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Abstract

We describe work that addresses the cortical basis for the analysis of auditory objects using ‘generic’ sounds that do not correspond to
any particular events or sources (like vowels or voices) that have semantic association. The experiments involve the manipulation of syn-
thetic sounds to produce systematic changes of stimulus features, such as spectral envelope.

Conventional analyses of normal functional imaging data demonstrate that the analysis of spectral envelope and perceived timbral
change involves a network consisting of planum temporale (PT) bilaterally and the right superior temporal sulcus (STS). Further analysis
of imaging data using dynamic causal modelling (DCM) and Bayesian model selection was carried out in the right hemisphere areas to
determine the effective connectivity between these auditory areas. Specifically, the objective was to determine if the analysis of spectral
envelope in the network is done in a serial fashion (that is from HG to PT to STS) or parallel fashion (that is PT and STS receives input
from HG simultaneously). Two families of models, serial and parallel (16 in total) that represent different hypotheses about the connec-
tivity between HG, PT and STS were selected. The models within a family differ with respect to the pathway that is modulated by the
analysis of spectral envelope. After the models are identified, Bayesian model selection procedure is then used to select the ‘optimal’
model from the specified models. The data strongly support a particular serial model containing modulation of the HG to PT effective
connectivity during spectral envelope variation.

Parallel work in neurological subjects addresses the effect of lesions to different parts of this network. We have recently studied in
detail subjects with ‘dystimbria’: an alteration in the perceived quality of auditory objects distinct from pitch or loudness change.
The subjects have lesions of the normal network described above with normal perception of pitch strength but abnormal perception
of the analysis of spectral envelope change.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of auditory object is controversial (Griffiths
and Warren, 2004). The term can be applied to a sound
source such as a voice, or an acoustic event generated by
a source such as a vowel sound. In both cases there are fea-
tures of the object that are independent of the detailed
structure of the sound: we can recognise the same vowel,
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or voice, regardless of the pitch. In these examples the spec-
tral envelope of the sound determines the particular vowel
sound produced, and is one characteristic of the voice. Rec-
ognising the vowel or voice requires the ‘abstraction’ of
spectral envelope. We are carrying out experiments that
address how the auditory cortex might carry out such
abstraction at a ‘generic’ level of processing (Griffiths
et al., 2004b), before semantic analysis. Fig. 1 shows stimuli
used in an imaging experiment (Warren et al., 2005) to
assess the abstraction of changing spectral envelope regard-
less of the continuously changing fine spectral structure. In
this experiment the key contrast compared the brain activa-
tion during the perception of sounds with changing spectral
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Fig. 1. Stimuli for functional imaging of the brain basis for spectral-
envelope analysis.

Fig. 2. Functional imaging of the brain basis for the analysis of spectral
envelope.
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envelope and brain activity during the perception of sounds
with a fixed spectral envelope. In both conditions the indi-
vidual sounds alternated between noise and harmonic stim-
uli, allowing an argument to be made that the difference
between activation in the two conditions is due to the anal-
ysis of spectral envelope as opposed to the fine spectral
structure.

Spectral analysis has been identified as an important
aspect of auditory object characterisation in behavioural
experiments that use the technique of multidimensional
scaling (MDS) to place objects in a Euclidian space in
which the distance between objects corresponds to the per-
ceptual dissimilarity between them (Grey, 1977; McAdams
and Cunible, 1992). The technique has typically been
applied to the analysis of sources such as musical instru-
ments and instrument hybrids. The studies generally agree
that at least two dimensions are needed to characterise the
timbre space, where these broadly correspond to the spec-
tral and temporal envelopes, but the exact nature of the
third dimension is not clear: early studies suggested a role
for spectral flux (defined as the rate of change of spectral
centroid) whilst later studies (Caclin et al., 2005) suggest
that a role for fine spectral structure in object characterisa-
tion. The current approach to spectral envelope analysis is
distinct to the approach using MDS based on ‘real’ objects.
The approach might be described as the investigation of
‘prototimbre’: the systematic manipulation of higher-order
properties of synthetic stimuli to investigate plausible bases
for object characterisation.

2. Conventional mapping of cortical networks for the

analysis of object properties

Brain activity during the analysis of spectral envelope
was estimated by the fMRI BOLD response using a sparse
imaging paradigm described in Warren et al. (2005). In
Fig. 2 the critical contrast between changing and fixed spec-
tral envelope, where the baseline fine spectral structure is
continuously varying, reveals activity in a network of areas
including planum temporale, PT (bilaterally), and superior
temporal sulcus, STS (on the right). The STS activation
occurs in a region that has been previously implicated in
voice analysis (Belin et al., 2000), and can be interpreted
in terms of a fundamental role in the abstraction of spectral
envelope relevant to the analysis of a number of sources
including voices.

The experimental manipulation of spectral envelope in
the above experiment can be regarded as manipulation of
higher order properties of the stimuli that are perceived
by the subjects, despite continuously changing fine spectro-
temporal structure. From first principles, the activation
network that is demonstrated might correspond to compu-
tation of higher order stimulus properties or to a neural
correlate of the perceptual changes produced. We have
demonstrated very similar networks of activation in exper-
iments where distinct dimensions of timbre were manipu-
lated (unpublished observation). The demonstration of a
similar mapping for very different types of stimulus change
is indirect evidence that activity in the network is a neural
correlate of the changing percept. The argument is logically
similar to one that we have developed related to the func-
tional imaging of pitch perception, where manipulation
of the stimulus in either the time domain (Patterson
et al., 2002) or frequency domain (Penagos et al., 2004)
produces similar changes in activity in lateral Heschl’s
Gyrus (HG), providing indirect evidence for the existence
of a perceptual ‘pitch centre’ in lateral HG. With respect
to the current network of activation involving bilateral
PT and right lateralised STS it should be borne in mind
that it is possible that different elements of the network
have different relationships to stimulus computation or
perception.

The lateralisation seen in the right temporal lobe in
these experiments on normal subjects is congruent with
data from the systematic study of patients with temporal
lobectomy (reviewed in Stewart et al. (2006)) showing
that right but not left temporal lobectomy affects the
analysis of both spectral and temporal dimensions of
timbre.
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3. Beyond conventional mapping: dynamic causal modelling

and Bayesian model selection

Conventional functional imaging analysis based on the
general linear model is an exploratory approach that inter-
rogates data from the whole brain to identify areas that
show the specified relationship between activity and the
stimulus manipulation or perceptual change. We have used
dynamic causal modelling and Bayesian model selection
approach to test different models that might account for
the network of activity observed in the spectral envelope
experiments. The aim of the approach is to address two
fundamental biological questions. First we assess the gen-
eral structure of the HG–PT–STS network for object pro-
cessing. In particular, we address the critical question of
whether analysis in PT and STS occurs in a serial (hierar-
chical) fashion, based on connections from HG to PT
and from PT to STS, or whether the analysis is based on
parallel processing due to connections from HG to both
PT and STS. Second, we address how connection strengths
between elements of this cortical network are modulated
during the spectral envelope processing.

In order to test these hypotheses, two broad categories
of models, serial and parallel were specified (Fig. 3). All
the models specified were based on the (orthodox) assump-
tion that there is a direct effect of the sound input on the
activity within the primary auditory cortex within HG. In
Fig. 3. Models for spectral envelope analysis in the right hemisphere.
the serial models, auditory inputs entering HG reach STS
via PT and thus processing in STS depends on inputs from
PT. In contrast, in the parallel models, HG connects to
both PT and STS enabling parallel processing in PT and
STS. In total, 16 models (9 serial, 7 parallel) were fitted
to the data and compared using Bayesian model selection.

It should be noted that the DCM approach developed
below might yield a ‘best’ model that is not a ‘true’ model
if the set of models tested does not include the latter. It is
important when setting up DCM analyses, therefore, to
consider the possible models in a systematic and inclusive
way. Even for a simple serial and parallel comparison for
three areas as here, there are a large number of models
when all the possible forward and back projections and
the possible sites of modulatory effect are taken into
account.

3.1. Dynamic causal modelling

The basic idea behind dynamic casual modelling can be
summarised as follows. A cognitive or motor task in brain
is accomplished by interaction between a number of nodes.
This interaction is at the level of neural activity and there-
fore takes place at the millisecond time scale. DCM models
such interaction. In an ‘ideal’ imaging technique that could
accurately define nodes and the time course of neural activ-
ity at the millisecond level DCM could be carried out
directly on the time series of neural activity from different
nodes. Such an approach would actually be possible with
neurophysiological data acquired simultaneously from dif-
ferent functional areas, though we are not aware of any
studies that have used this approach. In humans, DCM
has been applied to EEG and MEG data (Kiebel et al.,
2006) with millisecond time resolution, but its main appli-
cation to date has been to functional MRI data sets. For
these applications, DCM incorporates a biophysical model
for the conversion of regional neural activity into the ‘slug-
gish’ BOLD response that takes seconds to reach a peak in
activation paradigms. Despite that fact that DCM is based
on BOLD sampling rates that are more than three orders
of magnitude slower than the temporal dynamics of the
neural activity producing it, the incorporation of the bio-
physical model allows inference to be made from coarse
resolution time series about events occurring at a much
finer time scale. With respect to auditory functional MRI
many experiments, including our experiment on spectral-
envelope analysis above, are based on ‘sparse’ designs to
avoid the effect of simultaneous scanner noise on the effects
of interest. The current DCM analysis is the first to our
knowledge that has been applied to such a data set.
DCM allows inference about events occurring at the milli-
second level based on BOLD time series acquired with
sampling rates of less than 1 Hz. We will show in the anal-
ysis below that the additional loss of resolution due to
sparse paradigms (where the sampling rate can approach
0.1 Hz) does not preclude the demonstration of plausible
models of dynamic neural interaction using DCM.
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From the system theory point of view, the brain can be
treated as a nonlinear input–output dynamic system that
can be excited by controlled stimuli and its response
(hemodynamic response here) measured. The central idea
behind dynamic causal modelling is to estimate and draw
inference about the causal interaction between different
regions of the brain by identifying a model for the system
using input–output measurements.

In general, any model will comprise variables (that may
or may not be measurable) and parameters that are esti-
mated from the measurements. The model used in
DCM has three types of variables: input variables that
are the same as those used in conventional GLM analysis
and encode the experimental manipulation; output vari-
ables that are the regional hemodynamic responses from
each of the region considered in the model and state vari-
ables. State variables can often not be measured directly,
and represent the neural activity and biophysical variables
that transform neural activity into hemodynamic
response.

In DCM, three different sets of parameters are used.
The first set of parameters, known as intrinsic parameters,
models the anatomical or hardwired connection strengths
between the regions. These parameters represent the influ-
ence that one region has over the other in the absence of
any external excitation of the system. The second set of
parameters, known as modulatory parameters, models
the change in intrinsic connection strength that is induced
by the external experimental input. These parameters are
therefore input specific and are also referred to as ‘bilin-
ear terms or parameters’. The third set of parameters
models the direct influence of an external stimulus on a
given region. The conventional GLM analysis is based
on the assumption that any external stimulus has a direct
influence on a region and therefore, it is the third set of
parameters that form the primary focus of GLM analysis.
DCM, therefore, can also be regarded as more general
with GLM analysis being a specific situation where the
interaction parameters (first and second set) are assumed
be zero.

Once the model is specified, it has to be estimated
from the measurements. There are, however, some natu-
ral constraints on the model. For example, the neural
activity of a region can not diverge to infinity. The model
parameters, therefore, need to be estimated such that
these constraints are complied with. One framework for
estimating the parameters with prior constraints is Bayes-
ian statistics. In Bayesian statistics, a parameter is
assumed as a random variable and is therefore com-
pletely characterized by its probability density (distribu-
tion) function. The prior constraints about the
parameters are specified in terms of (prior) density func-
tion. Bayesian estimation procedure estimates the param-
eters by computing its posterior density function. Under
the assumption that the density function is Gaussian,
the density function can be characterized by two param-
eters namely maximum a posterior (MAP) estimate
(which is equal to the mean value of the posterior density
function under Gaussian assumption) and a posterior co-
variance. Once the probability density function of the
parameters is known, meaningful inferences about the
parameters can be drawn.

DCM has several advantages over other models of effec-
tive connectivity, e.g. structural equation modelling (SEM)
(McIntosh and Gonzalez-Lima, 1994), multivariate autore-
gression (MAR) (Harrison et al., 2003) or Granger causal-
ity (Goebel et al., 2003) (see (Friston et al., 2003; Stephan,
2004) for further discussion). DCM takes into account tem-
poral order (and autocorrelation of the fMRI time series).
It further allows one to model the effects of experimentally
controlled manipulations as either affecting regional activ-
ity directly (e.g. sensory inputs) or modulating the
strengths of connections. Most importantly, however,
DCM is currently the only model of effective connectivity
that combines a neural population model with a biophysi-
cal hemodynamic forward model and is thus able to model
how system dynamics at the (hidden) neuronal level trans-
lates into measured BOLD signals. These are the first data
of which we are aware that apply the approach to sparse
data sets from auditory experiments.

Mathematically, DCM is based on a bilinear model of
neural population dynamics that is combined with a hemo-
dynamic model (Buxton et al., 1998; Friston et al., 2000),
describing the transformation of neural activity into pre-
dicted BOLD responses. The neural dynamics are modelled
by the following bilinear differential equation
dz
dt
¼ Azþ

Xm

j¼1

ujBðjÞzþ Cu ð1Þ
where z is the state vector (with one state variable per re-
gion), t is continuous time, and uj is the jth input to the
modelled system (i.e. some experimentally controlled
manipulation). This state equation represents the strength
of connections between the modelled regions (the A ma-
trix), the modulation of these connections as a function
of experimental manipulations (e.g. changes in task; the
B(1) . . . B(m) matrices) and the strengths of direct inputs to
the modelled system (e.g. sensory stimuli; the C matrix).
These parameters correspond to the rate constants of the
modelled neurophysiological processes. Combining the
neural and hemodynamic model into a joint forward mod-
el, DCM uses a Bayesian estimation scheme to determine
the posterior density of the parameters. Under Gaussian
assumptions, this density can be characterised in terms of
its maximum a posteriori (MAP) estimate and its posterior
covariance.

Overall, the parameters of the neural and hemodynamic
model are fitted such that the modelled BOLD signals are
as similar as possible to the observed BOLD responses.
This allows one to understand and make statistical infer-
ences about regional BOLD responses in terms of the con-
nectivity at the underlying neural level.



Fig. 4. Evidence for the models in a single subject: Plots of probabilities
p(yjm) for individual subjects for the 16 models included in dynamic
causal modelling. The probabilities have been normalised so that they sum
to one. These represent the probability of the model, given the data,
assuming each model is, a priori, equally likely.

Table 1
Bayes factor of model 1 vs. all the remaining models

Model 1 vs. Bayes factor

2 6.27 · 107

3 1.06 · 102

4 1.50 · 102

5 1.14 · 1014

6 1.01 · 104

7 3.68 · 1023

8 0.85 · 102

9 8.64 · 109

10 6.85 · 105

11 1.64 · 107

12 1.75 · 107

13 0.26 · 102

14 4.21 · 105

15 9.13 · 102

16 2.84 · 102
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3.2. Selection of optimal model

A general problem that arises in any modelling exercise
is to decide, given a measured data set, which of several
competing models is the optimal. A number of criteria
(for selecting the optimal model) have been proposed in
the modelling the literature (Burnham and Anderson,
2004). From a Bayesian perspective, an optimal criterion
is the model evidence, i.e. the probability p(yjm) of obtain-
ing the data y given a particular model m (Raftery, 1995).
Critically, the model evidence not only takes into account
the relative fit of competing models but also their relative
complexity (i.e. the number of free parameters). This is
important because there is a trade-off between the fit of a
model and its generalizability, i.e. how well it explains dif-
ferent data sets generated from the same underlying pro-
cess. As the number of free parameters is increased,
model fit increases monotonically whereas beyond a certain
point model generalizability decreases. The reason for this
is ‘‘overfitting’’: an increasingly complex model will, at
some point, start to fit noise that is specific to one data
set and thus become less generalizable across multiple real-
izations of the same underlying generative process.

As the model evidence cannot always be derived analyt-
ically, two commonly used approximations to it are Akaike
information criterion (AIC) and Bayesian information cri-
terion (BIC) (Penny et al., 2004). Application of these
approximations for model selection, however, do not nec-
essarily give identical results because BIC favours simpler
model whereas AIC is biased towards more complex mod-
els. A general convention is that if two models (say m1 and
m2) are to be compared, then a decision is made only when
AIC and BIC concur. The relative evidence of one model as
compared to another is determined using the so-called
‘Bayes factor’:

BF12 ¼
pðyjm1Þ
pðyjm2Þ

ð2Þ

where BF12 is the Bayes factor of model 1 with respect to 2.
Following the selection of a best model for each individual
subject, the optimal model for a group of subjects can be
determined by the group Bayes factor (GBF), which is
equal to the geometric mean of the Bayes factors for each
individual subject.

3.3. The optimal model for spectral analysis

Fig. 4 shows the evidence for the models, determined
separately using AIC and BIC, in one subject. Model 1 is
the optimal model to explain the data. The parameters
for this model specify a serial model with connectivity
(HG! PT! STS) and modulation of connection from
HG to PT during the analysis of spectral envelope. In addi-
tion to the individual inference, Table 1 shows the Bayes
factor (minimum of the two values computed using AIC
and BIC) for model 1 with respect to the other 15 models.
All the values are greater than 150, except for models 8 and
13 for which Bayes factors are 85 and 26, respectively. This
corresponds to ‘strong’ evidence for serial model with
respect to models 8 and 14 and ‘very strong’ evidence with
respect to all other models (Raftery, 1995).

Estimates were derived for the intrinsic and modulatory
connection strengths (Table 2) of the optimal model and
the probabilities that the parameter estimates are greater



Table 2
Intrinsic and modulator connection strengths for model 1 (optimal serial
model)

Connection strength HG–PT PT–STS

Intrinsic 0.492(1.000) 0.525 (1.00)
Modulatory 0.619 (0.999) –

Fig. 5. Lesion in patient with dystimbria.

  PT 
All sounds 

  HG 

STS

Spectral Shape 

LESION

Fig. 6. Effect of lesion on the normal network for spectral envelope
analysis.
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than zero. The probabilities that the magnitudes of intrin-
sic connection strengths are greater than zero are signifi-
cant Furthermore, the probability that the modulation of
the strength of the connection from HG to PT is greater
than is also significant.

The intrinsic modulations in the model correspond to
effective connectivity: the direct modulatory effect of the
activity in one area on that in another mediated by an
anatomical connection. In anatomical terms such connec-
tion could be direct, or occur via a relay but there must
be a mechanism for connection. Data about anatomical
connections between human auditory areas are lacking:
there are data showing connection for HG to PT (Tardif
and Clarke, 2001) but we are not aware of any data on
the connection from PT to STS predicted by the model.
The basis for the modulatory connection deserves com-
ment: this does not predict a direct anatomical effect on
a connection, but rather a change in the connection
strength between HG and PT during envelope analysis.
The model predicts a component of the effect of activity
in HG on that in PT that occurs specifically during spec-
tral envelope analysis. This prediction could be tested
with other methods such as neurophysiological recording
from HG and PT during manipulation of the spectral
envelope of stimuli.

The model has certain limitations and should not at
this stage be regarded as a general synthesis of all aspects
of object analysis in all subjects. Broadly, the existence of
a serial model is in accord with the concept of a single
pathway for auditory object analysis, and supports the
concept of PT as a critical ‘computational hub’ (Griffiths
and Warren, 2002) at the interface between the abstrac-
tion of auditory object properties and further analysis in
distinct higher centres for object analysis that also carry
out semantic level processing. Further work is required
to asses the extent to which the model generalises to lar-
ger populations of subjects. It should also be emphasised
that the approach taken here addresses the simplest level
of perceptual analysis when the subject is required to
attend to the sounds but does not carry out any relevant
task or semantic level analysis. It will be of considerable
future interest to examine the effects of task and semantic
analysis on intrinsic connectivity patterns. A number of
questions arise such as these levels of processing are asso-
ciated with modulation at later stages of the system (the
connection between PT and STS) or the existence of addi-
tional back connections that are predicted by models of
visual cortical processing.
4. A cognitive neuropsychological approach

The approach developed here has the potential to allow
a fuller understanding of human cortical disorders. First,
disorders manifest at the level of ethological stimuli such
as speech, environmental sounds and music can be consid-
ered in terms of more generic auditory processing to assess
‘bottom-up’ contributions to the deficit. The approach is
developed in detail for music in Stewart et al. (2006) Sec-
ond, an approach based on the exact specification of nor-
mal models will allow greater understanding of the effects
of lesions in terms of their effects on connectivity between
nodes in networks as well as the effects on the nodes them-
selves. Network models of auditory analysis incorporating
connectivity go back to models such as the 1885 Lichteim
model for speech (Lichtheim, 1885), based on an analysis



Table 3
Psychophysical assessment of patient with ‘dystimbria’: normal perception of complex pitch and modulation and abnormal perception of timbral changes

Task Control mean (SD) Patient Z score

Complex pitch

Iterated rippled noise (gain)* �1.05 (0.176) �1.29 �1.41

Modulation

2 Hz FM* 0.0136 (0.183) 0.154 0.767
120 Hz FM 0.0161 (0.00758) 0.0184 0.303
2 Hz AM* �1.02 (0.264) �1.10 �0.300
120 Hz AM* �1.85 (0.249) �1.71 0.553

Spectral timbre

M timbre gain 7.6 dB (.649) 14.2 10.2
M timbre attenuation 7.5 dB (1.10) 13.3 5.3

The data for complex pitch and modulation are based on the exact methods specified in Griffiths et al. (2001) using two-interval-two-alternative forced
choice psychophysics and method of constant stimuli to yield 75% thresholds that are compared with those of 20 age matched controls to yield a z score. *

Show tests for which log transformation of the data is required to allow parametric statistics.
The data for spectral timbre are based on the detection of changes to the shape of am ‘M’ shaped spectral envelope applied to a harmonic series in positive
Shroeder phase with fundamental frequency of 100 Hz. The stimulus was roved over 20 dB and subjects had to detect increased gain (more dip at central
point) or attenuation (less dip). The reference stimulus had attenuations in the envelope of 50, 0, 15, 0, and 50 dB at 0.8, 1.6, 2.4, 3.2, and 4 kHz,
respectively. An AXB design was used where subjects had to detect changes in the first or second stimulus compared to the middle reference. Threshold
was derived from three-down-one-up adaptive tracking and z scores based on comparison with control data.
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of the effect of stroke on the speech network: here abnor-
mal function allows inference about normal function and
the approach is still valid today (Peretz and Coltheart,
2003). We now have the ability to define the normal net-
works for auditory analysis with much more precision to
allow prediction of the effect of lesions, so that knowledge
of normal function can now allow inference about abnor-
mal function.

Fig. 5 shows the structural damage to the brain of a
patient who presented at the age of 42 with an unusual
auditory deficit after a right-hemisphere stroke. Damage
occurred to the lateral part of HG on the right, the right
planum temporale and the posterior superior temporal
gyrus and the adjacent posterior superior temporal sulcus.
He presented with unusual symptoms that might be charac-
terised as ‘dystimbria’: musical instruments appeared dis-
torted to him, speech appeared distorted to him (human
voices sounded ‘unreal’ as if they were being played
through poor quality speakers) and he sometimes misiden-
tified environmental sounds such as birdsong.

A problem with spectral envelope analysis in this patient
would be predicted on the basis of model 1 in the analysis
above. Fig. 6 shows the effect of the lesion on the spectral
envelope system that would be predicted entirely on the
basis of anatomy. The lesion in his case would affect both
the PT node and the connection between PT and STS.

Psychophysical assessment of the patient (Table 3) con-
firmed normal perception of complex pitch as assessed by
the detection of the pitch of individual sounds. Testing
the detection of pitch in regular-interval noise with contin-
uously variable gain to change regularity and pitch strength
(using two-interval-two-alternative forced choice psycho-
physics and the method of constant stimuli) as described
in Griffiths et al. (2001) yielded normal thresholds: this
would be predicted on the basis of the intact pitch centre
in lateral HG in the left hemisphere. He also demonstrated
normal performance for the detection of amplitude and fre-
quency modulation of a narrowband carrier with rates of
2 Hz and 120 Hz. These thresholds are expressed in Table
3 as z-scores compared to a control age-matched
population.

In contrast his thresholds for the detection of changes in
spectral shape were double that of normal controls (Table
3). He had similar deficits in the detection of the frequency
shift of the spectral envelope of a harmonic carrier and in
the detection of changes in attack rate.
5. Conclusion

We have developed an approach to the analysis of audi-
tory object properties based on the precise definition of the
underlying cortical systems in normal subjects. The
approach suggests serial analysis of the property of spectral
envelope in HG then PT and STS and predicts deficits in
timbral analysis that we have identified in patients with
right-hemisphere lesions.
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