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a b s t r a c t

Hermeneutics refers to interpretation and translation of text (typically ancient scriptures)

but also applies to verbal and non-verbal communication. In a psychological setting it

nicely frames the problem of inferring the intended content of a communication. In this

paper, we offer a solution to the problem of neural hermeneutics based upon active inference.

In active inference, action fulfils predictions about how we will behave (e.g., predicting we

will speak). Crucially, these predictions can be used to predict both self and others e during

speaking and listening respectively. Active inference mandates the suppression of pre-

diction errors by updating an internal model that generates predictions e both at fast

timescales (through perceptual inference) and slower timescales (through perceptual learning).

If two agents adopt the same model, then e in principle e they can predict each other and

minimise their mutual prediction errors. Heuristically, this ensures they are singing from

the same hymn sheet. This paper builds upon recent work on active inference and

communication to illustrate perceptual learning using simulated birdsongs. Our focus here

is the neural hermeneutics implicit in learning, where communication facilitates long-

term changes in generative models that are trying to predict each other. In other words,

communication induces perceptual learning and enables others to (literally) change our

minds and vice versa.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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of what you have just said corresponds to what you meant. I

can invent a coherent story or narrative, but I can never

independently verify my interpretations (Frith & Wentzer,

2013). Nevertheless, people seem to understand each other

most the time. How is this achieved? In this paper, we suggest

the criteria for evaluating and updating my interpretation of

your behaviour are exactly the same criteria that underlie

action and perception in general; namely, theminimisation of

prediction error or (variational) free energy.

In a companion paper (Friston and Frith, 2015), we

considered communication in terms of inference about

others, based on the notion that we model and predict our

sensations e sensations that are generated by other agents

like ourselves. This leads to a view of communication based

on a generative model or narrative that is shared by agents

who exchange sensory signals. Given a shared narrative,

communication can then be cast as turn taking (Wilson &

Wilson, 2005), by selectively attending and attenuating sen-

sory information. Attending to exteroceptive sensations en-

ables the shared narrative to predict the sensory input

generated by another (while listening). Conversely, attenu-

ating exteroceptive input enables one to articulate the narra-

tive by realising proprioceptive predictions (while speaking).

Using simulations, we demonstrated this turn taking by

assuming that both agents possessed the same generative

model. In this paper, we consider how and why generative

models learned by agents e who exchange sensory signals e

become the same (shared) model.

Our underlying premise is that we are trying to model the

causes of our sensations e and adjust those models to

maximise Bayesian model evidence or, equivalently, mini-

mise surprise (Brown & Brün, 2012; Kilner, Friston, & Frith,

2007). This perspective on action and perception has broad

explanatory power in several areas of cognitive neurosci-

ence e and enjoys support from several lines of neuroana-

tomical and neurophysiological evidence (Egner &

Summerfield, 2013; Rao & Ballard, 1999; Srinivasan,

Laughlin, & Dubs, 1982). In communication and the inter-

pretation of intent, the very notion of theory of mind speaks

directly to inference, in the sense that theories make pre-

dictions that have to be tested against (sensory) data. Ima-

gine two brains, each mandated to model the (external)

states of the world causing sensory input. Now imagine that

sensations can only be caused by (the action of) one brain on

the other. This means that the first brain has to model the

second. However, the second brain is modelling the first,

which means the first brain must have a model of the sec-

ond brain, which includes a model of the first e and so on ad

infinitum. At first glance, the implicit infinite regress appears

to preclude a veridical modelling of another's brain. How-

ever, this infinite regress dissolves if each brain models the

sensations caused by itself and the other as being generated

in the same way. In other words, if there is a shared narra-

tive or dynamic that both brains subscribe to, then they can

predict each other exactly e at least for short periods of

time. This is the basic idea that we pursue in the context of

active inference and predictive coding.

In our previous paper, we focused on the dynamical phe-

nomena that emerge when two dynamical systems try to

predict each other.Mathematically, this dynamical coupling is
called generalised synchrony (aka synchronisation of chaos)

(Barreto, Josic, Morales, Sander,& So, 2003; Hunt, Ott,& Yorke,

1997). Generalised synchrony was famously observed by

Huygens in his studies of pendulum clocks e that synchro-

nized themselves through the imperceptible motion of beams

from which they were suspended (Huygens, 1673). This nicely

illustrates the action at a distance among coupled dynamical

systems. Put simply, generalised synchronisation means that

knowing the state of one system (e.g., neuronal activity in the

brain) means one can predict the another system (e.g., an-

other's brain).

We will consider a special case of generalized synchroni-

zation; namely, identical synchronization, in which there is a

one-to-one relationship between the states of two systems.

Identical synchronisation emerges when the systems that are

coupled are the same. In the context of active inference, this

means the two generative models are identical. But why

should two agents have the same generative model? The

answer is rather obvious e when they share the same gener-

ative model they can predict each other more accurately and

minimise their prediction errors or surprise. The key point

here is that the same principle that leads to generalised

synchrony also applies to the selection or learning of the

model generating predictions. This learning is the focus of the

current paper, which provides an illustrative proof of principle

that the hermeneutic cycle can be closed by simply updating

generative models and their predictions to minimise predic-

tion errors. Crucially, these prediction errors can be computed

without ever knowing the true state of another; thereby

solving the problem of hermeneutics (see Fig. 1).

The treatment of communication in this paper is rather

abstract and borrowsmathematical concepts from dynamical

systems theory. Although we will use birdsong as a vehicle to

illustrate the ideas, we do not pretend this is a meaningful

model of linguistic communication (or indeed songbirds).

Rather, we try to understand the dynamic coordination of

richly structured behaviours, such as singing and dancing,

without ascribing any (semantic) meaning or syntax to sen-

sory exchanges. Having said this, there is growing interest in

applying the principles of predictive coding to language: e.g.,

(Arnal & Giraud, 2012; Hickok, 2013; Pickering & Clark, 2014;

Wang, Mathalon, et al., 2014) e and understanding the

algebra of dynamical systems in terms of communication;

e.g., (Scott-Phillips & Blythe, 2013). Furthermore, predictive

coding is starting to shed light on spectral asymmetries e in

coupling within the auditory hierarchy e evident in electro-

physiological studies of speech processing (Arnal, Wyart, &

Giraud, 2011).

This paper comprises five sections. The first sections

reprise the material in (Friston and Frith, 2015), which pro-

vides a brief review of active inference and predictive coding

in communication. In the second section, we described the

particular (birdsong) model used to illustrate communicative

inference. This model has been used previously to illustrate

several phenomena in perception; such as perceptual

learning, repetition suppression, and the recognition of

stimulus streams with deep hierarchical structure (Friston &

Kiebel, 2009; Kiebel, Daunizeau, & Friston, 2008). In the third

section, we provide a simple illustration of omission related

responses e that are ubiquitous in neurophysiology and

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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Fig. 1 e A predictive coding formulation of the Hermeneutic Circle: e.g., Speech Chain in the setting of language (Denes &

Pinson, 1993). This schematic provides a simple example of neural hermeneutics in the form of a control system diagram. It

is a simple example because the internal (generative) model predicting the behavioural consequences of action (of self and

other) is the same. In other words, it is neither a model of my behaviour or your behaviour e but a model of our behaviour.

When both agents adopt the same model, generalised synchronisation is guaranteed and prediction errors are minimised.

The implicit architecture highlights the fact that the top-down predictions from a dynamical generative model (labelled

Narrative) come in two flavours: exteroceptive predictions predicting the external consequences of action (c.f., corollary

discharge) and proprioceptive predictions that predict the internal consequences of action (c.f., motor commands). These

predictions are compared with sensory input to provide prediction errors. In control diagrams of this sort ⊗ denotes a

comparator. Exteroceptive (e.g., auditory) prediction errors are used to update the generative model at various timescales to

produce inference and learning. In contrast, the proprioceptive prediction errors drive classical reflexes to produce the

predicted action. When the (dynamics of the) generative models in the two brains are identical, both exteroceptive and

proprioceptive prediction errors are minimised and the dynamics will exhibit (generalised) synchrony. The red arrows

denote learning or control by prediction errors that compare (descending) predictions with (ascending) sensations.
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illustrate the basic nature of predictive coding. In the fourth

section, we use this model to simulate two (identical) birds

that are singing to themselves (and each other) and examine

the conditions under which generalised synchrony emerges.

In the final section, we repeat the simulations using two birds

that start off with different generative models. We will see

that perceptual learning produces a convergence of the two

generative models over time e leading to the emergence of

generalised synchrony and implicit communication. We offer

this as a solution to the problem of hermeneutic inference

that can be resolved by neuronally plausible schemes e with

the single imperative to minimise prediction error or free

energy.
2. Active inference and predictive coding

Recent advances in theoretical neuroscience have produced a

paradigm shift in cognitive neuroscience. This shift is away

from the brain as a passive filter of sensations e or an elabo-

rate stimulus-response link e towards a view of the brain as

an organ that generates hypotheses or fantasies (fantastic:

from Greek phantastikos, the ability to create mental images,

from phantazesthai), which are tested against sensory evidence

(Gregory, 1968). This perspective dates back to the notion of

unconscious inference (Helmholtz, 1866/1962) and has been

formalised to cover deep or hierarchical Bayesian inference e

about the causes of our sensations e and how these in-

ferences induce beliefs, movement and behaviour (Clark,
2013; Dayan, Hinton, & Neal, 1995; Friston, Kilner, &

Harrison, 2006; Hohwy, 2013; Lee & Mumford, 2003).
2.1. Predictive coding and the Bayesian brain

Modern formulations of the Bayesian brain e such as predic-

tive coding e are now among the most popular explanations

for neuronalmessage passing (Clark, 2013; Friston, 2008; Rao&

Ballard, 1999; Srinivasan et al., 1982). Predictive coding is a

biologically plausible process theory for which there is a

considerable amount of anatomical and physiological evi-

dence. In these schemes, neuronal representations e in

higher levels of cortical hierarchies e generate predictions of

representations in lower levels (Friston, 2008; Mumford, 1992;

Rao & Ballard, 1999). These top-down predictions are

compared with representations at the lower level to form a

prediction error (usually associated with the activity of su-

perficial pyramidal cells). The resulting mismatch signal is

passed back up the hierarchy to update higher representa-

tions (associated with the activity of deep pyramidal cells).

This recursive exchange of signals suppresses prediction error

at each and every level to provide a hierarchical explanation

for sensory inputs that enter at the lowest (sensory) level. In

computational terms, neuronal activity encodes beliefs or

probability distributions over states in the world that cause

sensations (e.g., my visual sensations are caused by a face).

The simplest encoding corresponds to representing the belief

with the expected value or expectation of a (hidden) cause.

http://dx.doi.org/10.1016/j.cortex.2015.03.025
http://dx.doi.org/10.1016/j.cortex.2015.03.025
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These causes are referred to as hidden because they have to be

inferred from their sensory consequences.

In summary, predictive coding represents a biologically

plausible scheme for updating beliefs about states of the

world using sensory samples: see Fig. 2. In this setting, cortical

hierarchies are a neuroanatomical embodiment of how sen-

sory signals are generated; for example, a face generates

surfaces that generate textures and edges and so on, down to

retinal input. This form of hierarchical inference explains a

large number of anatomical and physiological facts as

reviewed elsewhere (Adams, Shipp, & Friston, 2013; Bastos

et al., 2012; Friston, 2008). In brief, it explains the hierarchi-

cal nature of cortical connections; the prevalence of backward

connections and many of the functional and structural
Fig. 2 e This figure summarizes hierarchical neuronal message

neuroanatomy of a songbird. Neuronal activity encodes expect

expectations minimize prediction error. Prediction error is the

(descending) predictions of that input. Here, sensory input is re

different acoustic frequencies over time. Minimising prediction

different levels of the cortical hierarchy. The available evidence

compare the expectations (at each level) with top-down predict

levels. Left panel: these equations represent the neuronal dynam

th level of the hierarchy are simply the difference between the e

of those expectations. The expectations per se are driven by pre

(precision weighted) prediction error. See the appendix for a de

this figure. Right panel: this provides a schematic example in th

of origin of ascending or forward connections that convey (prec

descending or backward connections (black arrows) that constru

HVC (c.f., high vocal centre), which projects to the auditory tha

predictions to the hypoglossal nucleus, which are passed to the

These predictions can be regarded as motor commands, while

corollary discharge. Note that every top-down prediction is reci

predictions are constrained by sensory information. The neuroa

seriously: we have simply transcribed a generic hierarchical me

cardinal regions implicated in the processing of birdsongs (Not
asymmetries in the extrinsic connections that link hierarchi-

cal levels (Zeki & Shipp, 1988). These asymmetries include the

laminar specificity of forward and backward connections, the

prevalence of nonlinear or modulatory backward connections

and their spectral characteristics e with fast (e.g., gamma)

activity predominating in forward connections and slower

(e.g., beta) frequencies that accumulate evidence (prediction

errors) ascending from lower levels.

2.2. Precision engineered message passing

One can regard ascending prediction errors as broadcasting

‘newsworthy’ information that has yet to be explained by

descending predictions. However, the brain has to select the
passing in predictive coding using the (simplified)

ations about the causes of sensory input, where these

difference between (ascending) sensory input and

presented by a sonogram encoding the amplitude of

error rests upon recurrent neuronal interactions among

suggests that superficial pyramidal cells (red triangles)

ions from deep pyramidal cells (black triangles) of higher

ics implicit in predictive coding. Prediction errors at the i-

xpectations encoded at that level and top-down predictions

diction errors so that they reduce the sum of squared

tailed explanation of these equations and the variables in

e auditory system of a songbird: it shows the putative cells

ision weighted) prediction errors (red arrows) and

ct predictions. In this example, area X sends predictions to

lamus. However, the HVC also sends proprioceptive

syrinx to generate vocalisation through classical reflexes.

the descending predictions of auditory input correspond to

procated with a bottom-up prediction error to ensure

natomy implicit in this schematic should not be taken too

ssage passing scheme onto the key connections among the

tebohm, 2005).

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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channels it listens to e by adjusting the volume or gain of

prediction errors that compete to update expectations in

higher levels. Computationally, this gain corresponds to the

precision or confidence associated with ascending prediction

errors. However, to select prediction errors the brain has to

estimate and encode their precision (i.e., inverse variance).

Having done this, prediction errors can then be weighted by

their precision so that only precise information is assimilated

at high or deep hierarchical levels. The dynamic and context-

sensitive control of precision has been associated with

attentional gain control in sensory processing (Feldman &

Friston, 2010; Jiang, Summerfield, & Egner, 2013) and has

been discussed in terms of affordance in active inference and

action selection (Cisek, 2007; Frank, Scheres,& Sherman, 2007;

Friston et al., 2012). Crucially, the delicate balance of precision

at different hierarchical levels has a profound effect on

veridical inference e and may also offer a formal under-

standing of false inference in psychopathology (Adams,

Stephan, Brown, Frith & Friston, 2013; Fletcher & Frith, 2009).

In (Friston and Frith, 2015) we illustrated the role of preci-

sion in mediating sensory attenuation and its necessary role

in enabling (open loop) motor control during action. See also

(Brown, Adams, Parees, Edwards,& Friston, 2013). In brief, this

leads to an alternation between sensory attention and atten-

uation in the actioneperception cycle, which involves a tem-

porary suspension of attention to the consequences of acting

during the act itself: see (Numminen, Salmelin, & Hari, 1999).

We will use the same approach in this paper to model turn

taking (Wilson & Wilson, 2005) in the switching between

speaking (singing) and listening.

2.3. Active inference

Hitherto, we have only considered the role of predictive cod-

ing in perception through minimising surprise or prediction

errors. However, there is another way to minimise prediction

errors; namely, by re-sampling sensory inputs so that they

conform to predictions: in other words, changing sensory in-

puts by changing the world through action. This is known as

active inference (Friston, Mattout, & Kilner, 2011). In active

inference, action is regarded as the fulfilment of descending

proprioceptive predictions by classical reflex arcs. In other

words, we believe that we will execute a goal-directed move-

ment and this belief is unpacked hierarchically to provide

proprioceptive, and exteroceptive predictions generated from

our generative or forward model. These predictions are then

fulfilled automatically by minimizing proprioceptive predic-

tion errors at the level of the spinal cord and cranial nerve

nuclei: see (Adams, Shipp, et al., 2013) and Fig. 2. Mechanis-

tically, descending proprioceptive predictions provide a target

or set point for peripheral reflex arcs e that respond by mini-

mising (proprioceptive) prediction errors.

2.4. Perception and learning

The preceding aspects of active inference are concerned with

expectations about hidden states and causes of sensations

and how these expectations minimise prediction error. How-

ever, exactly the same arguments apply to the parameters of

generative models. Model parameters are quantities that do
not change over time and encode causal regularities and as-

sociations. Formally, these are the parameters of the func-

tions in Fig. 2. Neurobiologically, the parameters of a

generative model are thought to be encoded by synaptic

connection strengths and their Bayesian updates look very

much like (experience-dependent) associative plasticity that

mediates short and long-term changes in synaptic connec-

tivity: see the Appendix and (Friston, 2008) for details. The

distinction between states and parameters of generative

models induces the distinction between perceptual inference

and learning that proceed over different timescales. Because

parameters do not change with time, they accumulate pre-

diction errors over time and are therefore updated at a slower

timescale. Equipped with a formal description of perceptual

inference and learning, we can now examine the nature of

communication using simulations for any given generative

model. In the next section, we will apply the computational

scheme above to a model of auditory exchange between two

systems that are actively trying to infer each other.
3. Birdsong and attractors

This section introduces the simulations of birdsong that we

will use to illustrate active inference and communication in

subsequent sections. The basic idea here is that the environ-

ment unfolds as an ordered sequence of states, whose equa-

tions of motion induce attractor manifolds that contain

sensory trajectories. If we consider the brain has a generative

model of these trajectories, then we would expect to see

attractors in neuronal dynamics that are trying to predict

sensory input. This form of generative model has a number of

plausible characteristics:

Models based upon attractors can generate and therefore

encode structured sequences of events, as states flow over

different parts of the attractor manifold (a subset of states to

which the flow is attracted). These sequences can be simple,

such as the quasi-periodic attractors of central pattern gen-

erators or can exhibit complicated sequences of the sort

associated with itinerant dynamics (Breakspear & Stam, 2005;

Rabinovich, Huerta, & Laurent, 2008). Furthermore, hierar-

chically deployed attractors enable the brain to predict or

represent sequences of sequences. This is because any low-

level attractor embodies a family of trajectories. A natural

example here would be language (Jackendoff, 2002). This

means it is possible to generate and represent sequences of

sequences and, by induction sequences of sequences of se-

quences etc. This rests upon the states of neuronal attractors

at any cortical level providing control parameters for attractor

dynamics at the level below (Kiebel, von Kriegstein,

Daunizeau, & Friston, 2009). In the example below, we will

show how attractor dynamics furnish generative models of

sensory input, which behave much like real brains, when

measured electrophysiologically.

We first reproduce the simulations reported in (Friston and

Frith, 2015) to illustrate the basic nature of the generalised

synchrony induced by predictive coding.We then present new

results showing that the acquisition of this synchrony

emerges naturally, when two predictive coding schemes try to

predict each other. This acquisition resolves the hermeneutic

http://dx.doi.org/10.1016/j.cortex.2015.03.025
http://dx.doi.org/10.1016/j.cortex.2015.03.025


Fig. 3 e Schematic showing the construction of a generative model for birdsongs. The upper panel illustrates the generative

model that comprises two Lorenz attractors, where the higher attractor delivers a control parameter (cyan circle) to a lower

level attractor, which, in turn, controls a synthetic syrinx to produce amplitude and frequency modulated stimuli. This

stimulus is represented as a sonogram in the right panel. The equations represent the hierarchical dynamic model in the

form described in the Appendix.
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problem by underwriting online inference about the causes of

shared sensory consequences. A more detailed description of

the birdsong model can be found in (Friston & Kiebel, 2009).
1 For people interested in the technical details e and exploring
the effects of changing parameters e the routines generating the
figures in this paper are available as part of the academic SPM
freeware (http://www.fil.ion.ucl.ac.uk/spm/). Annotated Matlab
routines can be run and edited by invoking a graphical user
interface (by typing DEM) and selecting Birdsong duet (DEM_
demo_duet.m).
3.1. A synthetic songbird

The example used here deals with the generation and recog-

nition of birdsongs. We imagine that birdsongs are produced

by two time-varying states that control the frequency and

amplitude of vibrations of the syrinx of a songbird (Fig. 3).

There is an extensive modelling effort using attractor models

to understand the generation of birdsong at the biomechan-

ical level (Mindlin & Laje, 2005). Here, we use attractors to

provide time-varying control over the resulting sonograms.

We drive the syrinx with two states of a Lorenz attractor, one

controlling the frequency (between two to five KHz) and the

other controlling the amplitude or volume. The parameters of

the Lorenz attractor were chosen to generate a short sequence

of chirps every few hundred milliseconds or so. The Lorenz

form for these dynamics is a somewhat arbitrary choice but

provides a ubiquitous model of chaotic dynamics in the

physical (Poland, 1993) and biological (de Boer & Perelson,

1991) sciences.

To give the generative model a hierarchical structure, we

placed a second Lorenz attractor, whose dynamics were an

order of magnitude slower, over the first. The first state of the

slow (extrasensory) attractor provided a control parameter

for the fast (sensory) attractor generating the sonogram. In

fluid dynamics, this control parameter is known as a Rayleigh

number and reflects the degree of convective or turbulent

flow, which we will associate with dynamical prosody. In

other words, the state of the slower attractor changes the

manifold of the fast attractor. This manifold could range

from a fixed-point attractor, where the states collapse to

zero; through to quasi-periodic and chaotic behaviour asso-

ciated with a high Rayleigh number. Because higher states
evolve more slowly, they modulate the chaotic behaviour of

the sensory attractor, generating songs, where each song

comprises a series of distinct chirps. As shown in Fig. 3, the

Rayleigh number linking hierarchical levels depends on a

model parameter q that controls the influence of the higher

attractor over the lower attractor. High values of this

parameter increase the dynamical prosody of the song

(inducing successive bifurcations: see Fig. 4). We will use this

parameter later to demonstrate perceptual learning and

closure of the hermeneutic circle.
3.2. Omission and violation of predictions

To illustrate the predictive nature of predictive coding,

perceptual inference was simulated by integrating the above

scheme. Formal details of the generative model and integra-

tion scheme are provided in the equations in Fig. 3 and the

Appendix respectively.1 A more detailed description of this

simulation can be found in a companion paper (Friston and

Frith, 2015). In brief, a sonogram was produced using the

above composition of Lorentz attractors (with q ¼ 1) and

played to a synthetic bird e who tried to infer the underlying

hidden states of the sensory and extrasensory attractors

(associated with the HVC and area X respectively). Crucially,

we presented two songs to the bird, with and without the final

chirps. The corresponding sonograms and percepts (pre-

dictions) are shown with their prediction errors in Fig. 5.

The left panels show the stimulus and percept, while the

right panels show the stimulus and responses to omission of

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 4 e Bifurcation diagram showing the dependency of

the dynamics on the model parameter. This diagram plots

the maxim and minima of a bird's auditory expectations

(of hidden sensory states) over 1 sec of simulated time

(while singing to itself). This was repeated for 128 values of

the parameter ranging from 0 to 1. The ensuing lines show

a succession of bifurcations, indicating the emergence of

new peaks or transients in the song trajectory. As the

parameter falls to zero, the first level attractor is effectively

disconnected from the higher attractor and ceases to show

chaotic behaviour. The vertical red line shows the value of

the parameter we will use later to illustrate learning.
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the last chirps. These results illustrate two important phe-

nomena. First, there is a vigorous expression of prediction

error after the song terminates prematurely. This reflects the

dynamical nature of inference because, at this point, there is

no sensory input to predict. In other words, the prediction

error is generated entirely by descending predictions. It can be

seen that this prediction error (with a percept but no stimulus)

is larger than the prediction error associated with the third

and fourth chirps that are not perceived (stimulus but no

percept). Second, there is a transient percept when the

omitted chirp should have occurred. As noted in (Friston and

Frith, 2015), this simulation of omission-related responses as

measured with ERPs (Bendixen, SanMiguel, & Schr€oger, 2012)

is particularly interesting, given that non-invasive electro-

magnetic signals arise largely from superficial pyramidal cells.

These are the cells thought to encode prediction error (Bastos

et al., 2012).
4. A Duet for one

We now turn to the perceptual coupling or communication by

simulating two birds that can hear themselves (and each

other). Each bird listened for 2 sec, with a low proprioceptive
and a high exteroceptive precision (log-precisions of �8 and 2

respectively) and then sang for 2 sec, with high proprioceptive

and attenuated auditory precision (log-precisions of 0 and -2

respectively). The log-precisions at the higher level were fixed

at 4. Crucially, when one bird was singing the other was

listening. This turn taking (Wilson & Wilson, 2005) is a natural

consequence of active inference because attending to the

consequences of action interferes with descending pre-

dictions about movement e predictions that are generated

before their consequences are evident. There are many ex-

amples of the implicit sensory attenuation during self-made

acts (Hughes, Desantis, & Waszak, 2013). A physiological

illustration can be found in (Agnew, McGettigan, Banks, &

Scott, 2013), who show that articulatory movements atten-

uate auditory responses to speech using fMRI. Furthermore,

recent TMS studies suggest that the motor system plays an

explicit role in semantic comprehension (Schomers, Kirilina,

Weigand, Bajbouj, & Pulvermuller, 2014). We illustrated the

importance of sensory attenuation in the context of simulated

birdsong in (Friston and Frith, 2015) by showing sensorimotor

delays e implicit in articulating a song e destroy the songs

dynamical prosody. This means, the birds can only listen or

sing but not do both at the same time.

We initialised the simulations with random expectations.

This meant that if the birds cannot hear each other, the

chaotic dynamics implicit in their generative models causes

their expectations to follow divergent trajectories, as shown in

Fig. 6. However, if we move the birds within earshot, so that

they can hear each other, they synchronise almost immedi-

ately. See Fig. 7. This is because the listening bird is immedi-

ately entrained by the singing bird to correctly infer the

hidden (dynamical) states generating sensations. At the end of

the first period of listening, the posterior expectations of both

birds approach identical synchrony, which enables the

listening bird to take up the song, following on fromwhere the

other bird left off. This process has many of the hallmarks of

interactive alignment in the context of joint action and dialogue

(Garrod & Pickering, 2009).

Note that the successive epochs of song are not identical.

In other words, the birds are not simply repeating what they

have heard e they are pursuing a narrative prescribed by the

dynamical attractors (central pattern generators) in their

generative models that have been synchronised through

sensory exchange. The example in Fig. 7 highlights the fact

that the songs articulated by both birds have a rich dynamical

vocabulary (including frequency glides, low frequency war-

bles and amplitude modulated chirps) that is anticipated and

reciprocated during the exchange. This means that the birds

are singing from the same hymn sheet, preserving sequential

and hierarchical structure in their shared narrative. It is this

phenomenon e due simply to generalised (in this case iden-

tical) synchronisation e that we associate with

communication.

Technically speaking, this simulation of communication

shows that two identical dynamical systems e that are pre-

dicting each other e necessarily show identical synchronisa-

tion. In the language of measure-preserving dynamical

systems, generalised synchronisation implies the existence of

a randomdynamical attractor called a synchronisation manifold.

The synchronisation manifold is just a set of states to which

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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Fig. 5 e Omission-related responses: The left panels show the original song and responses evoked. The right panels show

the equivalent responses to omission of the last chirps. The top panels show the stimulus and the middle panels the

corresponding percept in sonogram format. The interesting thing to note here is the occurrence of an anomalous percept

after termination of the song on the lower right. This corresponds roughly to the chirp that would have been perceived in

the absence of omission. The lower panels show the corresponding (precision weighted) prediction error under the two

stimuli at both levels. These show a burst of prediction error when a stimulus is missed and at the point that the stimulus is

omitted (at times indicated by the arrows on the sonogram). The solid lines correspond to sensory prediction error and the

broken lines correspond to extrasensory prediction error at the second level of the generative model.
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states are attracted to and thereafter occupy. The simplest

example of a synchronisation manifold would be the identity

line on a graph plotting homologous states from each system

against each other (e.g., the dashed line in Fig. 8). This corre-

sponds to identical synchronisation. Crucially, the attractor

(which contains the synchronisation manifold) generally has

a lowmeasure or volume. Ameasure of the attractor's volume

is provided by its measure theoretic entropy (Sinai, 1959).

Although formally distinct from information theoretic entropy,

both reflect the volume of the attracting set or manifold. This

means that minimising prediction errors or free energy (in-

formation theoretic entropy) reduces the volume (measure

theoretic entropy) of the random dynamical attractor
(synchronisation manifold); thereby inducing generalised

synchrony. The synchronisation in the example above is

identical because both birds share the same generativemodel.

In the next section, we will illustrate generalised synchroni-

sation using simulations were the birds have different models

e and how they learn each other's model to produce identical

synchronisation.

4.1. Summary

In summary, these simulations show that generalised syn-

chrony is an emergent property of coupling active inference

systems that are trying to predict each other. It is interesting

http://dx.doi.org/10.1016/j.cortex.2015.03.025
http://dx.doi.org/10.1016/j.cortex.2015.03.025
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Fig. 6 e A soliloquy for two. In this simulation, two birds with the same generative models e but different initial

expectations e sing for 2 sec and then listen for any response. However, the birds cannot hear each other (because they are

too far apart) and the successive epochs of songs diverge due to the sensitivity to initial conditions implicit in these (chaotic)

generative models. The upper panel shows the sonogram heard by the first (red) bird. Because this bird can only hear itself,

the sonogram reflects the proprioceptive predictions based upon posterior expectations in the HVC (middle panel) and area

X (lower panel). The posterior expectations for the first bird are shown in red as a function of time e and the equivalent

expectations for the second bird are shown in blue. Note that when the birds are listening, their expectations at the first

level fall to zero e because they do not hear anything and auditory input is attended (i.e., has a relatively high precision).

This does not destroy the slower dynamics in area X, which is able to generate the song again after the end of each listening

period. Note also that the second (blue) bird takes a few hundred milliseconds before it starts singing. This is because it

takes a little time for the posterior expectations to find the attractor manifold prescribed by the higher level control

parameters.
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to consider what is being predicted in this context: the sen-

sations of both birds are simply the consequences of some

(hierarchically composed and dynamic) hidden states. But

what do these states represent? One might argue that they
correspond to some fictive construct that drives the behaviour

of one or other bird to produce the sensory consequences that

are sampled. But which bird? The sensory consequences are

generated, in this setting, by both birds. It therefore seems

http://dx.doi.org/10.1016/j.cortex.2015.03.025
http://dx.doi.org/10.1016/j.cortex.2015.03.025
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Fig. 7 e Communication and generalised synchrony. This figure uses the same format as Fig. 6; however, here, we have

juxtaposed the two birds so that they can hear each other. In this instance, the posterior expectations show identical

synchrony at both the sensory and extrasensory hierarchical levels e as shown in themiddle and lower panels respectively.

Note that the sonogram is continuous over successive 2 sec epochs e being generated alternately by the first and second

bird.
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plausible to assign these hidden states to both birds and treat

the agency as a contextual factor (that depends on sensory

attention and attenuation). In other words, from the point of

view of one bird, the hidden states are amodal, generating

proprioceptive and exteroceptive consequences that are

inferred in exactly the same way over time; irrespective of

whether sensory consequences are generated by itself or

another. The agency or source of sensory consequences is

determined not by the hidden states per se e but by fluctua-

tions in sensory precision that underlie turn taking. In this

sense, the expectations are without agency e they are neither

yours nor mine, they are our expectations.
5. Closing the hermeneutic cycle

In this final section, we consider how shared narratives

emerge as a natural consequence of perceptual learning

driven by, and only by, the minimisation of prediction errors

or free energy. Using free energy minimisation, Yildiz, von

Kriegstein, and Kiebel (2013) have shown that a hierarchy of

nonlinear dynamical systems can learn speech samples

rapidly and recognize them robustly, even in adverse condi-

tions. Here, we pursue the same theme but when two birds

learn from each other; specifically focussing on sensorimotor

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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Fig. 8 e Perceptual learning during communication. Upper panel: this shows epoch by epoch changes in the posterior

expectations (lines) of the parameter of the first bird (blue) and second bird (green). The shaded areas correspond to 90%

(prior) Bayesian confidence intervals. The broken lines (and intervals) report the results of the same simulation but when

the birds could not hear each other. The lower panels show the synchronisation of extrasensory (higher) posterior

expectations for the first (left panel) and subsequent (right panel) exchanges respectively. This synchronisation is shown by

plotting a mixture of expectations (and their temporal derivatives) from the second bird against the equivalent expectations

of the first bird, where this mixture is optimised assuming a linear mapping.
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learning during which individuals learn to vocalise: see

Bolhuis & Gahr (2006) for discussion of birdsong learning. In

brief, we repeated the above simulations but reduced the first

bird's parameter. This reduces the sensitivity to top-down

modulation and suppresses the prosody and richness of the

lower attractor. This introduces an asymmetry that precludes

identical synchronisation and induces prediction errors that

drive learning. This learning corresponds to (epoch by epoch)

changes in the posterior expectations of the parameter. In

principle, when and onlywhen the parameters are the same is

prediction error (free energy) minimised; at which point

identical synchronisation should emerge. This effectively
closes the hermeneutic cycle to enable precise

communication.

Technically, this sort of perceptual learning is a difficult

problem and it took us several tries to find a parameterisation

that could be learned efficiently. This is because the inference

scheme has to estimate unknown parameters in the context

of hidden states that also have to be inferred. Furthermore,

the generative model is not only dynamical and nonlinear but

chaotic. The example we chose is fairly arbitrary but sufficient

to show that a biologically plausible inference scheme can

solve this class of learning problem. Our particular parame-

terisation focuses on the link between the sensory and

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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extrasensory attractors and can therefore be regarded as a

translation of a narrative into a dynamical vocabulary. This

means that our two birds start off with a different mapping

between (the same) high-level narrative and the way it is ar-

ticulated. To understand each other, they have to learn each

other's mapping (i.e., vocabulary).

In detail, the first bird's parameter was reduced to q ¼ 0.5,

while leaving the second bird's parameter at q¼ 1. This means

the second bird retained a rich prosody, in relation to the first.

After each bird sang to the other, their parameters were

updated using a simple form of Bayesian belief updating: the

prior expectation was replaced by the posterior expectation

(retaining a prior precision of 64). The results of this learning

are shown in Fig. 8. The upper panel shows the trajectory of

the parameter for both birds over 32 (1 sec) exchanges. It can

be seen that the parameters of both birds converge towards

each other, so that they both come to articulate a relatively

rich sequence of songs. With successive exchanges, the

parameter of the first bird (blue line) approaches that of the

second bird (green line) and synchronisation emerges (lower

right panel). The excursions from the synchronisation mani-

fold during the first exchange highlight the initial difficulties

the birds have in predicting each other fluently.

This acquisition and maintenance of this rich discourse

can be contrasted with the equivalent learning when the birds

cannot hear each other. The resulting trajectories are shown

as dashed lines and demonstrate that both birds lose the ca-

pacity to maintain their Rayleigh number or dynamical pros-

ody. This is because learning occurs predominantly during

listening, when the precision of auditory prediction errors

(that drive learning) is not attenuated: note the step-like

changes in the parameters. However, when they are

listening, each bird only hears silence, which is best explained

by an attractor with a Rayleigh number of zero (see Fig. 4). In

this situation, both birds emit progressively simpler, low-

frequency warbles that disappear by about the 16th ex-

change (results not shown).

Taken together, these simulations illustrate the circular

causality inherent in communicative inference and learning.

In other words, one needs to infer or predict a structured

sensory exchange before learning can occur; while learning is

necessary to render sensory exchanges predictable. Further-

more, although the second bird appears to teach the first bird

when they hear each other, both are teaching each other e as

evidenced by the fact that the second bird ‘forgot’ how to sing

when it could not hear the first. The simulations should not be

taken as proof of concept of these points; they simply illus-

trate the sorts of phenomena that can emerge when dynam-

ical systems are trying to predict and learn from each other.

5.1. Summary

This section has illustrated perceptual learning as a key pro-

cess in facilitating communication and generalised synchrony

in coupled active inference schemes. In this context, predic-

tion errors implicit in the (neurobiologically plausible) pre-

dictive coding implementation of active inference are driving
both expectations about hidden states and the learning of

model parameters. This means there are two hermeneutic

timescales: the first subtending synchronisation and percep-

tual inference about hidden states of theworld and the second

slower perceptual learning of the parameters governing fluc-

tuations in the hidden states. The endpoint is a mutual pre-

dictability that is underwritten by a convergence of the

(parameters of) generative models subtending predictions.

Although a simple example, these simulations provide proof

of principle that perceptual learning is a sufficient explanation

for the emergence of generalised synchrony.
6. Conclusion

The treatment above builds on the ideas introduced by

(Friston and Frith, 2015); namely, that generalised synchrony

e or synchronisation of chaos e provides a formal metaphor

for communication and is a natural consequence of active

inference. The contribution of the current paper is to show

that the same principle (minimisation of free energy or pre-

diction error), also explains the convergent evolution of hier-

archical models that generate mutually sympathetic

predictions. We have considered this convergence in terms of

perceptual learning that closes the hermeneutic cycle.

There are many issues that we have not considered in

the domain of neural hermeneutics and communication.

Among these is the possibility that we are equipped with

multiple generative models that can be deployed depending

upon the situation in which we find ourselves, or the person

that we are communicating with. In this instance, the se-

lection of an appropriate generative model e that approxi-

mates the model selected by you e would be better

understood in terms of Bayesian model selection or aver-

aging (FitzGerald, Dolan, & Friston, 2014). This is an inter-

esting possibility that speaks to inferring the context in

which we are communicating and who we are communi-

cating with. This represents another (hierarchical) inference

problem. The model selection perspective is interesting

because, if correct, it implies a multilateral internal model

of how we behave that is entirely dependent upon who we

are communicating with. In turn, this begs the question of

agency and how it is represented in generative models. For

example, if our conceptual narratives are context-sensitive

and truly shared, am I the same person (in my mind)

when speaking to you, as opposed to somebody else?

Furthermore, if I do not have a narrative (or appropriate

mapping to a vocabulary) that corresponds to your narrative

(or mapping), will I ever be able to communicate with you?

This is where perceptual learning comes into its own;

enabling the acquisition of new narratives (and vocabu-

laries) or repurposing of existing models; e.g., (Adank,

Hagoort, & Bekkering, 2010; Skoe, Krizman, Spitzer, &

Kraus, 2014). However e as anyone who has tried to learn

a foreign language can testify e learning can be a difficult

and slow process, especially for Englishmen like us.
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Appendix

This brief description of generalized predictive coding is based

on (Feldman& Friston, 2010). Amore technical description can

be found in (Friston, Stephan, Li, & Daunizeau, 2010). This

scheme is based on three assumptions:

� The brain minimizes a free energy of sensory inputs

defined by a generative model.

� The generative model used by the brain is hierarchical,

nonlinear and dynamic.

� Neuronal firing rates encode the expected state of the

world, under this model.

Free energy is a quantity from statistics that measures the

quality of amodel in terms of the probability that it could have

generated observed outcomes. This means that minimizing

free energy maximizes the Bayesian evidence for the genera-

tive model. The second assumption is motivated by noting

that the world is both dynamic and nonlinear and that hier-

archical causal structure emerges inevitably from a separa-

tion of spatial and temporal scales. The final assumption is the

Laplace assumption that leads to a simple and flexible

neuronal code.

Given these assumptions, one can simulate awhole variety

of neuronal processes by specifying the particular equations

that constitute the brain's generative model. In brief, these

simulations use differential equations that minimize the free

energy of sensory input using a generalized gradient descent.

_~mðtÞ ¼ D~mðtÞ � v
~m
Fð~sðtÞ; ~mðtÞÞ A.1

These differential equations say that neuronal activity

encoding posterior expectations about (generalized) hidden

states of the world ~m ¼ ðm;m0;m
00
;…Þ reduce free energyewhere

free energy Fð~s; ~mÞ is a function of sensory inputs
~s ¼ ðs; s0; s00

;…Þ and neuronal activity. This is known as

generalized predictive coding or Bayesian filtering. The first

term is a prediction based upon a differential matrix operator

D that returns the generalized motion of expected hidden

states D~m ¼ ðm0;m
00
;m

000
;…Þ. The second (correction) term is

usually expressed as a mixture of prediction errors that en-

sures the changes in posterior expectations are Bayes-optimal

predictions about hidden states of the world. To perform

neuronal simulations under this scheme, it is only necessary

to integrate or solve Equation A.1 to simulate the neuronal

dynamics that encode posterior expectations. Posterior ex-

pectations depend upon the brain's generative model of the

world, which we assume has the following hierarchical form:
s ¼ gð1Þ�xð1Þ;vð1Þ�þ exp

�
� 1
2
pð1Þ
v

�
$uð1Þ

v

_xð1Þ ¼ f ð1Þ
�
xð1Þ;vð1Þ�þ exp

�
� 1
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pð1Þ
x

�
$uð1Þ

x

«

vði�1Þ ¼ gðiÞ�xðiÞ; vðiÞ�þ exp

�
� 1
2
pðiÞ
v

�
$uðiÞ

v

_xð1Þ ¼ f ðiÞ
�
xðiÞ; vðiÞ�þ exp

�
� 1
2
pðiÞ
x

�
$uðiÞ

x

«

A.2

This equation describes a probability density over the

sensory and hidden states that generate sensory input. Here,

the hidden states have been divided into hidden states and

causes (x(i), v(i)) at the i-th level within the hierarchical model.

Hidden states and causes are abstract variables that the brain

uses to explain or predict sensations e like the motion of an

object in the field of view.

In these models, hidden causes link hierarchical levels,

whereas hidden states link dynamics over time. Here, (f(i), g(i))

are nonlinear functions of hidden states and causes that

generate hidden causes for the level below ande at the lowest

level e sensory inputs. Random fluctuations in the motion of

hidden states and causes ðuðiÞ
x ; u

ðiÞ
v Þ enter each level of the hi-

erarchy. Gaussian assumptions about these random fluctua-

tions make the model probabilistic. They play the role of

sensory noise at the first level and induce uncertainty at

higher levels. The amplitudes of these random fluctuations

are quantified by their log-precisions ðpðiÞ
x ;p

ðiÞ
v Þ.

Given the form of the generative model (A.2) we can now

write down the differential equations (A.1) describing

neuronal dynamics in terms of (precision-weighted) predic-

tion errors. These errors represent the difference between

posterior expectations and predicted values, under the

generative model (using A$BbATB and omitting higher-order

terms):

_~m
ðiÞ
x ¼ D~mðiÞ

x þ v~gðiÞ

v~mðiÞ
x

$xðiÞv þ v~f
ðiÞ

v~mðiÞ
x

$xðiÞx � DTxðiÞx

_~m
ðiÞ
v ¼ D~mðiÞ

v þ v~gðiÞ

v~mðiÞ
v

$xðiÞv þ v~f
ðiÞ

v~mðiÞ
x

$xðiÞx � xðiþ1Þ
v

xðiÞx ¼ exp
�
~pðiÞ
x

�
$~εðiÞx

xðiÞv ¼ exp
�
~pðiÞ
v

�
$~εðiÞv

~εðiÞx ¼ D~mðiÞ
x � ~f

ðiÞ�
~mðiÞ
x ; ~mðiÞ

v

�
~εðiÞv ¼ ~mði�1Þ

v � ~gðiÞ�
~mðiÞ
x ; ~mðiÞ

v

�

A.3

This produces a relatively simple update scheme, in which

posterior expectations ~mðiÞ are driven by a mixture of predic-

tion errors ~εðiÞ that are defined by the equations of the gener-

ative model.

In neuronal network terms, Equation A.3 says that error-

units compute the difference between expectations at one

level and predictions from the level above (where x(i) are pre-

cision weighted prediction errors at the i-th level of the hier-

archy). Conversely, posterior expectations are driven by

prediction errors from the same level and the level below.

These constitute bottom-up and lateral messages that drive

http://dx.doi.org/10.1016/j.cortex.2015.03.025
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posterior expectations towards a better prediction to reduce

the prediction error in the level below. In neurobiological

implementations of this scheme, the sources of bottom-up

prediction errors are generally thought to be superficial py-

ramidal cells, because they send forward (ascending) con-

nections to higher cortical areas. Conversely, predictions are

thought to be conveyed from deep pyramidal cells by back-

ward (descending) connections, to target the superficial py-

ramidal cells encoding prediction error (Bastos et al., 2012;

Mumford, 1992).

The corresponding updates for the parameters follow a

similar scheme; however, because parameters are time-

invariant we have a simpler gradient descent that effectively

accumulates free energy gradients over time:

_~mqðtÞ ¼ �v
~m
Sð~s; ~mÞ

vtS ¼ Fð~sðtÞ; ~mxðtÞ; ~mvðtÞ; ~mqÞ
A.4

Here, Sð~s; ~mÞ is the anti-derivative of free energy (known as

free action). Neurobiologically, when expressed in terms of

prediction errors, the solution to Equation A.4 corresponds to

associative plasticity. See (Friston, 2008) for details.
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