-
sponding time–frequency activity. Post‐hoc averaging procedures are
unable to distinguish true differences in induced power from reaction
time confounds—we will refer to this as the latency confound problem.
Furthermore, when baseline correction is used as part of the analysis,
systematic differences in thebaseline between conditionsmay also con-
found the results. Finally, in naturalistic tasks (e.g. continuous naviga-
tion in virtual reality environment) it might be difficult to define
discrete epochs over which to take trial averages.

http://dx.doi.org/10.1016/j.neuroimage.2012.09.014
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Here we propose a new framework for the analysis of time–
frequency data that finesses these problems. This framework is
based on the well-established methodology for statistical analysis of
fMRI time series: in brief, we dispense with post-hoc trial averaging
of epoched data and model the continuous time series of induced re-
sponses (over multiple frequencies) using a linear convolution model.
This allows one to encode specific stimuli or response events as ex-
perimental input functions and model the observed induced re-
sponses in terms of induced response functions. Not only does this
allow for the superposition of multiple induced responses to different
events occurring in close temporal proximity—but it also allows for a
parametric modulation of the amplitude of induced responses from
trial to trial.

This paper is organised as follows. In the first section we briefly
recap the main principles of general linear model (GLM)-based
analyses and show how they can be applied to continuous time–
frequency data. In the second, we establish face validity of the ap-
proach using simulated time–frequency power data and discuss the
conditions under which it is optimal. In the third section, we demon-
strate themethod using real data by applying it to a magnetoenceph-
alography (MEG) data acquired from a subject performing the
change-of-plan task. These data present particular challenges that
include trial to trial variations in the temporal composition of in-
duced response components. We hope to show that the new convo-
lution model meets these challenges.

Methods and theory

The linear convolution model for analysis of neuroimaging time
series was introduced by Friston et al. (1994) for the analysis of PET
and fMRI data (Boynton et al., 2012; Poline and Brett, 2012). The
basic idea is to model the time series from each voxel with a linear
mixture of independent variables (regressors) represented by col-
umns of a design matrix. In the case of fMRI time series these re-
gressors are created by convolving input functions encoding the
experimental design (e.g. a series of delta functions representing
stimulus presentations) with basis functions capable of efficiently
representing the shape of the haemodynamic response (Josephs and
Henson, 1999). The most commonly used basis set is the canonical
hemodynamic response function (HRF) and its partial derivatives
with respect to time and dispersion. The parameters of the ensuing
general linear model can then be applied to the basis set to model
the impulse response function to each stimulus or response event of
interest. Furthermore, images of the parameter estimates can be
subjected to statistical parametric mapping (SPM) to make classical
inferences about regionally specific responses in the usual way. The
haemodynamic basis set is specifically tuned for fMRI responses and
would therefore be suboptimal for M/EEG time–frequency responses.
One could derive a new canonical basis set specific to M/EEG
(Ramkumar et al., 2010). However, there are several generic basis
sets that could be used irrespective of the data modality. For example,
the basis sets used for fMRI time series include:

• Finite impulse response (FIR) basis set—a series of rectangular func-
tions that tile peristimulus time.

• Fourier set—a set of sine and cosine functions of peristimulus time.
• Fourier set multiplied by the Hanning taper—similar to Fourier set
but better for modelling responses that are concentrated in the cen-
tre of the analysis time window.

• Gamma functions—a mixture of functions suitable for most tran-
sient responses.

All these basis sets are capable—in principle—of modelling tran-
sient induced power responses and we will demonstrate below how
the best basis set can be selected and optimised for a particular
application.
Another difference between fMRI and time–frequency analysis lies
in the interpretations of the results. In fMRI, the time course of the
BOLD response is not of interest in most cases. Therefore, the estimated
parameters or their linear combinations (contrasts) can be tested di-
rectly to identify significant responses at particular locations in the
brain. In the analysis of induced responses one is generally interested
in the testing for responses at particular locations in peristimulus time
and frequency. The approach proposed here uses a linear convolution
model to estimate (the parameters of) impulse response functions spe-
cific for each event type and uses these to summarise the induced re-
sponse (over frequencies) for these event types—as if each of them
had been presented in isolation. These reconstructed responses take
the form of conventional time–frequency images that can be analysed
in exactly the same way as conventional post-hoc trial averages.

Building the convolution model

The general linear model explains the response variable Y in terms
of a linear combination of explanatory variables and noise (Fig. 1A).

Y ¼ X⋅β þ ε ð1Þ

Here, Y∈Rt�f is the matrix of continuous power with t time bins
and f frequency bins, X∈Rt�n is the design matrix whose n columns
contain explanatory variables or regressors that can be combined lin-
early to explain the observed time series of induced power and
ε∈Rt�f is the noise matrix such that ε~N(0,C), where C∈Rt�t is the
covariance matrix of the noise. The parameters of this model
β∈Rn�f constitute a matrix of unknown regression coefficients for
each regressor and frequency to be estimated.

Given the diversity of possible impulse response functions for in-
duced responses, we considered a generic basis set capable of
representing any physiological response shape: induced responses
cannot be very fast for physiological reasons (M/EEG signals are gen-
erated by the summation of a large number of post-synaptic currents
that necessarily involves some temporal smoothing) and computa-
tional reasons (any spectral estimation method has limited time res-
olution due to the uncertainty principle). We construct regressors by
convolving a set of basis functions with a set of input functions
representing the events of interest (e.g. delta or stick functions
for each stimulus or boxcar functions for experimental manipulations
that persist over time). For m basis functions B∈Rp�m over p
peristimulus time bins and k input functions U∈Rt�k this results in
n=m×k regressors, where one column of the design matrix,
X i−1ð Þ⋅mþj ¼ Ui � Bj∈Rt�1

, is the regressor for the i-th event and j-th
basis function.

Summarising induced responses

Following the estimation of GLM coefficients β by ordinary or
weighted least squares, the impulse response function for a particular
event type and frequency can be reconstructed by multiplying the
basis functions with the parameter estimates corresponding to the
event type and frequency in question. When this is repeated for all
frequencies—and the same event type—the ensuing response func-
tions of peristimulus time constitute a time–frequency image: Ri=
B⋅βi, where βi∈Rm�f corresponds to the parameter estimates for
the i-th event type over frequencies (Fig. 1B). This Ri∈Rp�f response
image can be interpreted as a deconvolved time–frequency response
to the event which would be seen (under linear assumptions) if the
event was presented in isolation. These time–frequency images sum-
marise the induced responses of each subject to a particular event
type. They can then be subjected to standard SPM analysis at the sec-
ond (between-subjects) level in the usual way (Kilner et al., 2005).



Fig. 1. Schematic representation of the GLM approach for the analysis of time–frequency data. A. Continuous time–frequency recording Y is modelled as the product of design matrix
X and coefficients β with additive noise ε. X contains basis functions for each event and regressors modelling confounds (e.g. slow drifts). The GLM coefficients are estimated using
ordinary or weighted least squares. B. Event-type specific time–frequency images Ri are reconstructed by multiplying βi—the GLM coefficients corresponding to the i-th event type—
by the basis set B. These correspond to a least squares deconvolution of event-related responses from the original time-series.

390 V. Litvak et al. / NeuroImage 64 (2013) 388–398
Extensions of the approach

Drifts and baseline correction
The GLM framework makes it possible to introduce additional re-

gressors for modelling data components of no interest; e.g., slow
drifts, eye blinks or movements in the MEG scanner. If computational
constraints allow, power series from several recording sessions can be
concatenated and modelled together. In this case, a separate set of
slow drift regressors can be added for each session—to handle discon-
tinuities. Note that these drift regressors play the same role as base-
line correction in conventional post-hoc averaging. However, in the
setting of a convolution model, this baseline correction is informed
by fluctuations in the data over all time points.

Modelling parametric effects
In addition to modelling the average effect of an event on induced

power, modulations of this effect by experimental factors can be
modelled using parametric modulators—a method well established
in fMRI time series analysis. This involves adding to the basic set of re-
gressors—modelling the average response—one or more additional
sets where the input functions encoding events are scaled in a trial
specific fashion according to some parametric experimental factor—
for example, the monetary value of a stimulus or some variable
attribute of a motor response such as force. The corresponding
time–frequency response image Ri now reflects a modulation of in-
duced responses by the parametric factor, which can be tested for
using the same SPM procedures that are used to test for average or
mean responses.
Continuous regressors
For the examples in the present paper, we generated regressors by

convolving basis set functions with series of delta functions encoding
the times of occurrence of experimental events—usually called stimu-
lus functions. However, it would also be possible to use more compli-
cated stimulus functions to form regressors. The simplest example is a
boxcar function, for experimental manipulations that persist over
time (as mentioned above); however, one could also use a continuous
variable (for example, the velocity of a moving grating in a visual
experiment). In this case, the interpretation of the resulting time–
frequency image would be parametric—namely, the change in
power per unit change in the experimental attribute encoded by the
parameter. In other words, it would represent the impulse response
function for the corresponding stimulus attribute rather than average
response induced by stimulus.

Application to data in the time domain (evoked responses)
Although we have focused on an application of the convolution

method to induced power, in principle, the same approach could
also be applied to evoked responses—where the main advantage
would be to separate responses to overlapping events and remove la-
tency confounds. In that case one would not model multiple frequen-
cies but just reconstruct a single time course by combining the
regressors as is standard for fMRI. The main problem with convolu-
tion models of continuous data—in the time domain—is the high com-
putational cost. The typical number of samples in fMRI time series
is around one thousand. The power time series such as used in
this paper contain thousands to tens of thousands of samples and



1 In using the terms event related synchronisation and de-synchronisation, we do
not necessarily imply that fluctuations in the amplitude of induced responses are me-
diated by changes in synchronisation but use the terms to cover any physiologically
mediated changes in amplitude.
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continuous data in the time domain would comprise tens to hundreds
of thousands of samples. Given the faster dissipation of evoked
(compared to induced) responses, in most cases the use of GLM
would not be justified but one could certainly envision its application
where necessary.

Suppressing artefacts
Contamination by artefacts is common in M/EEG. These artefacts

might be extended in time. Even when they are short, several consec-
utive samples in power time series might be affected because the
time windows for estimating spectra are extended in time and can
overlap. This is different from the situation in fMRI where artefacts
usually affect an isolated volume in a series which can be excluded
by adding a regressor modelling out the signal from the correspond-
ing time point. The GLM framework offers a way of suppressing the
influence of artefacts while still modelling continuous power time se-
ries. This can be done by using the weighted least squares approach
where the residuals at the parts of the time series affected by artefacts
are assumed to have very high variance. Computing the optimal esti-
mate of the weights in this case involves pre-whitening of the data
and the design by the square root of the inverse of the covariance ma-
trix which effectively suppresses the artefact-contaminated parts.

Optimal convolution models and experimental design
To estimate the parameters of the convolution model efficiently

the regressors (columns of the design matrix) should not be highly
correlated. When using an orthogonal basis set, regressors pertaining
to the same event will always be orthogonal by design. However, re-
gressors pertaining to different events might be correlated. The rea-
sons for this are intuitive: if two events always occur together with
the same latency, it is impossible to attribute induced responses
uniquely to either event. Variability in the latency between events—
across repetitions—can render the design less correlated (more effi-
cient), but endogenous variability (such as that of reaction times)
might not be sufficient to ensure an efficient design. It is therefore
necessary to optimise the experimental design with efficiency in
mind. This is standard practice in fMRI design and usually involves
paradigms in which trials do and do not contain a component
(event) of interest (Josephs and Henson, 1999). For instance, if one
wanted to disambiguate responses to a stimulus and subsequent
motor response, it would be necessary to have trials with and without
motor responses—by either delaying the motor response in some tri-
als or omitting it completely using no-go trials. The advantage of
modelling induced responses with a continuous convolution model
means that one can exploit designed and endogenous differences be-
tween trials to isolate response components in a way that is not pos-
sible using post-hoc averaging.

Summary

In this section, we have described a summary statistic approach to
the analysis of induced response components. This approach rests on
summarising response components (or their parametric modulation
by an experimental factor) in terms of an impulse response function
to designed or measured experimental perturbations. These time–
frequency summaries are obtained from a least-squares deconvolution,
using a relatively simple general linear model, in which the impulse re-
sponse function comprises a mixture of orthogonal basis functions.
Having estimated the maximum likelihood time–frequency response
for trial components of interest, these are analysed in the usual way—
using statistical parametric mapping to identify significant responses
that are localised in time and frequency (Kilner et al., 2005).

As noted above, summary responses are produced using, essentially,
ordinary least squares de convolution. Since the time–frequency data is
inherently correlated over time, one might argue a weighted least
squares (maximum likelihood) scheme would be more appropriate.
Although this is true—in the application considered here—inference is
performed at the second (between-subject) level and the issue of serial
correlations at the first (within-subject) level is largely irrelevant. This
is because the serial correlations at the first level do not bias estimates
of the de-convolved response—they only bias estimates of their stan-
dard error. These standard errors are not passed to subsequent levels
for inference in the summary statistic approach. One could get more ef-
ficient first level (maximum likelihood) estimates using a weighted
least squares scheme; however, this would incur some computational
cost—which we considered prohibitive in this particular setting.

In the next section, we examine the face validity and efficiency of
this approach using synthetic data.

Simulations

In this section, we examine the performance of the proposed proce-
dure using simulated power time series. The simulated responses were
restricted to the beta band. The beta signal was generated by band-pass
filtering Gaussian white noise with amplitude of 1 arbitrary units (a.u.)
between 15 and 35 Hz. Two kinds of responses were simulated—
Event-Related Synchronisation (ERS) modelled with an increase in sig-
nal amplitude of 100% (unless indicated otherwise) and Event-Related
Desynchronisation (ERD)modelled with a decrease in signal amplitude
of 90%.1 The ERS can be considered as induced by a stimulus and the
ERD—by subject responses. The time courses of both induced responses
were Gaussian bump functions with a standard deviation of 125 ms for
the ERS and 250 ms for the ERD. ERS occurred at fixed intervals of 5 s.
ERD events occurred around the ERS events in half of the trials (selected
at random). The ERS–ERD latency distributionwas varied over different
simulations (see below for details). The total duration of each simulated
response was 450 s. To generate the final signal we combined the ERS
and ERD in one of two possible ways.

• Source-level mixing modelled a scenario where the same neuronal
population expresses both synchronisation and desynchronisation
(at different latencies). In this case, an amplitude modulation wave-
form was created by adding the ERS and ERD to a baseline level of
unity. The amplitude modulation was then applied to the filtered
synthetic beta time series (Fig. 2A).

• Sensor-level mixing modelled a scenario in which ERS and ERD oc-
curs in distinct neuronal populations and mixing occurs at the sen-
sor level. To model this situation, we generated two separate beta
time series—one with ERS and the other with ERD. Each of the
beta time series were modulated separately, after which the two
signals were combined (Fig. 2B).

The simulations were repeated with and without adding white
Gaussian noise—with an amplitude of 1 a.u.—to the modulated beta
signal. White noise was chosen as the simplest option. Using noise
with a more realistic spectral profile (e.g. 1/f noise) would not make
much difference since we analyse each narrow frequency band
independently.

Time–frequency analysis

The simulated time series signal was analysed with both standard
epoching and post-hoc averaging and deconvolution using SPM8 tool-
box (Litvak et al., 2011) supplemented by custom MATLAB code. For
the standard analysis, the continuous signal was epoched separately
around episodes of ERS and ERD from 2 s before to 2 s after the
response.
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Fig. 2. Simulation setup. A. Source-level mixing. Only a short 50 s segment out of total
of 450 s is shown. From top to bottom: impulses corresponding to ERS events, im-
pulses corresponding to ERD events, combined amplitude waveform, the final signal
consisting of band-filtered noise modulated by the amplitude waveform. B. Similarly
for sensor-level mixing. From top to bottom: impulses corresponding to events in
the two sources (ERS on the left, ERD on the right), corresponding amplitude wave-
forms, source signal generated by modulating two different instantiations of
band-filtered noises by the amplitude waveforms, the final sensor-level signal created
by summation of the source-level signals. C. Time–frequency image created for the
source-level simulation where only ERS events were present with the conventional
epoching approach with baseline correction. Note that the signal is mostly concentrat-
ed in 15–30 Hz band (indicated by the dashed white lines) and around the time of zero
there is an increase in power. D. Power time course obtained by summing the image
shown in (C) over the 15–30 Hz band. This is an example of the kind of waveforms
shown in Figs. 3–6.
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Time–frequency analysis was performed on either epoched or
continuous data. We used a multitaper spectral analysis (Thomson
1982)—but other spectral estimation methods could also be used
with the GLM approach. The time window of 0.4 s was shifted in
steps of 0.05 s. Power was estimated for frequencies from 2.5 to
90 Hz in steps of 2.5 Hz—although for simulated data only the results
for 15–30 Hz range were actually examined. The frequency resolution
was set to the inverse of the time window (2.5 Hz) for up to 25 Hz,
then 0.1 times the frequency for 25 to 50 Hz and then to constant
5 Hz. These settings mean a single taper was used for 2.5–30 Hz, 2 ta-
pers for 32.5–42.5 Hz and 3 tapers for 45 Hz and above. The resulting
time–frequency images had no discontinuities in frequency due to
the continuous frequency resolution function.

Following spectral estimation, it is a common practice to trans-
form power data (e.g. to render the noise components approximately
normal (Kiebel et al., 2005)). We compared untransformed power
data to those transformed with log and square root transform to
find the transform that optimised the performance (sensitivity) of
our convolution method.

For standard analyses the time–frequency data were averaged
over epochs and baseline-corrected (baseline −2 to −1.5 s relative
to the event). For the deconvolution analysis, we included a discrete
cosine set with frequencies up to 0.1 Hz in the design matrix to re-
move (baseline) drifts. Time–frequency images were generated as
described above using input functions encoding ERS and ERD peaks
convolved with a Fourier basis set of order 11 (comprising of 22 basis
functions, 11 sines and 11 cosines). The selection of a basis set is consid-
ered later (in “Optimising the basis set”). Given the nature of our
simulated data, there were no frequency-specific responses, other
than in the beta band. Therefore we converted the time–frequency im-
ages into waveforms by averaging across the 15–35 Hz range (Figs. 2C
and D) to simplify the presentation of the results.

Results

Effect of transform and variability in ERS–ERD latency
In this series of simulations, the mean latency between ERS and

ERD was set to zero with a standard deviation of the form 2−n s
where n=[0,1,…,6]. The estimated power responses were compared
to ground truth waveforms obtained by simulating ERS and ERD sep-
arately (without noise) and performing time–frequency analysis
using the standard approach with baseline correction. The results
for source-level mixing are shown in Fig. 3. The goodness-of-fit be-
tween the reconstructed power time courses and the ground truth
was quantified by the coefficient of determination (r2). When using
the standard approach the estimated power waveforms approximat-
ed the ground truth only for the largest latency variability (std=1 s).
When the variability decreased, ERS and ERD could not be separated
and the power waveforms were mixtures of the two. In contrast,
the GLM method—with square root transform—performed well for
all latency distributions. Note that a major factor for this superior per-
formance was the fact that the effects of ERS and ERD were
decorrelated by omitting the ERD in half of the trials. This is some-
thing that post-hoc averaging cannot exploit, especially for ERD that
always occurs in the presence of ERS. Fig. 4 shows the results of sim-
ilar simulations with Gaussian white noise (SNR=1). One can see
that the GLM method still performs well. Both log and square root
transforms seem to provide good approximations to the ground
truth, under relatively high levels of noise.

Fig. 5 shows the results of simulations with sensor-level mixing
and no noise. Here again, the GLM method is capable of separating
ERS from ERD responses—with a square root transform giving the
best results. Note that recovery of the ERD time course is more diffi-
cult here than in the source-level mixing case because—even in the
absence of simulated noise—because there is beta band activity from
the ERS source.

Artefact suppression
To demonstrate artefact suppression with the weighted least

squares approach we added to the simulated time series one hundred
randomly positioned spikes with the amplitude of 100 a.u. (com-
pared with 1 a.u. standard deviation of the simulated signal). The
large amplitude of the artefacts was necessary to clearly see their ef-
fect in the absence of artefact suppression, as the ordinary least
squares GLM method was robust to artefacts of smaller amplitude.
We then detected the artefacts by thresholding the time domain sig-
nal at 2 a.u. Based on our knowledge about the resolution of the
time–frequency decomposition we set the elements on the diagonal
of the weighting matrix W, corresponding to time bins that could be
affected by the artefacts to 2–256 (effectively zero). Fig. 6 shows the
results of model estimation using this approach compared to ordinary
least squares. The weighted least squares method makes it possible to
completely recover the simulated induced response in the presence
of artefacts.

Removing the latency confound
One of the major advantages of the convolution method is that it

can resolve the confounding effect of latency differences, when esti-
mating the amplitude of condition-specific induced responses. To il-
lustrate this problem, simulations were performed where the trials
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root rescaling with the convolution approach makes it possible to recover the simulat-
ed waveforms accurately for all latency distributions tested—and that the convolution
method consistently outperforms averaging.
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were divided into two conditions. In condition 1, the mean latency
between ERS and ERD was 0.3 s and in condition 2 it was 0.6 s. In
both conditions the latencies were drawn from a normal distribution
with standard deviation of 0.125 s. Fig. 7A shows the average ampli-
tude waveforms for the two conditions, time-locked to the ERS. It
can be seen that the apparent amplitude of the ERS is reduced in con-
dition 1 due to greater overlap with the ERD—although in reality the
amplitude of ERS is equal in both conditions. Fig. 7B shows the results
of two-sample t-test between time–frequency images for the ERS of
condition 1 and condition 2 performed across 10 repetitions of the
simulation. Post-hoc averaging, produced (falsely) significant differ-
ences around zero (the peak of the ERS) and later around the time
of the ERD. In contrast, the GLM method produced no significant dif-
ferences and furthermore the image of the difference between two
ERS estimates shows little structure. To demonstrate that this is not
due to a lack of power of the GLM method, we adjusted the ERS
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amplitude in condition 1 so that the average amplitudes around zero
were equivalent in the two conditions (Fig. 7C). Here, there was no
apparent difference in the peak amplitude of the ERS because it is ob-
scured by differences in reaction time. Statistical analysis using the
GLM method reveals a significant difference in the ERS amplitude
around zero (Fig. 7D). In contrast, post-hoc averaging only reveals sig-
nificant differences at later times—that reflect the reaction time ef-
fects, rather than true differences in power.

Optimising the basis set
As described above, the optimal basis set suitable for the convolu-

tion model comprises a small number of functions that can fit accu-
rately the form of induced power responses observable in the data.
In this paper, we used a Fourier basis set, but one could envision
other basis sets—perhaps specifically optimised for the power re-
sponses that are generated by neural masses. Here we describe
some procedures for comparing such basis sets and determining the
optimal number of basis functions. These optimisation methods are
not new; we just reiterate them here in the context of our new
application.

One can determine the optimal number of functions in a given
basis set using the extra sum of squares principle or F-tests. This pro-
cedure tests whether the proportion of variance explained by a subset
of regressors in the design matrix is significant, with respect to
unexplained variance. One can start with a single basis function and
then increase the number of basis function components—testing at
each step whether the extra basis functions explain significant addi-
tional variance. Fig. 8A shows an example of this (step-up) procedure
applied to real MEG data—from the change-of‐plan experiment
described in the final section. We examined data from four different
frequencies: 5, 7, 10 and 12 Hz. In this example adding basis
functions ceased to provide a significant improvement after 9–13
basis functions depending on the frequency tested.

A major shortcoming of the F-test is the fact that it does not allow
one to compare non-nested basis sets. This form of model comparison
generally proceeds within the Bayesian framework. In these Bayesian
model comparisons, the log odds ratio implicit in the classical F-test is
replaced with the more general log evidence—as approximated with
variational free energy (Friston et al., 2007). Fig. 8B shows an example
using the Parametric Empirical Bayes (PEB, (Friston et al., 2002)) to
compare two basis sets available in SPM: Fourier and Fourier Hanning
(the latter is obtained by modulating the basis set functions with a
Hanning taper). For all frequencies but the lowest (5 Hz) the Fourier
bases set had higher model evidence. The results for number of basis
functions were comparable to those of the F-test—between 8 and 13.

It is important to use data and frequencies containing features that
can be explained by the regressors in the design matrix to get mean-
ingful results in this procedure. In principle, it would also be advisable
to use independent data for basis set optimisation. However, we felt
this would be unnecessary for our particular application as the GLM
analysis results were not very sensitive to the choice of basis set
order. Basically, the basis set should be able to fit physiologically rel-
evant power modulations which are rather slow. An over-complete
basis set is not very problematic except for unnecessary loss of de-
grees of freedom and slightly under-complete basis set will have an
effect similar to over-smoothing the data.

Both F-test and PEB procedure as well as optimal estimation of the
GLM require estimating the noise covariance matrix using restricted
maximum likelihood (ReML) approach (Friston et al., 2002). For real-
istic time–frequency datasets the matrices involved in the computa-
tion become very large and the computation is not feasible with the
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current implementation in SPM8. We, therefore, only used a relative-
ly short data segment (about 60 s long) for the basis set optimisation
where ReML was used. In our other analyses for computational effi-
ciency we used a slightly suboptimal ordinary least squares approach
(or weighted least squares with pre-specified covariance matrix for
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Fig. 8. Optimising the basis set for the GLM analysis. We used real data from a
change-of-plan experiment (see the main text) to compare different basis sets for the
GLM analysis. The different curves represent different frequencies: 5 Hz (blue), 7 Hz
(red), 10 Hz (green) and 12 Hz (cyan)—as the results can vary depending on empirical re-
sponses. A. Optimising the number of basis functions in the Fourier set using F-test. The
black curve shows the threshold of significance at p=0.05. Note that the threshold in-
creases when adding regressors (basis function components) to the design matrix, due
to the implicit change in the degrees of freedom. The optimal number here is the highest
number above the threshold line (between9 and 13 Hzdepending on frequency). B. Com-
paring non-nested basis sets, Fourier (solid lines) and Fourier Hanning (dotted lines)
using Parametric Empirical Bayes. Here the optimal basis set is the one with the peak
model evidence (approximated by free energy). For each frequency we subtracted the
minimal free energy value from the other values. For all frequencies except 5 Hz the Fou-
rier basis set had higher evidence and the optimal number of basis functionswas between
8 and 13 consistent with the F-test results.
artefact suppression). This does not hinder statistical inference at
the 2nd level where the covariance is estimated across subjects
using the standard SPM approach.

Summary

In this section, we have illustrated the performance of the
deconvolution method in relation to standard post-hoc averaging.
Using simulated data, the deconvolution approach appears to finesse
problems introduced by variations in the relative timing of trial-
specific induced response components—illustrated here in terms of
event-related synchronisation and desynchronisation. We have also
touched on both classical and Bayesian model comparison that can
be used, operationally, to optimise the form or number of compo-
nents in the basis set used to model induced response functions to
events of interest.

An empirical demonstration

We close with a brief demonstration of the deconvolution ap-
proach by applying it to real MEG data. These analyses are simply
presented to provide proof of principle that the convolution method
works in practice and to indicate the sorts of results that one can ob-
tain. In what follows we briefly describe the data and the particular
comparison of interest.

A 28 year old right-handed female was asked to perform a
change-of-plan paradigm (Brown and Braver, 2005; Logan and
Burkell, 1986; Nachev et al., 2007) as part of a larger experiment
whilst we acquired MEG data. Here we limit the data to the two rele-
vant task blocks performed. The change-of-plan task is a variant of
the stop-signal task, which was originally formulated to allow estima-
tion of the minimum time required to stop a prepared activity—the
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stop-signal reaction time (SSRT) (Logan and Cowan, 1984). The sub-
ject was presented with a fixation cross (lasting 1.3–1.5 s, the dura-
tion was drawn from a uniform distribution) which, after a 200 ms
pause with a blank screen, was followed by a left- or right- pointing
arrow (the primary task stimulus, or ‘go signal’). The subject was
asked to make a button-press with the thumb of the corresponding
hand as quickly as possible. This is called the primary task. In a ran-
domly selected 50% of trials, a change signal (a vertical red line)
was presented at a variable latency (called the stimulus onset asyn-
chrony, SOA) after the primary task stimulus, instructing the subject
to cancel the primary task response (i.e. to withhold pressing the cor-
responding button) and switch to pressing the opposite button. The
SOA was dynamically altered on a trial-by-trial basis according to a
staircase—a correctly switched response resulted in the SOA increas-
ing by 50 ms (making the task more difficult) whereas after a failure
to change, the SOA reduced by 50 ms (alerting the subject earlier to
make a change, making the task easier). This staircase procedure en-
sured that the probability of switching after a change signal remained
~50%, and so successful-switch and failed-switch conditions were
equally sampled. The SOA was randomly drawn from 2 independent
staircases, so that both the presence and timing of the stop-signal
remained difficult for the subject to predict. Three trial-types result:
go only trials (where the change-signal is not presented), successful-
switch trials (where the change signal is presented and subject success-
fully switches) and failed-switch trials (where the change signal is
presented, but the subject does not switch). Other trials, such as
non-change signal trials where the left button was pressed in response
to the right arrow were considered errors and discarded (not included
in the model). Note that since the incorrect trials were sufficiently sep-
arated in time from the correct trials, the corresponding regressors
would be orthogonal to the regressors for correct trials—were they in-
cluded in themodel. Thus, omitting the regressors for error trials cannot
bias the estimate of our summary statistics (parameter estimates
summarising induced trial-specific responses). The short data segment
we used for basis set optimisation, where residuals were important, did
not include erroneous trials.

Here, our aim is to isolate the induced response to a successful-
switch signal. The average of epoched data, centred on successful-
switch signals, is difficult to interpret because it is confounded by tem-
porally overlapping responses to the go signal and due to the button
press. In addition, attempts to use baseline correction are also difficult
because of the trial-to-trial variability in the relative timing of the pre-
ceding go signal. Conventional analysis of the induced response to the
go signal and button press are similarly confounded by each other and
the response to the change signal.

We used the convolution model to address the above issues. MEG
data were acquired at 600 Hz with a 275 channel CTF system. The
data were down-sampled to 300 Hz, high-pass filtered above 0.1 Hz,
and the line noise artefacts at 50 Hz and 100 Hz were removed using
notch filters (5th order zero-phase Butterworth filters). We then
extracted time-series data from the supplementary motor area (SMA)
using a linearly constrained minimum variance (LCMV) beamformer
(Van Veen et al., 1997), 0.01% regularisation and orientation in the di-
rection of maximum power. SMA was defined by coordinates from a
meta-analysis of 126 fMRI and PET studies (Mayka et al., 2006). These
coordinates were transformed to subject-specific space by affine trans-
formation based on coregistration of the subject's head to theMNI tem-
plate—using fiducial markers (Litvak et al., 2011). For the conventional
analysis, the time-series were epoched into 3.6 s long epochs centred
on the primary task go stimulus (left and right conditions), the change
stimulus (successful and failed-switch conditions) and the button
press (left and right conditions). Although we were interested in the
1.5 s before and after each event, we extended the epoching window
to +/−1.8 s around the event in order to allow for both a baseline to
be specified and a buffer to prevent against edge artefacts. Each trial
underwent multitaper spectral analysis using the same settings used
in the simulations described above (time window 0.4 s shifted in
steps of 0.05 s, frequency range from 2.5 to 90 Hz in steps of 2.5 Hz, fre-
quency resolution was set to the inverse of the time window (2.5 Hz)
for up to 25 Hz, then 0.1 times the frequency for 25 to 50 Hz and then
to constant 5 Hz). The square root of these data were averaged and
then baseline corrected by subtracting the mean power from 1.6 s to
1 s pre-event.

For the convolution analysis, we computed continuous power for
the whole recording using the same settings as above. We then spec-
ified regressors for the fixation cross, the primary task stimulus
(separately for left and right arrows), and button press responses
(separately for left and right responses) and the change signal
(separately for successful and failed change conditions). Each regres-
sor was a window from −1.5 s to +1.5 s relative to the modelled
event. Additionally the data and the design were filtered below
0.25 Hz.

Time–frequency plots were generated using both post-hoc averag-
ing and convolution techniques and smoothed by a 7.5 Hz by 0.5 s
Gaussian kernel.

Results

After trials without a response and with unspecified errors (see
methods) were excluded, a total 149 trials remained, with the prima-
ry task go signal being left-sided (i.e. instructing the subject to press
with the left hand) in 74 and right-sided in 75 trials. In 73 trials a
change signal was presented and this was successfully followed in
59% (n=43 successful, n=30 unsuccessful) of trials. Median reaction
time was 0.546 s (simple go condition), 0.494 s (failed-change
condition) and 0.718 s (successful-change condition). Median SOA
for the failed-change condition was 0.350 s and for the successful-
change condition 0.300 s. Fig. 9 shows the time–frequency images
for post-hoc averaging (top row) and convolution analysis (bottom
row). Reassuringly, the plots are broadly similar for both methods.
Conventional analysis revealed an alpha/beta ERD starting around
the time of the go signal, continuing at the time of the button press,
and changing to a beta ERS immediately following the button press.
However it is unclear whether this pattern was induced entirely by
the go signal, or if separate components were induced by the go signal
and button press. The convolution analysis revealed that the latter
was the case: the go signal being associated with a clearer alpha/
beta ERD (but no rebound beta ERS), and the button press being asso-
ciated with a beta ERS. Conventional analysis of the successful switch
condition was difficult to interpret because it was confounded, and in
this case dominated, by the alpha/beta changes associated with the
neighbouring go signal and button response. However, the convolu-
tion approach included these confounding events in the model, and
was able to unmask an underlying increase in beta power preceding
and simultaneous to a successful change signal. Therefore, in this ex-
ample, the convolution model was able to disambiguate separate
components of the conventional induced response, and also reveal
more subtle components not visible in the conventional analysis.

Conclusion

We have demonstrated that the use of convolution models for the
analysis of M/EEG power data can overcome several inherent limita-
tions of the established epoching method based on post-hoc averag-
ing. The convolution method does not require clearly defined—
non-overlapping—trials with fixed timing. This opens the way for
more flexible and naturalistic experimental designs. The problem of
defining a baseline period is resolved by removing slow power
drifts—as an alternative to baseline correction. Finally, the convolu-
tion method can differentiate between true power changes in the
context of changes in the relative latencies of different, within trial,
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response components. This can be crucial when an experimental fac-
tor affects the timing of compound events (e.g. the reaction time).

The General Linear Model assumes that the response can be
modelled as a linear mixture of effects that are modelled by different
regressors. This assumption may not be necessarily true for induced
responses, which are a nonlinear function of the original signal. How-
ever, we have shown that the square root transform—that reflects the
original signal amplitude—can finesse this problem and make the in-
duced power data suitable for parametric modelling with additive
noise. However—as noted by our reviewers—there may be instances
where the responses to inputs or stimuli interact in a nonlinear way
to produce induced responses (e.g. by changing the degree of local
synchrony or phase-locking). This possibility can be addressed within
the convolution framework described in this paper. This is because
the general linear model can be augmented to include second or-
der kernels, which enable one to, effectively, perform a general-
ised (non-linear) deconvolution using either polynomial expansions
(Büchel et al., 1996, 1998) or Volterra kernels (Friston et al., 1998,
2000). This is potentially important because (as with early fMRI anal-
yses) it becomes possible to test for nonlinear interactions among re-
sponse components. In other words, to test the adequacy of linear
summation assumptions (see (Friston et al., 2000) for a detailed ex-
planation of how this is implemented formally). Relaxing the linearity
assumption might also be important for making the convolution
framework applicable to measures that cannot be rendered approxi-
mately linear (e.g. coherence). We are planning to address this issue
in future work.

To exploit the convolution method, it is important to optimise the
experimental design to reduce correlations between regressors—in
other words maximise the efficiency of the design (Dale, 1999;
Josephs and Henson, 1999). This might entail increasing the variability
in the latencies of response components or introducing trials that pre-
clude certain components. We recognise that this might be difficult
for some experimental designs. Thus we see the convolution method
not as a replacement for the averaging method but as a way to supple-
ment it, particularly in experimentswithmultiple trial components that
have inconstant time courses.
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