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1. Introduction

Modern cognitive neuroscience uses a variety of non-

invasive techniques for measuring brain activity. These 

techniques include electrophysiological methods, e.g. 

electroencephalography (EEG) and magnetoencephalograpy 

(MEG), and functional imaging methods, e.g. positron 

emission tomography (PET) and functional magnetic 

resonance imaging (fMRI). Two intertwined concepts, 

functional specialization and functional integration, have 

been guiding neuroimaging applications over the last decades 

(Friston 2002a). Functional specialization assumes a local 

specialization for certain aspects of information processing, 

allowing for the possibility that this specialization is 

anatomically segregated across different cortical areas. 

Most current functional neuroimaging experiments use 

this perspective and interpret the areas that are activated 

by a certain task component as the elements of a distributed 

system. However, this explanation is somewhat speculative 

and clearly incomplete as long as one does not characterize 
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how the local computations are bound together by context-

dependent interactions among these areas. This binding is 

the functional integration within the system which can be 

characterized in two ways, namely in terms of functional 

connectivity and effective connectivity. While functional 

connectivity describes statistical dependencies between 

data, effective connectivity rests on a mechanistic model 

of the causal effects that generated the data (Friston 1994). 

This article focuses exclusively on a recently established 

technique for determining the effective connectivity in neural 

systems of interest on the basis of measured fMRI and EEG/

MEG data: Dynamic causal modelling (DCM; Friston et al 

2003). We review the conceptual and mathematical basis 

of DCM and Bayesian model selection (BMS; Penny et al 

2004a) and demonstrate some applications, using empirical 

and simulated data. We also touch on some future extensions 

of DCM that are driven by the long-term goal of using DCM 

for pharmacological and clinical applications, particularly 

with regard to questions about synaptic plasticity.

2. Effective connectivity and a general state equation 

for neural systems

The term effective connectivity has been defi ned by various 

authors in convergent ways. A general defi nition is that 

effective connectivity describes the causal infl uences 

that neural units exert over another (Friston 1994). More 

specifi cally, other authors have proposed that “effective 

connectivity should be understood as the experiment- and 

time-dependent, simplest possible circuit diagram that 

would replicate the observed timing relationships between 

the recorded neurons” (Aertsen and Preißl 1991). Both 

defi nitions emphasize that determining effective connectivity 

requires a causal model of the interactions between the 

elements of the neural system of interest. Before we 

describe the specifi cs of the model on which DCM rests, let 

us derive a general mathematical form of models of effective 

connectivity. For this purpose, we choose deterministic 

differential equations with time-invariant parameters as a 

mathematical framework. Note that these are not the only 

possible mathematical representation of systems; in fact, 

many alternatives exist, e.g. state space models or iterative 

maps. The underlying concept, however, is quite universal: 

a system is defi ned by a set of elements with n time-variant 

properties that interact with each other. Each time-variant 

property x
i
 (1 ≤ i ≤ n) is called a state variable, and the n-

vector x(t) of all state variables in the system is called the 

state vector (or simply state) of the system at time t:

Taking an ensemble of interacting neurons as an example, 

the system elements would correspond to the individual 

neurons, each of which is represented by one or several 

state variables. These state variables could refer to various 

neurophysiological properties, e.g. postsynaptic potentials, 

status of ion channels, etc. Critically, the state variables 

interact with each other, i.e. the evolution of each state 

variable depends on at least one other state variable. For 

example, the postsynaptic membrane potential depends on 

which and how many ion channels are open; vice versa, 

the probability of voltage-dependent ion channels opening 

depends on the membrane potential. Such mutual functional 

dependencies between the state variables of the system can 

be expressed quite naturally by a set of ordinary differential 

equations that operate on the state vector:

However, this description is not yet suffi cient. First of all, 

the specifi c form of the dependencies f
i
 needs to be specifi ed, 

i.e. the nature of the causal relations between state variables. 

This requires a set of parameters θ which determine the 

form and strength of infl uences between state variables. In 

neural systems, these parameters usually correspond to time 

constants or synaptic strengths of the connections between 

the system elements. The Boolean nature of θ, i.e. the pattern 

of absent and present connections, and the mathematical 

form of the dependencies f
i
 represent the structure of 

the system. And second, in the case of non-autonomous

systems (i.e. systems that exchange matter, energy or 

information with their environment) we need to consider 

the inputs into the system, e.g. sensory information entering 

the brain. We represent the set of all m known inputs by the 

m-vector function u(t). Extending eq. 2 accordingly leads to 

a general state equation for non-autonomous deterministic 

systems:

A model whose form follows this general state equation 

provides a causal description of how system dynamics 

results from system structure, because it describes (i) when 

and where external inputs enter the system; and (ii) how 

the state changes induced by these inputs evolve in time 

depending on the system’s structure. Given a particular 

temporal sequence of inputs u(t) and an initial state x(0), one 

obtains a complete description of how the dynamics of the 

system (i.e. the trajectory of its state vector x in time) results 

from its structure by integration of eq. 3:

x t

x t

x tn

( )

( )

( )

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

.
... (1)

dx

dt

f x x

f x x

F x

n

n n

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
1 1

1

( ,..., )

( ,..., )

( ).
... (2)

dx

dt
F x u= ( , , ).θ (3)

x x F x u dt( ) ( ) ( , , ) .τ θ
τ

= + ∫0
0

(4)



Dynamic causal models of neural system dynamics 131

J. Biosci. 32(1), January 2007

Equation 3 therefore provides a general form for models 

of effective connectivity in neural systems. As described 

elsewhere (Friston et al 2003; Stephan 2004), all established 

models of effective connectivity, including regression-like 

models (e.g. McIntosh and Gonzalez-Lima 1994; Harrison 

et al 2003), can be related to this general equation. In the 

next sections, we show how DCM models neural population 

dynamics using a bilinear implementation of this general 

form. This is combined with a forward model that translates 

neural activity into a measured signal.

Before we proceed to DCM, it is worth pointing out 

that we have made two main assumptions in this section to 

simplify the exposition to the general state equation. First, it 

is assumed that all processes in the system are deterministic 

and occur instantaneously. Whether or not this assumption 

is valid depends on the particular system of interest. If 

necessary, random components (noise) and delays could 

be accounted for by using stochastic differential equations 

and delay differential equations, respectively. An example 

of the latter is found in DCM for ERPs (see below). Second, 

we assume that we know the inputs that enter the system. 

This is a tenable assumption in neuroimaging because the 

inputs are experimentally controlled variables, e.g. changes 

in stimuli or instructions. It may also be helpful to point out 

that using time-invariant dependencies f
i
 and parameters θ 

is not a restriction. Although the mathematical form of f
i
 

per se is static, the use of time-varying inputs u allows for 

dynamic changes in what components of f
i
 are ‘activated’. 

For example, input functions that can only take values of one 

or zero and that are multiplied with the different terms of a 

polynomial function can be used to induce time-dependent 

changes from nonlinear to linear behaviour (e.g. by 

“switching off” all higher order terms in the polynomial) or 

vice versa. Also, there is no principled distinction between 

states and time-invariant parameters. Therefore, estimating 

time-varying parameters can be treated as a state estimation 

problem.

3. Principles of DCM

An important limitation of previous methods for determining 

effective connectivity from functional imaging data, e.g. 

structural equation modelling (McIntosh and Gonzalez-

Lima 1994; Büchel and Friston 1997) or multivariate 

autoregressive models (Goebel et al 2003; Harrison et al 

2003), is that they operate at the level of the measured 

signals. This is a serious problem because the causal 

architecture of the system that we would like to identify 

is expressed at the level of neuronal dynamics which is not 

directly observed using non-invasive techniques. In the case 

of fMRI data, for example, previous models of effective 

connectivity were fi tted to the measured time series which 

result from a haemodynamic convolution of the underlying 

neural activity. Since classical models do not include the 

forward model linking neuronal activity to the measured 

haemodynamic data, analyses of inter-regional connectivity 

performed at the level of haemodynamic responses are 

problematic. For example, different brain regions can exhibit 

marked differences in neurovascular coupling, and these 

differences, expressed in different latencies, undershoots, 

etc. may lead to false inference about connectivity. A 

similar situation is seen with EEG data where there is a 

big difference between signals measured at each electrode 

and the underlying neuronal activity: changes in neural 

activity in different brain regions lead to changes in electric 

potentials that superimpose linearly. The scalp electrodes 

therefore record a mixture, with unknown weightings, of 

potentials generated by a number of different sources. 

Therefore, to enable inferences about connectivity 

between neural units we need models that combine 

two things: (i) a parsimonious but neurobiologically 

plausible model of neural population dynamics, and (ii) a 

biophysically plausible forward model that describes the 

transformation from neural activity to the measured signal. 

Such models make it possible to fi t jointly the parameters of 

the neural and of the forward model such that the predicted 

time series are optimally similar to the observed time series. 

This combination of a model of neural dynamics with 

a biophysical forward model is a core feature of DCM. 

Currently, DCM implementations exist both for fMRI data 

and event-related potentials (ERPs) as measured by EEG/

MEG. These modality-specifi c implementations are briefl y 

summarized in the next sections.

4. DCM for fMRI

DCM for fMRI uses a simple model of neural dynamics in 

a system of n interacting brain regions. It models the change 

of a neural state vector x in time, with each region in the 

system being represented by a single state variable, using the 

following bilinear differential equation:

Note that this neural state equation follows the general 

form for deterministic system models introduced by eq.3, 

i.e. the modelled state changes are a function of the system 

state itself, the inputs u and some parameters θ (n) that 

defi ne the functional architecture and interactions among 

brain regions at a neuronal level. The neural state variables 

represent a summary index of neural population dynamics 

in the respective regions. The neural dynamics are driven 

by experimentally controlled external inputs that can enter 
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the model in two different ways: they can elicit responses 

through direct infl uences on specifi c regions (e.g. evoked 

responses in early sensory cortices; the C matrix) or they 

can modulate the coupling among regions (e.g. during 

learning or attention; the B matrices). Note that eq. 5 

does not account for conduction delays in either inputs or

inter-regional infl uences. This is not necessary because, due 

to the large regional variability in hemodynamic response 

latencies, fMRI data do not posses enough temporal 

information to enable estimation of inter-regional axonal 

conduction delays which are typically in the order of 10-20 

ms (note that the differential latencies of the hemodynamic 

response are accommodated by region-specifi c biophysical 

parameters in the hemodynamic model described below). 

This was verifi ed by Friston et al (2003) who showed in 

simulations that DCM parameter estimates were not affected 

by introducing artifi cial delays of up to ± 1 s. In contrast, 

conduction delays are an important part of DCM for ERPs 

(see below).

Given the bilinear state equation (eq. 5), the neural 

parameters θ (n) = {A, B, C} can be expressed as partial 

derivatives of F:

As can be seen from these equations, the matrix A represents 

the fi xed connectivity among the regions in the absence of 

input, the matrices B(j) encode the change in connectivity 

induced by the jth input u
j
, and C embodies the strength 

of direct infl uences of inputs on neuronal activity. Figure 1 

summarises this bilinear state equation and shows a specifi c 

example model.

Figure 1. (A) The bilinear state equation of DCM for fMRI. (B) An example of a DCM describing the dynamics in a hierarchical system 

of visual areas. This system consists of areas V1 and V5 and the superior parietal cortex (SPC). Each area is represented by a single state 

variable (x
1
...x

3
). Black arrows represent connections, grey arrows represent external inputs into the system and thin dotted arrows indicate 

the transformation from neural states into haemodynamic observations (thin boxes; see fi gure 2 for the haemodynamic forward model). In 

this example, visual stimuli (photic) drive activity in V1 which is propagated to V5 and SPC through the connections between the areas. 

The V1→V5 connection is allowed to change whenever the visual stimuli are moving, and the SPC→V5 connection is modulated whenever 

attention is directed to motion. The state equation for this particular example is shown on the right..
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DCM for fMRI combines this model of neural dynamics 

with an experimentally validated haemodynamic model 

that describes the transformation of neuronal activity 

into a BOLD response. This so-called “Balloon model” 

was initially formulated by Buxton et al (1998) and later 

extended by Friston et al (2000). Briefl y, it consists of 

a set of differential equations that describe the relations 

between four haemodynamic state variables, using fi ve 

parameters θ (h). More specifi cally, changes in neural activity 

elicit a vasodilatory signal that leads to increases in blood 

fl ow and subsequently to changes in blood volume and 

deoxyhemoglobin content. The predicted BOLD signal is a 

non-linear function of blood volume and deoxyhaemoglobin 

content. This haemodynamic model is summarised by

fi gure 2 and described in detail by Friston et al (2000).

The combined neural and haemodynamic parameter 

set θ = {θ(n), θ(h)} is estimated from the measured BOLD 

data, using a fully Bayesian approach with empirical 

priors for the haemodynamic parameters and conservative 

shrinkage priors for the coupling parameters. Details of the 

parameter estimation scheme, which rests on an expectation 

maximization (EM; Dempster et al 1977) algorithm and uses 

a Laplace (i.e. Gaussian) approximation to the true posterior, 

can be found in Friston (2002b).

Figure 2. Summary of the haemodynamic model used by DCM for fMRI. Neuronal activity induces a vasodilatory and activity-dependent 

signal s that increases blood fl ow f. Blood fl ow causes changes in volume and deoxyhaemoglobin (v and q). These two haemodynamic states 

enter the output nonlinearity which results in a predicted BOLD response y. The model has 5 hemodynamic parameters: the rate constant of 

the vasodilatory signal decay (κ), the rate constant for auto-regulatory feedback by blood fl ow (γ), transit time (τ), Grubb’s vessel stiffness 

exponent (α), and capillary resting net oxygen extraction (ρ). E is the oxygen extraction function. Adapted, with permission by Elsevier 

Ltd., from Friston et al (2003).
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Once the parameters of a DCM have been estimated 

from measured BOLD data, the posterior distributions of 

the parameter estimates can be used to test hypotheses about 

connection strengths. Due to the Laplace approximation, the 

posterior distributions are defi ned by their posterior mode or 

maximum a posteriori (MAP) estimate and their posterior 

covariance. Usually, the hypotheses to be tested concern 

context-dependent changes in coupling. A classical example 

is given by fi gure 3. Here, DCM was applied to fMRI 

data from a single subject, testing the hypothesis that in a 

hierarchical system of visual areas (c.f. fi gure 1) attention 

to motion enhanced the backward connections from the 

inferior frontal gyrus (IFG) onto superior parietal cortex 

(SPC) and from SPC onto V5, respectively. Other examples 

of single-subject analyses can be found in Mechelli et al 

(2003), Penny et al (2004b) and Stephan et al (2005). For 

statistical inference at the group level, various options 

exist. The simplest approach is to enter the conditional 

estimates of interest into a classical second-level analysis; 

for examples see Bitan et al (2005) and Smith et al (2006). A 

more coherent approach may be to use Bayesian analyses at 

the group level as well (M Garrido, J M Kilner, S J Kiebel, K 

E Stephan and K J Friston, unpublished results).

Fitted to regional fMRI time series, a given DCM 

explains how local brain responses were generated from 

the interplay of the three mechanisms described by the state 

equation (eq. 5): inter-regional connections, their contextual 

modulation and driving inputs. Figure 4 provides a simple 

fi ctitious example that is based on simulated data. In this 

example we fi x the parameters and use DCM as a model 

to generate synthetic data, as opposed to its usual use, i.e. 

estimating parameter values from empirical data. Let us 

imagine we are dealing with a 2x2 factorial experiment 

(fi gure 4A) where one experimental factor controls sensory 

stimulation (stimulus S
1
 vs. stimulus S

2
) and a second factor 

controls task requirements (task T
1
 vs. task T

2
). Let us further 

imagine that, using conventional statistical parametric 

mapping, we had found a main effect of sensory stimulation 

in a particular brain area x
1
 (with observed time series y

1
; see 

fi gure 4B, upper panel) and a stimulus-by-task interaction 

in area x
2
 (with observed time series y

2
). This interaction 

means that the difference between stimulus S
1
 and stimulus 

S
2
 is larger during task T

1
 than during task T

2
 (see fi gure 

4B, lower panel). We can generate the (noise-free) data 

shown in fi gure 4B using the DCM displayed by fi gure 4C. 

The stimulus main effect in area x
1
 results from the driving 

inputs to x
1
 being much stronger for stimulus S

1
 than for 

stimulus S
2
. This differential effect is then conveyed onto 

area x
2
 by the connection from x

1
 to x

2
. Critically, the 

strength of this connection is strongly enhanced during 

task T
1
, but only marginally infl uenced during task T

2
. This 

difference in modulation causes the interaction in area x
2
 

(note that this model would have produced an interaction in 

area x
1
 as well if we had chosen a stronger back-connection 

from x
2
 to x

1
). 

Usually, of course, DCM is applied in the reverse fashion, 

i.e. to estimate the parameters θ (n) = {A, B, C} from measured 

fMRI data as in fi gure 4B. The goal is to infer the neuronal 

mechanisms that have shaped local brain responses, e.g. the 

presence of main effects or interactions. Simulations like 

the one described above can also be used to explore the 

robustness of parameter estimation in DCM. For example, 

one can generate data multiple times, adding observation 

noise (see fi gure 4D), and then trying to re-estimate the 

parameters from the noisy data. 

We are currently working on various extensions to DCM 

for fMRI. Concerning the forward model, S J Kiebel, S K 

löppel, N Weiskopt and K J Friston (unpublished results) 

have augmented the observation equation by taking into 

account the slice-specifi c sampling times in multi-slice

MRI acquisitions. This enables DCM to be applied to fMRI 

data from any acquisition scheme (compare Friston et al 

2003 for restrictions of the original DCM formulation in this 

regard) and provides for more veridical results. With regard to 

the neural state equation, one current extension is to represent 

each region in the model by multiple state variables, e.g. 

populations of excitatory and inhibitory neurons (Marreiros 

et al in preparation; see also Harrison et al 2005). A similar 

approach has already been implemented in DCM for ERPs 

which is described in the following section. Finally, we are 

currently augmenting the state equation of DCM for fMRI 

by including additional non-linear terms (Stephan et al in 

preparation). An example is the following extension:

This extension enhances the kind of dynamics that DCM 

can capture and enables the user to implement additional 

types of models. For example, beyond modelling how 

connection strengths are modulated by external inputs, 

one can now model how connection strengths change as 

a function of the output from areas. This ability is critical 

for various applications, e.g. for marrying reinforcement 

learning models with DCM (c.f. Stephan 2004). In a neural 

system model of descriptive learning theories like temporal 

difference learning, the prediction error, encoded by the 

activity of a particular neural unit, determines the change of 

connection strength between other neural units that encode 

properties of conditional and unconditional stimuli (see 

Schultz and Dickinson 2000). Figure 5A shows a simulation 

example where the connection from an area x
1
 to another 

area x
2
 is enhanced multiplicatively by the output from a 

third region x
3
, i.e. 
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dt
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Figure 3. (A) DCM applied to data from a study on attention to visual motion by Büchel and Friston (1997). The model is similar to the one 

shown in fi gure 1, except for the addition of another area, the inferior frontal gyrus (IFG). The most interesting aspect of this model concerns 

the role of motion and attention in exerting bilinear effects on connections in the model. The presence of motion in the visual stimulation 

enhances the connection from area V1 to the motion sensitive area V5. The infl uence of attention is to enable backward connections from 

the IFG to the superior parietal cortex (SPC) from SPC to V5. Dotted arrows connecting regions represent signifi cant bilinear affects in 

the absence of a signifi cant intrinsic coupling. Inhibitory self-connections are not displayed for clarity. (B) Fitted responses based upon the 

conditional estimates and the adjusted data. The insert shows the approximate location of the regions. Adapted, with permission by Elsevier 

Ltd., from Friston et al (2003).
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Figure 4. (A) Summary of a fi ctitious 2x2 factorial experimental design, comprising task and stimulus factors. (B) Simulated BOLD 

responses of two areas, y
1
 and y

2 
(without observation noise). The fi rst area shows a main effect of stimulus and the second area additionally 

shows a stimulus-by-task interaction. The red and green bars denote when task 1 and task 2 are performed, respectively.  (C) The DCM which 

was used to generate the noise-free responses shown in (B). As shown schematically, all inputs were box-car functions. +++ denotes strongly 

positive and + denotes weakly positive inputs and connection strengths, – denotes negative connection strengths. The different strengths of 

the driving inputs induce a main effect of stimulus in the fi rst area, x
1
. This effect is conveyed onto the second area, x

2
, by means of the x

1
→

x
2
 connection. Critically, the strength of this connection varies as a function of which task is performed. This bilinear modulation induces a 

stimulus-by-task interaction in x
2
 (c.f. B). (D). Data generated from the model shown in (C) but with additional observation noise (signal-

to-noise ratio of unity).
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Critically, x
3
 is not only driven by external inputs, but also 

receives an input from x
2
. This means that for an excitatory 

connection from x
2
 to x

3
, a positive reinforcement effect 

results: the higher activity in x
3
, the more strongly inputs 

from x
1
 to x

2
 will be enhanced, leading to higher activity in 

x
2
, which, in turn, drives x

3
 even further. Figure 5B shows an 

example of this effect, using simulated data. Such a model, of 

course, lives on the brink of stability and is prone to runaway 

excitation, which requires regularisation with suitable priors 

on the parameters. In contrast, an inhibitory connection from 

x
2
 to x

3
 makes the model extremely stable because the higher 

the activity in x
3
, the higher the response in x

2
 to x

1
 inputs 

and thus the stronger the inhibitory feedback onto x
3
 (not 

shown here).

5. DCM for ERPs

ERPs as measured with EEG or MEG have been used

for decades to study electrophysiological correlates of 

cognitive operations. Nevertheless, the neurobiological 

mechanisms that underlie their generation are still largely 

unknown. DCM for ERPs was developed as a biologically 

plausible model to understand how event-related responses 

result from the dynamics in coupled neural ensembles. 

It rests on a neural mass model which uses established 

connectivity rules in hierarchical sensory systems to 

assemble a network of coupled cortical sources (Jansen 

and Rit 1995; David and Friston 2003; David et al 2005). 

These rules characterise connections with respect to their 

laminar patterns of origin and termination and distinguish 

between (i) forward (or bottom-up) connections originating 

in agranular layers and terminating in layer 4, (ii) backward 

(or top-down) connections originating and terminating in 

agranular layers, and (iii) lateral connections originating 

in agranular layers and targeting all layers. These inter-

areal cortico-cortical connections are excitatory, using 

glutamate as neurotransmitter, and arise from pyramidal 

cells (fi gure 6).

Each region or source is modelled as a microcircuit in 

which three neuronal subpopulations are combined and 

assigned to granular and supra-/infragranular layers. A 

population of excitatory pyramidal (output) cells receives 

inputs from inhibitory and excitatory populations of 

interneurons via intrinsic (intra-areal) connections. Within 

this model, excitatory interneurons can be regarded as 

spiny stellate cells which are found in layer 4 and receive 

forward connections. Although excitatory pyramidal cells 

and inhibitory interneurons are found in both infra- and 

supragranular layers in cortex, one does not need to represent 

both cell types in both layers in the model. To model the cell-

type specifi c targets of backward and lateral connections, it 

is suffi cient to represent, for example, pyramidal cells in 

infragranular layers and interneurons in supragranular layers 

and constrain the origins and targets of backward and lateral 

connections as shown in fi gure. 6.

The neural state equations are summarized in fi gure 7. 

To perturb the system and model event-related responses, 

the network receives inputs via input connections. These 

connections are exactly the same as forward connections and 

deliver input u to the spiny stellate cells in layer 4. Input u 

represents afferent activity relayed by subcortical structures 

and are modelled as two parameterized components, a 

gamma density function (representing an event-related 

burst of input that is delayed and dispersed by subcortical 

synapses and axonal conduction) and a discrete cosine set 

(representing fl uctuations in input over peristimulus time). 

The infl uence of this input on each source is controlled by a 

parameter vector C. Overall, the DCM is specifi ed in terms 

of the state equations shown in fi gure 7 and a linear forward 

model

where x
0
 represents the transmembrane potential of 

pyramidal cells, y is the measured data at the sensor level, L 

is a lead fi eld matrix coupling electrical sources to the EEG 

channels, and ε is observation error. In comparison to DCM 

for fMRI, the forward model is a simple linearity as opposed 

to the nonlinear haemodynamic model in DCM for fMRI. 

In contrast, as evident from the descriptions above and a 

comparison of fi gures1 and 7, the state equations of DCM 

for ERPs are much more detailed and realistic. One could 

regard the bilinear approximation for fMRI as a bilinear 

approximation to the state equations for EEG. However, the 

DCMs for fMRI are further simplifi ed because there is only 

one neuronal state for each region or source. As an example 

for the added complexity in DCM for ERPs, consider the 

state equation for the inhibitory subpopulation:

Here, the parameter matrices CF, CB, CL encode forward, 

backward and lateral connections respectively. Within each 

subpopulation, the dynamics of neural states are determined 

by two operators. The fi rst transforms the average density of 

presynaptic inputs into the average postsynaptic membrane 

potential. This is modelled by a linear transformation with 

excitatory (e) and inhibitory (i) kernels parameterized by 

H
e,i

 and τ
e,i

. H
e,i

 control the maximum postsynaptic potential 

and τ
e,i

 represent lumped rate constants (i.e. lumped across 

dendritic spines and the dendritic tree). The second operator 

S transforms the average potential of each subpopulation into 

an average fi ring rate. This is assumed to be instantaneous 

and is a sigmoid function. Intra-areal interactions among the 

subpopulations depend on constants γ
1…4

 which control the 

dx

dt
f x u

y Lx

=

= +

( , , )

,

θ
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Figure 5. (A) Example of a DCM with second-order terms in the state equation. In this example, the third area modulates the connection 

from the fi rst to the second area. The fi rst area is driven by two different stimuli (stim1, stim2; randomly mixed events, represented as delta 

functions, 4 s apart) and the third area is driven by some inputs representing cognitive set (mod1, mod2; alternating blocks of 15 s duration, 

shown as grey boxes in (B). Note that the third area is not only driven by external input but also receives an input from the second area. 

+++ denotes strongly positive and + denotes weakly positive inputs and connection strengths, – denotes negative connection strengths. (B) 

Simulated responses of this system (note that all inputs and connections were given positive weights in this simulation). From top to bottom, 

the plots show the neural (x) and haemodynamic (y) responses in alternating fashion. The x-axis denotes time (for haemodynamic responses 

in seconds, for neural responses in time bins of 4 ms), the y-axis denotes arbitrary units. It can be seen easily that evoked activity in the 

fi rst area only causes a signifi cant response in the second area if the third area shows a high level of activity and thus enables the x
1
→x

2
 

connection. Furthermore, due to the excitatory x
2
→x

3 
connection, a positive reinforcement effect results. Both mechanisms lead to obvious 

nonlinearities in the generated data (see thick arrows for an example). Note that this model, similar the one in fi gure 4, also generates a 

“stim × mod” interaction in the second area. This is harder to see by eye than in fi gure 4 because here the driving inputs are randomly mixed 

events and additionally, strong non-linear effects occur.
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strength of intrinsic connections and refl ect the total number 

of synapses expressed by each subpopulation. In eq. 9, the 

top line expresses the rate of change of voltage as a function 

of current (assuming constant capacitance of the cell 

membrane). The second line specifi es how current changes 

as a function of voltage and current. For simplifi cation, our 

description here has omitted the fact that in DCM for ERPs 

all intra- and inter-areal connections have conduction delays. 

This is implemented by delay differential equations. 

Just as with DCM for fMRI, the DCM for ERPs is 

usually used to investigate whether coupling strengths 

change as a function of experimental context. Figure 8 

shows an example of a DCM applied to EEG data from a 

single subject performing an auditory oddball task (David 

et al 2006): forward and backward connections between 

primary auditory and orbitofrontal cortex are stronger during 

processing of oddball stimuli compared to standard stimuli.

Similar to DCM for fMRI, several extensions of DCMs 

for electrophysiological measures are planned or already 

under way. For example, Kiebel et al (2006) demonstrated 

that one does not necessarily have to assume known lead 

fi eld parameters (L in eq. 8) for the forward model. Instead, 

it is possible to estimate lead-fi eld and coupling parameters 

simultaneously and thus use DCM for ERPs as a source 

reconstruction approach with physiologically informed 

constraints. Future efforts will concentrate on further 

enhancing the biological realism of the model. One approach 

may be to introduce a modulation of coupling parameters 

between the neuronal populations, within regions. This 

enables one to model within-region adaptation, as opposed 

to changes in coupling between regions (Kiebel et al in 

preparation). Another and more long-term goal will be to 

include mechanisms related to particular neurotransmitters 

in the model, e.g. modulation of NMDA-dependent 

synaptic plasticity by dopamine or acetylcholine (Stephan 

et al 2006). This will be particularly important for potential 

clinical applications of DCM (see below). However, prior to 

any clinical applications, this approach will require careful 

validation using pharmacological paradigms in humans and 

animals. In particular, one will need to demonstrate a close 

relationship between receptor status (that is systematically 

changed by pharmacological manipulation) and the 

corresponding parameter estimates in the DCM.

6. Bayesian model selection

A generic problem encountered by any kind of modelling 

approach is the question of model selection: given some 

observed data, which of several alternative models is the 

optimal one? This problem is not trivial because the decision 

cannot be made solely by comparing the relative fi t of the 

competing models. One also needs to take into account the 

relative complexity of the models as expressed, for example, 

by the number of free parameters in each model. Model 

complexity is important to consider because there is a trade-

off between model fi t and generalisability (i.e. how well the 

model explains different data sets that were all generated 

from the same underlying process). As the number of free 

parameters is increased, model fi t increases monotonically 

whereas beyond a certain point model generalisability 

decreases. The reason for this is ‘overfi tting’: an increasingly 

complex model will, at some point, start to fi t noise that is 

specifi c to one data set and thus become less generalisable 

across multiple realizations of the same underlying 

generative process. [Generally, in addition to the number of 

free parameters, the complexity of a model also depends on 

its functional form; see Pitt and Myung (2002). This is not 

an issue for DCM, however, because here competing models 

usually have the same functional form.]

Therefore, the question “Which is the optimal model 

among several alternatives?” can be reformulated more 

precisely as “Given several alternatives, which model 

represents the best balance between fi t and complexity?” 

Figure 6. A schema of the neural populations which are modelled 

separately for each region in DCM for ERPs. Different regions 

are coupled by forward, backward and lateral connections, all of 

which originate from excitatory pyramidal cells but target specifi c 

populations. The fi gure shows a typical hierarchical network 

composed of three cortical areas. Extrinsic inputs evoke transient 

perturbations around the resting state by acting on a subset of 

sources, usually the lowest in the hierarchy. Reproduced with 

permission by Elsevier Ltd. from David et al (2006).
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In a Bayesian context, the latter question can be addressed 

by comparing the evidence, P(y | m), of different models. 

According to Bayes theorem 

the model evidence can be considered as a normalization 

constant for the product of the likelihood of the data and the 

prior probability of the parameters, therefore

Here, the number of free parameters (as well as the func-

tional form) are considered by the integration. Unfortu-

nately, this integral cannot usually be solved analytically, 

therefore an approximation to the model evidence is 

needed.

In the context of DCM, one potential solution could be to 

make use of the Laplace approximation, i.e. to approximate 

the model evidence by a Gaussian that is centered on its 

mode. As shown by Penny et al (2004a), this yields the 

following expression for the natural logarithm (ln) of the 

model evidence (ηθ|y
 denotes the MAP estimate, Cθ|y

 is 

the posterior covariance of the parameters, C
ε
 is the error 

covariance, θ
P
 is the prior mean of the parameters, and C

P
 is 

the prior covariance):

This expression properly refl ects the requirement, as 

discussed above, that the optimal model should represent the 

best compromise between model fi t (accuracy) and model 

complexity. We use it routinely in the context of DCM for 

ERPs (compare David et al 2006). 

In the case of DCM for fMRI, a complication arises. This 

is due to the complexity term which depends on the prior 

density, for example, the prior covariance of the intrinsic 

connections. This is problematic in the context of DCM

for fMRI because the prior covariance is defi ned in a

model-specifi c fashion to ensure that the probability of 

Figure 7. Schematic of the neural model in DCM for ERPs. This schema shows the state equations describing the dynamics of a 

microcircuit representing an individual region (source). Each region contains three subpopulations (pyramidal, spiny stellate and inhibitory 

interneurons) that are linked by intrinsic connections and have been assigned to supragranular, granular and infragranular cortical layers. 

Different regions are coupled through extrinsic (long-range) excitatory connections. Reproduced with permission by Elsevier Ltd. from 

David et al (2006).
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obtaining an unstable system is very small. (Specifi cally, 

this is achieved by choosing the prior covariance of the 

intrinsic coupling matrix A such that the probability of 

obtaining a positive Lyapunov exponent of A is P < 0.001; 

see Friston et al 2003 for details.) Consequently, in this 

particular context, usage of the Laplacian approximation 

complicates comparison of models with different 

numbers of connections. In DCM for fMRI, more suitable 

approximations, which do not depend on the prior density, 

are afforded by the Bayesian information criterion (BIC) and 

Akaike Information Criterion (AIC), respectively. As shown 

by Penny et al (2004a), for DCM these approximations are 

given by

where dθ is the number of parameters and N is the number 

of data points (scans). If one compares the complexity terms 

of BIC and AIC, it becomes obvious that BIC pays a heavier 

penalty than AIC as soon as one deals with 8 or more scans 

(which is virtually always the case for fMRI data). Therefore, 

Figure 8. DCM for ERPs measured during an auditory oddball paradigm. Left: Predicted (thick) and observed (thin) responses in 

measurement space. These are a projection of the scalp or channel data onto the fi rst three spatial modes or eigenvectors of the channel 

data. The predicted responses are based on the conditional expectations of the DCM parameters and show very good agreement with the 

measured data. Right: Graph depicting the sources and connections of a DCM in which both forward and backward connections were 

allowed to change between oddball and standard trials. The relative strength of coupling strengths for oddball relative to standard stimuli 

are shown alongside the connections. The percent conditional confi dence that this difference is greater than zero is shown in brackets. Only 

changes with 90% confi dence or more (solid lines) are shown numerically. In all connections the coupling was stronger during oddball 

processing, relative to standards. A1, primary auditory cortex; OF, orbitofrontal cortex; PC, posterior cingulate cortex; STG, superior 

temporal gyrus. Reproduced with permission by Elsevier Ltd. from David et al (2006). 
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BIC will be biased towards simpler models whereas AIC 

will be biased towards more complex models. This can 

lead to disagreement between the two approximations about 

which model should be favoured. In DCM for fMRI, we 

have therefore adopted the convention that, for any pairs of 

models m
i
 and m

j
 to be compared, a decision is only made if 

AIC and BIC concur (see below); the decision is then based 

on that approximation which gives the smaller Bayes factor 

(BF): 

Just as conventions have developed for using P-values in 

frequentist statistics, there are conventions for the use of 

BFs. For example, Raftery (1995) suggests interpretation 

of BFs as providing weak (BF < 3), positive (3 ≤ BF < 20), 

strong (20 ≤ BF < 150) or very strong (BF ≥ 150) evidence 

for preferring one model over another.

BMS plays a central role in the application of DCM. The 

search for the best model, amongst several competing ones, 

precedes (and is often equally important to) the question 

which parameters of the model represent signifi cant effects. 

Several studies have used BMS successfully to address 

complex questions about the architecture of neural systems. 

For example, Penny et al (2004a) investigated which 

connections in a system of hierarchically connected visual 

areas were most likely to underlie the modulatory effects 

of attention to motion that were observed in the BOLD 

responses of area V5. They found, using data from a single 

subject, that the best model was one in which attention 

enhanced V5 responses to V1 inputs. In another single-

subject study, Stephan et al (2005) systematically derived 16 

different models that could have explained BOLD activity 

in visual areas during lateralized presentation of visual word 

stimuli. They found evidence that, in this subject, inter-

hemispheric connections served task-dependent information 

transfer from the non-dominant to the dominant hemisphere 

– but only when the stimulus was initially received by the 

non-dominant hemisphere. Finally, M Garrido, J M Kilner, 

S J Kiebel, K E Stephen and K J Friston (unpublished 

results) extended the previous work by David et al (2006) 

and applied BMS in the context of an auditory oddball study, 

measured with EEG, to fi nd the most likely explanation, in 

terms of coupling changes, for the well-known mismatch 

negativity potential. They found that their group of healthy 

controls was divided into two subgroups characterized by 

different optimal models. Re-examining the ERPs of these 

subgroups separately revealed a signifi cant difference in the 

expression of mismatch-related responses that would have 

been missed in conventional ERP analyses. This example 

highlights that BMS may also be of considerable interest for 

defi ning clinical populations for whom biological markers 

are presently lacking. This issue is taken up in the next and 

fi nal section.

7. Outlook to future applications of DCM

DCM is currently the most advanced framework for inferring 

the effective connectivity in neural systems from measured 

functional neuroimaging data. Our hope is that over the 

next years, the generic framework of DCM and the ongoing 

developments, some of which were briefl y described in this 

article, will contribute to a more mechanistic understanding 

of brain function. Of particular interest will be the use 

of neural system models like DCM (i) to understand the 

mechanisms of drugs and (ii) to develop models that can 

serve as diagnostic tools for diseases linked to abnormalities 

of connectivity and synaptic plasticity, e.g. schizophrenia.

Concerning pharmacology, many drugs used in 

psychiatry and neurology change synaptic transmission 

and thus functional coupling between neurons. Therefore, 

their therapeutic effects cannot be fully understood without 

models of drug-induced connectivity changes in particular 

neural systems. So far, only relatively few studies have 

studied pharmacologically induced changes in connectivity 

(e.g. Honey et al 2003). As highlighted in a recent review 

by Honey and Bullmore (2004), an exciting possibility for 

the future is to use system models at the early stage of drug 

development to screen for substances that induce desired 

changes of connectivity in neural systems of interest with a 

reasonably well understood physiology. The success of this 

approach will partially depend on developing models that 

include additional levels of biological detail (e.g. effects 

of different neurotransmitters, see above) while being 

parsimonious enough to ensure mathematical identifi ability 

and physiological interpretability; see Breakspear et al 

(2003), Harrison et al (2005), Jirsa (2004) and Robinson

et al (2001) for examples that move in this direction.

Another important goal is to explore the utility of models 

of effective connectivity as diagnostic tools (Stephan 2004). 

This seems particularly attractive for psychiatric diseases 

whose phenotypes are often very heterogeneous and where a 

lack of focal brain pathologies points to abnormal connectivity 

(dysconnectivity) as the cause of the illness. Given a 

pathophysiological theory of a specifi c disease, connectivity 

models might allow one to defi ne an endophenotype of 

that disease, i.e. a biological marker at intermediate levels 

between genome and behaviour, which enables a more 

precise and physiologically motivated categorization of 

patients (Gottesman and Gould 2003). Such an approach 

has received particular attention in the fi eld of schizophrenia 

research where a recent focus has been on abnormal synaptic 

plasticity leading to dysconnectivity in neural systems 

concerned with emotional and perceptual learning (Friston 

1998; Stephan et al 2006). A major challenge will be to 

establish neural systems models which are sensitive enough 

that their connectivity parameters can be used reliably for 

diagnostic classifi cation and treatment response prediction 

BF
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of individual patients. Ideally, such models should be used 

in conjunction with paradigms that are minimally dependent 

on patient compliance and are not confounded by factors 

like attention or performance. Given established validity and 

suffi cient sensitivity and specifi city of such a model, one could 

use it in analogy to biochemical tests in internal medicine, i.e. 

to compare a particular model parameter (or combinations 

thereof) against a reference distribution derived from a 

healthy population (Stephan 2004). Another possibility is to 

use DCM parameter sets as inputs to statistical classifi cation 

methods in order to defi ne distinct patient subpopulations. 

Alternatively, if different clinical subgroups exhibit different 

‘fi ngerprints’ of dysconnectivity, each represented by a 

particular DCM, model selection could provide a powerful 

approach to classify patients. Such procedures could help 

to decompose current psychiatric entities like schizophrenia 

into more well-defi ned subgroups characterized by common 

pathophysiological mechanisms and may facilitate the search 

for genetic underpinnings.
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