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Abstract: Current approaches to detecting significantly activated regions of cerebral tissue use statistical 
parametric maps, which are thresholded to render the probability of one or more activated regions of one 
voxel, or larger, suitably small (e.g., 0.05). We present an approximate analysis giving the probability that 
one or more activated regions ofa specified volume, or larger, could have occurred by chance. These results 
mean that detecting significant activations no longer depends on a fixed (and high) threshold, but can be 
effected at any (lower) threshold, in terms of the spatial extent of the activated region. The substantial 
improvement in sensitivity that ensues is illustrated using a power analysis and a simulated phantom 
activation study. 
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tional imaging 

INTRODUCTION 

Functional images of the brain are almost univer- 
sally compared using some form of statistical paramet- 
ric mapping. Statistical parametric maps (SPMs) have 
voxel values that, under the null hypothesis, are 
distributed according to some known probability den- 
sity function [Friston et al., 19901. The most commonly 
used statistics are the Student’s t [Friston et al., 1990; 
Worsley et al., 19921 and the correlation coefficient 
[e.g., Friston et al., 19931. 

Any continuous probability density function (PDF) 
can be transformed to the Gaussian distribution or 
z-statistic. If the degrees of freedom of the original 
distribution are reasonably high, the resulting SPM 
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approximates a Gaussian field or SPM{z). The analyses 
presented in this paper are therefore restricted to the 
SPM{z]. Some exact results for SPM(t}, SPM{F], and 
SPM[x2] have now been derived [Worsley, in press]. 
The most common characterization of SPMs involves 
identifying significant activation foci. This is achieved 
by thresholding. The problem of how to correct for the 
multiplicity of nonindependent tests implicit in this 
approach has, in past years, been solved. The solution 
identifies a threshold such that for an SPM of given 
size, the probability of obtaining one or more activation 
foci of at least one voxel, by chance, is suitably small (for 
example, 0.05). This approach uses the theory of level 
crossings in stochastic processes [Friston et al., 19911, 
or the Euler characteristic [Worsley et al., 19921, ap- 
plied to Gaussian processes with a known (or measur- 
able) autocorrelation. 

The threshold identified, using current techniques, 
takes no account of the spatial extent of an activation. 

0 1994 Wiley-Liss, Inc. 
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Activation foci are characterized not only by the 
threshold they reach but also by their spatial topogra- 
phy, for example, their shape, spatial relationships to 
each other, and their size. This paper deals only with 
size or volume. A spatially limited focus is usually 
considered less ”significant” than a very large one [see 
Poline and Mazoyer, 1993 and Roland et al., 1993 for 
empirical studies in this area]. Clearly the detectability 
of significant foci would be enhanced if the volume of 
activated tissue were explicitly included when testing 
the null hypothesis that the activated region could 
have occurred by chance. More precisely, for any 
region, one would like to ask: ”Over an SPM of given 
size, what is the probability of obtaining one or more 
activation foci of the same size, or larger, than the one in 
question?” Another way of looking at this formulation 
is to compare current approaches, which provide a 
critical value for the maximum height of a peak, to the 
approach proposed here, which asks: ”What is the 
critical value for the maximum size of a focus?” The 
purpose of this article is to present an approximate 
analysis of the probability theory that is needed to 
answer these questions. One important aspect of 
assessing significance in terms of spatial extent is that 
the analysis is freed from the arbitrary nature of fixed 
and high thresholds (in the sense that significance can 
be assessed at any threshold). 

Below we provide a theory section that defines the 
problem addressed, the solutions obtained, and the 
implications of detecting changes using a power analy- 
sis. We then describe a simple simulated phantom 
experiment that demonstrates the application of the 
theory to the detection of significant activations. More 
general applications of the results to real data will be 
deferred for later publications. 

THEORY 

From a statistical perspective, three things about an 

The number (N) of voxels above a threshold (the 
number of voxels in the excursion set that have 
values greater than a threshold u )  
The number (m)  of activated regions (clusters or 
connected subsets of the excursion set) 
The number (n) of voxels in each of these clusters. 

Each of these numbers has its own probability 
density function; P(N = x), P(m = x), and P(n = x )  [in 
this context P(n = x )  is strictly a conditional probabil- 
ity, given that the region exists P(n = x I m 2 l)]. These 
probability functions provide a fairly complete charac- 
terization of the SPM and allow one to address a 
number of hypotheses. 

SPM are of interest: 

In what follows, we apply results from the theory of 
Gaussian fields to a D-dimensional lattice of continu- 
ous random variables (a voxelated SPM) by consider- 
ing it as a good lattice representation of an underlying 
continuous Gaussian field. Although the parameters N 
and n are, in reality, discrete variable (numbers of 
voxels), they are treated here like continuous mea- 
sures of volume. The volumes in question are the 
spatial volume occupied by voxels above a certain 
threshold (i.e., the number of voxels in a suprathresh- 
old cluster). 

The particular probability we are interested in is: 
The probability of obtaining at least one activation with k 
voxels or more. This is the same as the probability that the 
largest region has k voxels or more = P(nmax 2 k) ,  where 
nmax is the number of voxels in the biggest region. This 
probability is a more general case of that currently 
used, namely: The probability of getting at least one 
activation (with one voxel or more) = P(nmax 2 I). 
This is simply equal to the probability of getting at 
least one region P(m 2 1). P(m 2 1) is usually set to 
0.05 by choosing an appropriate threshold or critical 
height (u). This threshold is chosen by estimating the 
expectation or mean of m(E(m}) and using the fact that 

P(m 2 1) 2 E{m} 

tends to equality at high thresholds [Hasofer, 19781. 
An approximate expression for E{m) was presented in 
Friston et al. [1991] using a somewhat heuristic argu- 
ment. More exact results will be found in Hasofer 
[1978], which pertain to the number of maxima. 
Because at high threshold (u), the number of maxima 
(mmaxima) and m converge, these expressions should be 
equivalent (more generally m I mmaxima). Subse- 
quently, the Euler characteristic (x) has been used as 
an estimate of E{m] [Worsley et al., 19921. Again, the 
Euler characteristic and rn converge at high u (more 
generally, x 2 m). The Euler characteristic is more 
amenable to mathematical analysis than the number 
of maxima. 

The problem addressed in this article is how to 
estimate P(nmax 2 k) and obtain a critical threshold for 
volume. To do this, one needs to know both the 
probability of obtaining an arbitrary number of re- 
gions P(m = x) and the probability that these regions 
have less than k voxels P(n < k). Unfortunately, in the 
context of Gaussian processes, no exact results for 
these probabilities exist. However, using a less formal 
analysis, one can estimate the probability density 
functions using what is already known. 

In the next three sections, we introduce expressions 
for the expectations and probability density functions 
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of m and n and combine these results to give the final 
expression for P(nmax 2 k). In brief, we use a Poission 
form for P(m = x) and a standard approximation for its 
expectation [Hasofer, 1978; Adler and Hasofer, 19811. 
The PDF for P(n = x) uses an earlier observation 
[Nosko, 1969al that n21D has an exponential distribu- 
tion, in conjunction with the above result for E(m}. 

Expectations of N, m, and n 

The three variables N, m, and n have expectations 
that are related: 

E(N) = E(m}.  E{n}. (2) 

The expectation of N is known exactly because of 
the Gaussian univariate assumptions and is simply the 
appropriate integral under the normal distribution or 
error function @(.) [Friston et al., 19901. As mentioned 
above, we already know the approximate expectation 
of m. For any threshold u, the expectations for a 
D-dimensional process of volume S are given by: 

coordinate directions, then it can be shown [Friston et 
al., 1991; Worsley et al., 19921 that W = FWHM/ 
\1(410ge2) where: 

D 

FWHM = n FWHM;/D. (7) 
i= 1 

In practice, W can be determined directly from the 
effective FWHM (if it is known) or estimated post hoc 
using the measured variance of the SPMs first partial 
derivatives according to Equation 6 [see Friston et al., 
1991 and Worsley et al., 1992 for discussion and 
validation of this characterization of smoothness]. 

Approximate expressions for P(m = x )  and P(n = x )  

P(m = x) has been shown, in the limit of high 
thresholds, to have a Poisson distribution [Adler and 
Hasofer, 1981, Theorem 6.9.3, p. 1611. A Poisson distri- 
bution is intuitively sensible, in the sense one can 
regard the centers or maxima of activated regions as 
multidimensional point processes with ”no memory.” 
In other words, when passing through the SPM, 
maxima are found in much the same way as radioac- 
tive decay events occur in time: 

E(n) = E{N}/E{m). (5) 

W is a measure of smoothness and is related to the 
full-width at half-maximum (FWHM) of the SPMs 
”resolution.” Equivalently, W is inversely related to 
the number of “resolution elements” or Resels ( R )  that 
fit into the total volume (S) of the D-dimensional SPM. 
( R  = S/FWHMD). More exactly, let SPM, be the voxel 
value of the SPM as a function of the ith coordinate, 
and similarly let pi be the spatial autocorrelation of the 
SPM as a function of the ith coordinate, i = 1 . . . D. 
Then: 

i= 1 i = l  

where ’ denotes the derivative [Friston et al., 1991; 
Worsley et al., 19921. If the point spread function 
(convolved with any preprocessing filters) has a Gauss- 
ian shape with FWHMl . . . FWHMD in each of the D 

‘[Hasofer, 1978.1 

Asymptotic results for the distribution and expecta- 
tion of n2ID have been given by Nosko [1969a,b; 19701 
and are reported by Adler and Hasofer [1981, p. 1581. 
They show that for large thresholds, n2/D has an 
exponential distribution with the expectation: 

2nw2 
u2r(D/2 + 1)2/D 

E{n2‘D) = 

or, equivalently: 

A simple way to derive these equations is provided 
at the end of this section, for the interested reader. 
Unfortunately, Equation 10 is not robust at lower 
thresholds and substantially overestimates E{ n} when 
compared with estimates based on Equation 5, or 
indeed empirical simulations (see below). Figure 1 
illustrates this point by plotting the percentage overes- 
timation against threshold (u). This is important be- 
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Failure of the Nosko result at low thresholds 
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Figure I. 
Graphical illustration of how the Nosko result for the E{n]-the 
expectation of n (spatial extent of a region in voxels)-fails at low 
thresholds. The overestimation is relative to E{n] as defined in 
Equation 5. The relationship presented here does not depend on 
dimensionality, search volume, or smoothness. 

cause we want to apply the approximations at rela- 
tively low thresholds. To obtain a better approximation 
for P(n = x), we use the following device: Assume a 
form for P(n = x) that is asymptotically correct, and 
determine the parameters of the distribution by refer- 
ence to its known moments. The form of P(n = x) we 
assume is: 

or: 

By a simple change of variables, it is easy to show 
that n2/* is exponentially distributed with an expecta- 
tion E{n2/D) = Up.  Similarly, the expectation of n, 
E{n} = T ( 0 / 2  + 1) . p-D/z. p is determined according to 
the expression for E(n) in Equation 5: 

In summary, we have approximate expressions for 
both P(m = x )  and P(n = x). These approximations 
allow us to estimate P(n,,, 2 k). 

In fact, the difference between Nosko’s result and 
the conjecture adopted here is relatively simple (but 

not necessarily small-see Figure 1) and is resolved by 
using a standard approximation for the error function 
a(.) that works for (and only for) high thresholds: 

Substituting this into Equation 3, the expression for 
E(N] and expanding Equation 5, E(n] = E(N]/E{rn} 
gives the limiting value of E(n], which is given by 
Equation 10. Recalling that E{n2/D) = 1/p (Equation 
ll), the same substitution can be used to verify 
Equation 9 using the expression for (3 in Equation 12. 

Estimating P(n,, 2 k )  

To calculate P(nmax 2 k) ,  we simply compute one 
minus the probability that all m regions have less than 
k voxels, times the probability of getting m regions. 
These probabilities are summed over all possible val- 
ues of m: 

In the limiting case of small E(m], or high threshold, 
P(nmax 2 1) = E(m} [note P(n 2 1) = 11. This special 
case is precisely the one adopted in current ap- 
proaches [Friston et al., 1991; Worsley et al., 19921. 

Equation 14 gives an estimate of the probability of 
finding at least one region with k or more voxels in an 
SPM. For any fixed value of P(nmax 2 k) ,  a whole 
family of activation foci have an equally improbable 
chance of occurrence. The interaction between thresh- 
old (u )  and volume (k )  is demonstrated in Figure 2, 
which plots the isoprobability contours of P(nmax 2 k)  
for a two-dimensional SPM with 12B2 pixels (two- 
dimensional voxels) and FWHM = 9.42. A region of 
one or more pixels at a threshold of -3.9 is as 
”improbable” ( P  = 0.05) as a focus with 60 or more 
pixels at a threshold of -3.  This is very important 
from the perspective of detecting regions of cerebral 
activation: Although a spatially extensive region of 
activation may not necessarily reach a high threshold 
(e.g., 3.9), it may be significant (at P = 0.05) if assessed 
at a lower threshold (e.g., 3). This is the application of 
the above results we pursue in this article. 
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Figure 2. 
lsoprobability contours calculated according to Equation 14, which 
give the relationship between threshold (u) and the number of 
voxels ( x )  an activation focus should contain to maintain a certain 
level of “probability.” More strictly, P(nmax 2 k) (the chance 
probability of obtaining one or more regions of at least k voxels) has 
been calculated over a range of voxels and thresholds and 
contoured at four levels (0. I ,  0.05, 0.01, 0.00 I).  In this example, 5 
(volume) = I28*, FWHM (smoothness) = 9.42, and D (dimension- 
ality) = 2. 

Choice of threshold-a power analysis 

The question we address here is how to choose 
threshold (u). The optimum threshold should maxi- 
mize sensitivity. In this section, we derive an approxi- 
mate expression for the sensitivity to a ”random” 
signal. We then demonstrate how the sensitivity, or 
power, depends on an interplay between the shape of 
the signal and the threshold used. Roughly speaking, 
our results will show that broader signals are best 
detected by low thresholds and that sharp focal 
signals are best detected by high thresholds. 

We now give details. Suppose the ”signal” re- 
sembles Gaussian kernels or foci, of random height, 
distributed continuously throughout the SPM. The 
shape of the signal is characterized by the width (f ) of 
these foci expressed in units of W. This signal can be 
modeled by a continuous ensemble of kernels with 
randomly distributed heights or, equivalently, by con- 
volving an uncorrelated random process with a 
”kernel” of the same height. The resulting signal will 
be a Gaussian process of smoothness f .  W. Although 
this form of signal was chosen for theoretical conve- 
nience, it is not an unreasonable model of distributed 
physiological signals in the brain. Following convolu- 
tion with the point spread function (and any prepro- 

cessing filters), the resolution of the signal will be W * 

J(1 + f2 ) .  Let the convolved signal have a standard 
deviation a, where u corresponds to the amplitude of 
the measured signal. Note that u characterizes the 
amount of measured signal, not the underlying physi- 
ological signal (which would be subject to partial 
volume effects if fwere small). 

Power is the probability of getting at least one 
true-positive, while using criteria that protect against 
false-positives. The power at a particular threshold 
can be estimated with the probability of detecting at 
least one ”signal” using a critical region size (k,) such 
that P(tzmax 2 k )  = a, where a is suitably small, say 
0.05. k, is found by inverting Equation 14: 

A small table of k, is provided as a reference for 
anyone wishing to duplicate our calculations (Table I). 
This size criterion k ,  at threshold u, is now applied to 
the process representing noise plus signal. This pro- 
cess will have zero mean and variance 1 + u2, which 
means the original threshold u is effectively: 

u* = u /  JKi. 

The process with signal will itself be a smooth 
Gaussian field with an effective resolution (We), 

The validity of Equation 17 is easily established by 
deriving the autocorrelation function of the signal 
plus noise, in terms of W, and using Equation 6. The 
expectations of N and n for signal plus noise (E{N}* 
and E(m}*) are given by substituting W* and u* in 
Equations 3 and 4. p* is similarly derived according to 
Equation 12. The probability of getting at least one 
region bigger than k, in the new process is given by 
Equation 14. Because this region is unlikely (P 5 a) to 
be due to the noise component, one can interpret the 
result as the probability of getting at least one true- 
positive. Therefore, on substituting the above: 

power = 1 - exp[-E(m]* . e~p(-p*k;’~)]. (18) 

The results of this kind of analysis are presented 
graphically in Figure 3, which shows how power 
depends on threshold and region size for a three- 
dimensional search volume of 65,536 voxels with 
FWHM = 6.12, u = 0.7, and a false-positive rate a = 
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TABLE 1. Critical sizes of &* 
~ ~~~~~ 

FWMH = 9.4 FWHM = 9.2 FWHM = 6.2 

S = 16,384, D = 2 

.________ 
~ 

S = 4,096, D = 1 S = 65,536, D = 3 

Alpha 
~ 

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 

Threshold (u) 
2.4 12 13 15 110 131 179 283 476 
2.6 10 11 13 85 103 144 272 344 
2.8 9 10 12 64 80 116 191 247 
3.0 8 9 11 46 60 92 131 174 
3.2 6 7 9 31 44 72 86 120 
3.4 5 6 8 19 30 55 53 79 
3.6 3 5 7 8 18 41 30 49 
3.8 3 6 8 28 13 27 
4.0 4 17 3 12 
4.2 3 8 3 
4.4 
4.6 

71 1 
527 
390 
287 
209 
149 
104 
69 
43 
24 
11 
2 

~~~ 

*Approximate critical values k, of k, the number of voxels in a suprathreshold cluster, chosen such that 
F'(n,,, 2 k) t: a, where nmax is the number of voxels in the largest cluster. These values are specific to 
the tabulated threshold (u), resolution (FWHM), search volume (S), and dimensionality (D). They are 
provided as a reference for those who wish to reproduce our calculations. 

0.05. For f < 0.7 (the underlying signals are narrower 
than 70 percent of the resolution of the SPM), then 
power increases with threshold, so that the most powerful 
test is just that based on the maximum value at a voxel, 
as advocated by Friston et al., [1991] and Worsley et al., 
[1992]. Iff > 0.7 (the activated region is broader than 
70 percent of the resolution), then power increases as 
the threshold is lowered. The results presented here are 
only good approximations for large thresholds, so it 
seems prudent to keep the thresholds high enough for 
the P values to remain valid. Our simulations (see 
below) suggest that the approximations hold reason- 
ably well for thresholds as low as 2.4. 

Empirical verification of the PDFs 

This section presents an empirical validation of the 
above results. This is necessary because the expres- 
sions introduced depend on a number of approxima- 
tions and should be regarded as (mathematically) 
rough estimates, especially at lower thresholds. 

We present one-, two-, and three-dimensional simu- 
lations to assess the adequacy of Equations 8 and 11 to 
describe P(m = x )  and P(n = x )  and to validate Equa- 
tion 14, the expression for P(nmax 2 k) .  The one-dimen- 
sional simulations used processes with 4,096 voxels 

(S = 4,096), a smoothness (FWHM) of 9.4, and a thresh- 
old (u )  of 2.6. The two-dimensional simulations used 
processes with 256 X 256 pixels, FWHM = 9.2, and u = 
2.58. The parameters for the 32 x 32 x 64 voxel, 
three-dimensional simulated processes were FWHM = 
5.7 and u = 2.8. For each of the three simulations, lo4 

0.6- 

0.55- 

0.4- 

signal width (f) 2.5 -% 
2 0  threshold (u) 

Figure 3. 
Two-dimensional plot of the power as a function of threshold (u) 
and the width of a signal ( f )  expressed in units of the SPM's 
smoothness (W). The key thing to note here is the marked 
dissociation between the optimum thresholds (thresholds that 
maximize power) at high and low signal widths ( f ) .  
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: 0.1 

realizations were created using uncorrelated Gaussian 
processes, which were convolved with (one-, two-, or 
three-dimensional) Gaussian kernels. The F W M s  
given above are based on post hoc empirical estimates 
of W using Equation 6. For each realization, the 
number of suprathreshold regions (m),  the numbers of 
voxels in each region (n),  and the size of the largest 
region (nmax) were recorded. Using this data, we 
compared the empirical and theoretical estimates of 
P(m = x), P(n = x), and P(nmax 2 k). 

The agreement between the empirical (dotted lines) 
and theoretical (solid lines) distributions is evident 
(Figure 4: one-dimensional, Figure 5: two-dimen- 
sional, and Figure 6: three-dimensional). In all simula- 
tions, the agreement is particularly good for large 
clusters of voxels. The values of P(nmax 2 k) are too 
conservative in the 1-dimensional case. However, at 
higher dimensions they cannot be distinguished from 
the empirically determined values. 

The small discrepancies between the empirical and 
theoretical distributions may derive from a number of 
sources: 

Many of our approximations were only asymptoti- 
cally true, in the limit of high thresholds. 

regions per volume voxels per region 
0.2r 1 

0.21 n 

regions (x) voxels (x) 

FWHM = 9.4 

threshold = 2.6 

volume = 4096 

dimensions = 1 

o % G + % - r Z  
maximum region size (x) 

Figure 4. 
Empirically (dotted lines) and theoretically (solid lines) determined 
probability density functions for the number of regions (m) per 
realization (top left): the number of voxels per region (n) (top 
right): and P(n,, 2 k) the probability that the largest region, per 
realization, has k or more voxels (bottom left). In this one-dimen- 
sional simulation, FWHM (smoothness) = 9.4, u (threshold) = 2.8, 
and S (volume) = 4096. The empirical estimates are from 10,000 
realizations. The most marked failure in these one-dimensional 
simulations was an overestimation of the probability of getting a 
large region by chance. This failure is in the conservative direction. 

regions per volume 

0.21 

1l \  1 

voxels per region 
0.051 i 

TO03 

zo 02 

0 01 

'0 50 100 150 
voxels (x) 

FWHM = 9.2 

threshold = 2.8 

volume = 65536 

dimensions = 2 

0- 200 
0 100 

maximum region size {x) 

Figure 5. 
As for Figure 2, but using two-dimensional processes. FWHM 
(smoothness) = 9.2, u (threshold) = 2.58, and S (volume) = 256 X 

256. The empirical estimates are from 10,000 realizations. The 
agreement between the empirical and theoretical values for 
P(n,, >- k) is remarkably good, particularly at large regions sizes 
(empirical, dotted lines; theoretical, solid lines). 

Using discretized processes (voxels) had an effect. 
Our simulated process was not "very large" and 
had edges. 

SIMULATED PHANTOM EXPERIMENTS 

To provide a concrete and clear illustration of how 
these equations can be applied to detecting activation 
foci, we performed a simulated phantom activation 
study. We compared two images from a phantom, 108 
pixels in diameter, with six circular wells. In the 
baseline condition, the wells contained the same activ- 
ity as in the main body of the phantom. This back- 
ground activity was 100 counts/pixel. The counts/ 
pixel in a typical human study are about 6 to 12; 
therefore, the simulated images can be thought of as 
coming from about ten subjects. In the activation 
phantom, the wells contained activity that was 10 
percent higher than the background. The wells in- 
creased in size with diameters of W . (2 + j ) /J2 ,  wherej 
ran from one to six. The smallest well was therefore 
about the size of the FWHM and subject to partial 
volume effects. 

Matrix manipulations and computations were per- 
formed in Matlab (Mathworks, Inc., Sherborn, MA). 
The 128 x 128 voxel baseline and activated images 
were constructed assuming Poisson counting statistics 
(variance equal to mean activity) and a Gaussian point 
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regions per volume 

o,2r-----l 
voxels per region 

0 . 0 8 7  
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0.02 

'0 50 100 
voxels (x) 

a 
0.2 

threshold = 2.8 

volume = 65536 

dimensions = 3 - 
OO 200 400 

maximum region size {x) 

Figure 6. 
As for Figure 2, but using three-dimensional processes. FWHM 
(smoothness) = 5.7, u (threshold) = 2.8, and 5 (volume) = 32 x 
32 X 64. The empirical estimates are from 10,000 realizations. As 
for the two-dimensional case, the agreement is remarkable (empiri- 
cal, dotted lines; theoretical, solid lines). 

spread function with u = 3. The simulated resolution 
corresponded to an FWHM of 7.06 pixels. Figure 7 
(top) shows the two images. The baseline and acti- 
vated images were subtracted and scaled to unit 
variance. Figure 7 (bottom) shows the subtraction 
image and the underlying signal (signal from the wells 
following convolution). The significance of the six 
activation foci were assessed using two methods: " 

A threshold was applied to the normalized differ- 
ence image according to current approaches, which 
rendered P(m L 1) = P(nmax 2 1) = 0.05. In this 
instance, the threshold was 4.108. This analysis 
only detected the three largest activation foci. The 
results of this conventional and high thresholding 
are shown in Figure 8 (left). 
The normalized difference image was thresholded 
at a much lower and arbitrary level (2.8). The 
significance of each focus was assessed with the 
P(nmax 2 k) calculated using Equation 14. The 
results of this analysis are shown in Figure 8 
(right). Although detected, the smallest focus is 
not significant [P(nmaX L k) = 0.751. Indeed, some- 
thing this size or larger would occur at least once 
on about 75 percent of occasions by chance. The 
second smallest focus had a P(n,,, 2 k) of 0.17. 
The remaining four foci were found to be highly 
significant. 

raphy is taken into account. This approach frees the 
analysis of significant focal change from the arbitrary 
nature of high thresholds. 

The configuration of activation foci we chose to 
report here is rather arbitrary. We obtained equivalent 
results with simulated activation foci of constant 
shape but varying intensity and using combined 
differences in size and intensity. 

DISCUSSION 

We have used approximate expressions for the 
probability density functions of the number of regions 
above threshold, and the number of voxels in each 
region. This characterization of Gaussian processes is 
rough but fairly complete and allows a significant 
advance in detecting activation foci in SPMs. Previous 
approaches have taken an activation focus, at some 
threshold, and estimated the probability that one or 
more such foci, of any size, could have occurred by 
chance. The threshold is usually set such that this 
probability is 0.05. We are now in a position to 
estimate the significance of an activation focus in 
terms of the probability that one or more foci, of the 
sume or greater size, could have occurred by chance (by 
using Equation 14). This is important because informa- 
tion about the spatial extent or volume of the activa- 
tion is explicitly included, and the analysis of signifi- 
cant focal change is freed from the arbitrary nature of 
high thresholds. The improved sensitivity that results 
allows the threshold to be lowered to much more 
realistic levels with no increase in the experiment-wise 
probability of a false-positive. 

Thresholds and signal width 

A power analysis based on the results presented 
here suggests that narrow focal activations are most 
powerfully detected by high thresholds (as currently 
implemented), whereas broader, more diffuse activa- 
tions are best detected by low thresholds. Alternately, 
for a fixed threshold, power increases with resolution. The 
fundamental importance of this for functional mag- 
netic resonance imaging (MRI) studies is obvious; 
however, it also raises issues about the optimum 
resolution for positron emission tomography (PET) 
data, for which the current practice is to use low 
resolutions. 

The proposal to use lower thresholds is vindicated 
by the power analysis, but is predicated on the 
assumption that real signals are broader than the 

These results demonstrate a substantial increase in 
sensitivity to actual change when the activation topog- 

resolution. Empirical evidence suggests that this is the 
case: The autocorrelation of physiological changes 
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difference 

Simulated I 2E2 phantom data. Top left. Baseline phantom image 
I08 pixels in diameter with uniform activity of about I00 counts/ 
pixel and an FWHM of 7.06 pixels. Top right. Activated image in 
which six wells, of increasing size, have been filled with activity I0 

real activation 
Figure 7. 

measured with PET is substantially larger ( -  12 mm) 
than the autocorrelation of noise (-8 mm) [Friston et 
al., 19921. Future work by Siegmund and Worsley will 
attempt to resolve this “dependency on assumptions,” 
by searching over tuning parameters (like smoothing) 
as well as voxels. 

The apparent volume of activation in an SPM is not 
the real volume of activated cerebral tissue. Further- 
more, one must also be aware that small but intense 
physiological activations will be subject to partial 
volume effects. 

We reiterate that the topography of activation foci 
has been analyzed only with respect to size. Other 

percent higher than in the main body of the phantom. Bottom left. 
Difference image obtained by subtracting the activated image from 
the baseline image. Bottom right. Underlying signal following 
convolution with the point spread function. 

features (shape, symmetrical distribution, etc.) may 
render a particular focus, or set of foci, sufficiently 
improbable that they can be accepted as real. The 
scope of analyses that could be brought to bear on 
statistical parametric maps is clearly extensive. The 
results presented have, of course, many other poten- 
tial applications, which will be pursued in subsequent 
publications. The expressions presented are approxi- 
mations (usually exact in the limit of high thresholds). 
It is possible that more exact expressions may become 
available in the next year or two, or at least other 
approximate answers should appear to substantiate or 
supersede the present ones. In the interim, the results 
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p = 0.050 

activations {u = 4.1 08) activations {u = 2.8) 
Figure 8. 

Results of thresholding to detect significant activations. Left: 
Conventional threshold [setting P(n,, 2 I) to 0.051 of 4.108. 
Right: A lower and arbitrary threshold (2.8) has been applied to 
the data, and the significance of each activation focus has been 

presented here appear to perform well enough to 
justify practical application. 

We have deliberately not limited the analysis or 
simulations to three-dimensional processes because 
the results are applicable in any dimension. Although 
we envisage such an approach being applied to 
three-dimensional SPMs, other applications are impor- 
tant. For example, in assessing peri-stimulus-joint- 
histograms, obtained from multiunit electrode record- 
ing data, the problem is assessing the significance of 
conjoint unit activity at some temporal distance from 
stimulus onset. This problem can be formulated in 
terms of a smooth one-dimensional Gaussian process 
and can be addressed using the equations presented 
above. At the other extreme, functional or dynamic 
MRI studies of the hemodynamic response to a repeat- 
ing stimulus can be assessed using SPMs, which are 
also a function of time from stimulus onset (e.g., an 
SPM of the cross-correlation function between the 
functional MRI signal and some time-dependent sen- 
sorimotor or cognitive parameter). In this instance, an 
SPM is computed at a series of temporal offsets from 
the start of stimulation. Because the repeat time of 
scans is typically less than the hemodynamic time 
constants, an effective temporal point spread function 

assessed using P(n,, 2 k). This new approach to detecting 
significant activations is more sensitive because it is not threshold 
dependent and takes account of the size of each activated region. 

introduces smoothness in the time domain. A time 
series of SPMs constitutes a four-dimensional SPM, 
which could be modeled as a four-dimensional Gauss- 
ian process according to the expressions presented 
here. 

NOTE ADDED IN PROOF 

In this article we presented some theoretical results 
concerning the spatial extent of activation foci in 
statistical parametric maps of any dimension. A recent 
paper [Knorr U, Weder B, Kleinschmidt A, Wirnvar A, 
Huang Y, Herzog H, Seitz RJ (1993): Identification of 
task specific rCBF in individual subjects: Validation of 
an application for PET, JCAT 17:517-5281, which exam- 
ines this issue from an empirical perspective, pre- 
sented results which speak to a consistency between 
our theoretical predictions and their experimental 
findings. Knorr and colleagues formed clusters above 
a threshold of 30% of the SPM maximum and then fit 
the empirical distribution of cluster size (n) with a 
gamma distribution. Their results were restricted to 
two dimensional SPMs. The gamma distribution was a 
fortuitous choice since this should hold asymptotically 
in two dimensions (where the distribution should be 
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exponential). Note that our analysis suggests the 
gamma distribution is not appropriate for one, three, 
or more dimensions. 

An interesting verification of our results is Fig 3a 
which is a plot of peak height against mean activity 
(within each region). If the peak is parabolic, as the 
theory of Nosko predicts, this should be a straight line 
with a slope of 2 (irrespective of the FWHM). This 
appears to fit the data reasonably well. Figure 3b 
shows a plot of peak height against region size which 
again should be asymptotically a straight line with a 
slope of: 

threshold * 2 .  ln(2)/(.rr. FWHM2) 

which seems to fit with the FWHM of 5.5 mm. 
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