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attention (e.g., communication through coherence; Fries, 2005). 
We hope to show that the perspectives afforded by cognitive psy-
chology, neurophysiology and formal (theoretical) treatments are 
all remarkably consistent.

We have suggested recently that perception is the inference 
about causes of sensory inputs and attention is the inference about 
the uncertainty (precision) of those causes (Friston, 2009). This 
places attention in the larger context of perceptual inference under 
uncertainty (Rao, 2005; Spratling, 2008; Whiteley and Sahani, 2008; 
Chikkerur et al., 2010). In this work, we try to show that attention 
emerges naturally in a Bayes-optimal scheme used previously to 
address predictive coding (Friston and Kiebel, 2009), perceptual 
categorization (Kiebel et al., 2009), learning (Friston, 2008) and 
action (Friston et al., 2010a). In other words, we try to explain some 
simple attentional phenomena using an established framework that 
has explanatory power in domains beyond attention. Specifically, 
we show how attention can be construed as inferring the precision 
of sensory signals and their causes. The idea is illustrated using com-
putational simulations of neuronal processing that try to establish 
face validity in terms of psychophysical and electrophysiological 
responses. We do this in the context of the Posner paradigm (Posner, 
1980); a classical paradigm for studying directed spatial attention in 
vision, using cued targets. This paradigm also allows us to address, 
in a heuristic way, biased competition (Desimone, 1996) by present-
ing validly and invalidly cued targets simultaneously. Our hope was 
to connect psychophysical studies of attention with theories based 
upon detailed electrophysiological studies in monkeys.

The basic idea we pursue is that attention entails estimating 
uncertainty during hierarchical inference about the causes of sen-
sory input. We develop this idea in the context of perception based 
on Bayesian principles, under the free-energy principle (Friston, 
2009). Formally, this scheme can be regarded as a generalization of 

IntroductIon
Attention is a ubiquitous and important construct in cognitive 
neuroscience. Many accounts of attention fall back on Jamesian 
formulations, famously articulated as “the taking possession by 
the mind, in clear and vivid form, of one out of what seem several 
simultaneously possible objects or trains of thought” (James, 1890). 
More recent and formal accounts appeal to information theory and 
computational principles (Duncan and Humphreys, 1989; Deco 
and Rolls, 2005; Jaramillo and Pearlmutter, 2007; Spratling, 2008; 
Bruce and Tsotsos, 2009; Reynolds and Heeger, 2009; Spratling, 
2010), with an increasing emphasis on Bayesian formulations (Rao, 
2005; Chikkerur et al., 2010; Itti and Baldi, 2009). We pursue these 
attempts to understand attention in computational terms. This 
means we will be using terms like uncertainty, surprise and preci-
sion in a rather formal way. Without exception, these terms refer to 
properties of probability distributions. Probability distributions are 
central to modern treatments of perception that cast perception as 
inference. Inference requires us to represent probability distribu-
tions (or densities) over possible causes or explanations for our 
sensations. These distributions have several important attributes: 
for example, a broad distribution encodes a high degree of uncer-
tainty about a particular cause. This uncertainty is, mathematically, 
the average (expected) surprise over all possibilities. A key meas-
ure of uncertainty is the width or variance of the distribution, or 
its inverse, precision. (see Glossary of Terms). In what follows, we 
hope to show that attention is more concerned with optimizing 
the uncertainty or precision of probabilistic representations, rather 
than what is being represented. By describing perception in formal 
terms, one can see almost intuitively where attention fits into the 
larger picture and how it might be mediated neurobiologically. This 
is important because a formal framework allows one to link classical 
psychological constructs to current physiological  perspectives on 

Attention, uncertainty, and free-energy

Harriet Feldman and Karl J. Friston*

The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK

We suggested recently that attention can be understood as inferring the level of uncertainty or 
precision during hierarchical perception. In this paper, we try to substantiate this claim using 
neuronal simulations of directed spatial attention and biased competition. These simulations 
assume that neuronal activity encodes a probabilistic representation of the world that optimizes 
free-energy in a Bayesian fashion. Because free-energy bounds surprise or the (negative) 
log-evidence for internal models of the world, this optimization can be regarded as evidence 
accumulation or (generalized) predictive coding. Crucially, both predictions about the state of 
the world generating sensory data and the precision of those data have to be optimized. Here, 
we show that if the precision depends on the states, one can explain many aspects of attention. 
We illustrate this in the context of the Posner paradigm, using the simulations to generate both 
psychophysical and electrophysiological responses. These simulated responses are consistent 
with attentional bias or gating, competition for attentional resources, attentional capture and 
associated speed-accuracy trade-offs. Furthermore, if we present both attended and non-
attended stimuli simultaneously, biased competition for neuronal representation emerges as 
a principled and straightforward property of Bayes-optimal perception.

Keywords: attention, biased competition, precision, free-energy, perception, generative models, predictive coding

Edited by:
Sven Bestmann, University College 
London, UK

Reviewed by:
William Milberg, Harvard Medical 
School, USA
Tamer Demiralp, Istanbul University, 
Turkey
Laurence T. Maloney, New York 
University, USA

*Correspondence:
Karl J. Friston, Wellcome Trust Centre 
for Neuroimaging, Institute of 
Neurology, Queen Square, London 
WC1N 3BG, UK.
e-mail: k.friston@fil.ion.ucl.ac.uk



Frontiers in Human Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 215 | 2

Feldman and Friston Attention and free-energy

by attentional mechanisms (Desimone, 1996; Maunsell and Treue, 
2006). We will focus on two neurobiological candidates for modu-
lating synaptic gain that have been linked to attention: synchronous 
gain (Chawla et al., 1999a) mediated by fast oscillatory or synchro-
nized activity (Womelsdorf and Fries, 2006; Fries et al., 2008) and 
classical neuromodulatory (e.g., cholinergic) neurotransmission 
(Schroeder et al., 2001; Hirayama et al., 2004).

Electrophysiologically, desynchronization with increased gamma 
activity (between 30 and 100 Hz) is seen during attentional tasks 
in invasive (Steinmetz et al., 2000; Bichot et al., 2005; Fries et al., 
2008), and non-invasive EEG and MEG studies (Gruber et al., 1999; 
Sokolov et al., 1999; Pavlova et al., 2006; Vidal et al., 2006). Gamma 
oscillations induced with subliminal flicker may improve attention-
based performance (Bauer et al., 2009). Furthermore, increased 
gamma is associated with faster reaction times (Womelsdorf et al., 
2006; Fründ et al., 2007). Gamma oscillations can control gain 
by affording synchronized neuronal discharges a greater influence 
on the firing rate of downstream neurons (Chawla et al., 1999a; 
Salinas and Sejnowski, 2001; Zeitler et al., 2008). Gamma activity 
has also been proposed as a solution to the “binding problem,” 
which we discuss below in relation to attention (Treisman and 
Schmidt, 1982).

In terms of neurotransmitters, gamma oscillations are pro-
foundly affected by acetylcholine, which is released into sensory 
cortex from nuclei in the basal forebrain. It acts through both fast 
ion channel (nicotinic) receptors and slow metabotropic (mus-
carinic) receptors (Wonnacott, 1997; Zilles et al., 2004; Hasselmo 
and Giocomo, 2006). Disruption of the cholinergic system by drugs 
or lesions can interfere with attentional processes, including the 
Posner paradigm (Voytko et al., 1994; Witte et al., 1997; Dalley 
et al., 2001; Herrero et al., 2008; Vossel et al., 2008). Acetylcholine 
appears to increase synaptic gain directly by, for example, reducing 
spike-frequency adaptation (McCormick and Prince, 1985, 1986). 
It may also facilitate the induction of gamma oscillations by reduc-
ing adaptation in pyramidal cells (Buhl et al., 1998; Börgers et al., 
2005), decreasing activity of inhibitory interneurons (Buia and 
Tiesinga, 2006) or directly inactivating specific interneurons (Xiang 
et al., 1998). However, the time course of acetylcholine release 
can be quite protracted (Parikh et al., 2007). This suggests rapid 
(10–100 ms) attentional mechanisms may rest on an interaction of 
cholinergic mechanisms with fast activity-dependent modulation 
of synaptic gain. It is this activity (state) dependent optimization 
we pursue in this paper.

In summary, it may be the case that attention is the process 
of optimizing synaptic gain to represent the precision of sensory 
information (prediction error) during hierarchical inference. 
Furthermore, if we allow for state-dependent changes in preci-
sion, the neurobiology of attention must involve activity-dependent 
changes in synaptic gain; assuming that neuronal activity represents 
the states of the world and synaptic gain represents precision. Given 
this sort of architecture we can, in principle, simulate attentional 
processing with established (Bayes-optimal) inversion or recog-
nition schemes, using models with state-dependent noise. What 
follows is an attempt to do this.

This paper comprises four sections. In the remainder of Section 
we provide a brief review of attention in psychological and neuro-
biological terms. This section focuses on directed spatial attention 

predictive coding (Rao and Ballard, 1998) and involves recurrent 
message passing among hierarchical levels of cortical systems to 
optimize a probabilistic representation of the world (Mumford, 
1992; Friston, 2009). In these generalized schemes, precision is 
encoded by the synaptic gain (post-synaptic responsiveness) of 
units reporting prediction errors (Friston, 2008). There are many 
metaphors for attention that relate closely to the idea we are try-
ing to describe. Perhaps the simplest is that of statistical inference, 
which treats perception as hypothesis testing (Gregory, 1980): 
indeed, most modern theories of perception draw on Helmholtz’s 
ideas about the brain as an inference machine (e.g., Gregory, 1968; 
Ballard et al., 1983; Dayan et al., 1995). These theories regard the 
brain as inferring how sensory data are generated using generative 
models (cf, hypotheses) in exactly the same way that we analyze 
scientific data. The simplest example of this is the Student’s t-sta-
tistic, where a difference in group means is divided by its standard 
error to test for group differences. Under the null hypothesis, the 
observed difference is the prediction error and the standard error 
is an estimate of its precision (inverse variance). This means that 
one can regard the t-statistic as a precision-weighted prediction 
error. Crucially, both the prediction error and its precision have to 
be estimated, given empirical (sensory) data. The idea here is that 
attention rests on estimating precision and is therefore an integral 
part of perception. Things get more interesting if we consider that 
the precision of sensory signals depend on states of the world. 
This means that optimizing precision entails optimizing inferred 
states of the world that affect the precision or uncertainty about 
our sensations. It is this generalization of generative models we 
exploit in this paper. In brief, most generative models (including 
those used to simulate perception) ignore state-dependent noise or 
error variance; assuming that it is constant for any (sensory) data 
channel. In what follows, we relax this assumption and consider 
generative models in which the states of the world (for example the 
presence of attentional cues) can change the precision of sensory 
data. A simple example of this would be the direction (state) in 
which we pointed a searchlight. This determines which part of the 
sensorium contains precise information; namely visual information 
reflected by surfaces that are illuminated. Any coupling between the 
state of the world (content) and the precision of sensory samples 
(context) should be an inherent part of veridical generative models 
of sensory input. Under this perspective, searchlight (spotlight) 
metaphors for attention become a natural way to think about its 
functional role (Shulman et al., 1979; Crick, 1984; Cave and Bichot, 
1999; Eckstein et al., 2002). Mechanistically, this role is to weight 
or bias selected sensory channels (Desimone and Duncan, 1995; 
Maunsell and Treue, 2006; Reynolds and Heeger, 2009; Stokes et al., 
2009). In statistical terms, this is formally identical to weighted least 
squares that underlies all optimal (maximum a posteriori) estimates 
of model parameters. Put simply, this involves weighting data in 
proportion to their estimated precision.

In predictive coding schemes, sensory data are replaced by pre-
diction error, because this is the only sensory information that has 
yet to be explained. Here, the weighting is implemented by synaptic 
gain. We therefore return to the central role of precision-weighted 
prediction errors in optimal inference. Neurobiologically, this is 
easy to relate to theories of attentional gain, where the post-synaptic 
responsiveness of sensory (prediction error) units is modulated 



Frontiers in Human Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 215 | 3

Feldman and Friston Attention and free-energy

Early cognitive models of attention, although inherently lim-
ited by lack of knowledge about the underlying neural processes, 
elucidated the important difference between early and late selec-
tion. Broadbent (1958), working in the auditory domain, suggested 
that attention operated by selecting stimuli at an early stage of 
processing, when only basic physical attributes had been encoded. 
The selected stimulus was then processed by an “identification sys-
tem,” which could handle only one stimulus at a time; to explain 
why semantic information about unattended stimuli is unavailable 
to recall (Broadbent, 1952a,b). However, there are stimuli which 
violate this principle: Moray (1959) demonstrated that a subject’s 
name, which is salient only after semantic processing, could shift 
attention to a previously unattended auditory stream. The com-
peting theory, that all stimuli are processed semantically before 
selection for consciousness recall, was posited by Deutsch and 
Deutsch (1963), whereas Treisman (1964) suggested that unat-
tended stimuli are attenuated so that attention can be diverted to 
them, if they become behaviorally salient. Lavie (1995) attempted 
to reconcile these models by demonstrating that perceptual load 
plays an important role in attentional selection: intuitively, early 
selection occurs with higher attentional load and late selection with 
lower load. This differential selection rests on the notion of limited 
capacity. Many of these ideas can be understood in the framework 
of biased competition theory, which tries to explain some of the 
phenomena described above using neurobiological mechanisms.

Biased competition
Biased competition (Desimone and Duncan, 1995) is a model of 
attention based on electrophysiological studies and earlier behavio-
ral models. Its main contribution was to make the notion of limited 
capacity or resources more concrete, by suggesting small lower level 
receptive fields (RFs) compete to drive larger RFs at higher hierar-
chical levels. Biased competition says that attention is an emergent 
property of competition between stimuli for attentional resources, 
which is influenced by the properties of the stimuli and task require-
ments. Its premise is that, in a crowded visual field, objects must 
compete for neural representation at some point along the visual 
processing stream. This can be deduced from the large size of clas-
sical RFs in higher visual areas, such as monkey area TE, which can 
cover up to 25° of visual angle (Gross et al., 1972; Desimone and 
Gross, 1979). Clearly, many objects can fall into such a visual field 
but the neuron can only represent (report) one thing with its firing. 
If an object is represented by these higher-order visual neurons, 
they are unavailable to represent other objects. Thus the object has 
consumed some finite “attentional resource.”

This premise leads to a key prediction: if two stimuli are pre-
sented within a cell’s receptive field, the response to both will be 
smaller than the sum of the response to the stimuli presented sepa-
rately (Reynolds et al., 1999). Single-cell electrophysiological studies 
have confirmed that stimuli interact in this mutually suppressive 
manner in areas V2 and V4 (Reynolds et al., 1999), IT (Rolls and 
Tovee, 1995) and MT (Recanzone et al., 1997), but not V1, where 
RFs are so small it is difficult to present competing stimuli (Moran 
and Desimone, 1985). The average responses of visual cortical 
areas in fMRI studies in humans mirror the results from electro-
physiological studies in animals (Kastner et al., 1998; Beck and 
Kastner, 2005). An important result is that the maximum spatial 

and, in particular, the Posner (cueing) paradigm that emphasizes 
the importance of valid cues in establishing attentional set during 
target detection (Posner, 1980). To complement this psychophysical 
perspective, we consider biased competition models that are based 
on careful electrophysiological studies of evoked visual responses 
using intracranial recordings (Desimone, 1996). Biased competi-
tion is probably the most established and influential theory that 
accounts for unit responses in attentional paradigms framed at the 
level of receptive fields. We also review the concepts of attentional 
resources and other constructs associated with early and late atten-
tional selection and the feature-integration theory of attention. 
In Section “Methods,” we provide a more technical treatment of 
perception under the free-energy principle and consider the form of 
generative models that will be used in later sections. The emphasis 
here is on generalizing previous models to include state-dependent 
noise and what this means for their neurobiological optimization 
or inversion. The resulting inversion scheme corresponds to rec-
ognizing the causes of sensory data (that include both states of the 
world and their precision). We will see that precision is encoded by 
the synaptic gain of sensory or prediction error-units, which pass 
messages to units representing conditional expectations about the 
world. In this scheme, optimization of synaptic gain may corre-
spond to attention. In Section “Results,” we present simulations of 
the Posner paradigm using the recognition scheme of the previous 
section. This allows us to demonstrate some basic characteristics 
of attention-based inference; including attentional bias, attentional 
capture and the cue-validity effect. We supplement a direct inter-
pretation of the probabilistic representations encoded by simulated 
neuronal activity with simulated psychophysical and electrophysio-
logical data. These simulated responses make some clear predictions 
about speed-accuracy trade-offs and event-related electrophysi-
ological responses, which we compare against the literature. In the 
final section, we use the same simulations but present both valid 
and invalidly cued targets together. This is a rough metaphor for 
paradigms used to study biased competition and allows us to see if 
biased competition emerges from the free-energy formulation. We 
examine this by looking at competition between cues via the effect 
of an attended cue on the responses evoked by an unattended cue. 
We conclude with a brief discussion and indicate how the scheme 
in this paper could be applied to empirical psychophysical and 
electroencephalographic observations. This is a rather long paper 
that tries to link a vast literature on the cognitive psychology of 
attention with a large body of theoretical work on perceptual infer-
ence, learning and action. Many readers, who are familiar with one 
or other of these areas, could easily skip the background material 
in this section or the next.

AttentIon, bIAsed competItIon And the posner pArAdIgm
In this section, we review some of the key paradigms and theories 
that have dominated attention research over the past decades. This 
review can be regarded as a primer for readers who do not have a cog-
nitive neuroscience background (and should be omitted by readers 
who do). Our focus will be the Posner paradigm, which we simulate 
in later sections, and biased competition, which is one of the most 
prevalent electrophysiologically grounded theories of attention. We 
will also cover some key distinctions, such as the difference between 
early and late selection and exogenous versus endogenous cueing.
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most (usually 80%) of the time. Posner found that reaction times 
to validly cued targets were significantly shorter than to invalidly 
cued targets, which appeared on the opposite side. This demon-
strated that attention could be moved to salient locations in the 
absence of gaze shift. The cuing seen in the Posner paradigm seems 
to be separable from the phenomenon of “alerting,” in which a 
non-directional signal indicates the imminent onset of a target 
(Fernandez-Duque and Posner, 1997; Posner, 2008). Subjects are 
quicker to respond to a target if the cue indicates the location of 
the target than when it only indicates the timing (Davidson and 
Marrocco, 2000). In addition, a pharmacological double dissocia-
tion exists such that inhibitors of the cholinergic system selectively 
reduce the benefits of spatial cues, while noradrenergic inhibitors 
selectively reduce the benefits of alerting cues (Marrocco et al., 
1994). Furthermore, dopamine and noradrenalin antagonists can 
reduce the reaction time cost of invalidly cued targets, while pre-
serving the validly effect (Clark et al., 1989). However, this effect 
may be due to the role of noradrenalin in task switching (Sara, 
1998; Yu and Dayan, 2005).

The two types of cues used in the Posner paradigm – central and 
peripheral – show the same facilitation effect. However, they may 
operate by different mechanisms. Peripheral stimuli are labeled 
as “exogenous,” because the change in attention is triggered by an 
external event. It is well established that abrupt-onset peripheral 
stimuli can attract attention via bottom-up mechanisms (Yantis 
and Jonides, 1984), even when task-irrelevant (Theeuwes, 1991). 
Central stimuli are “endogenous” because they do not in themselves 
indicate target location; attention must be directed to the correct 
location according to information conveyed by the cue. The most 
common central cues are inherently directional: an arrow point-
ing to where the target will appear, or an asterisk just to one side 
of fixation. Although cues such as this may automatically “push” 
attention, even when the subject has been told the cue is invalid 
(Hommel et al., 2001).

Exogenous and endogenous cuing fit well with biased competi-
tion theory: exogenous cuing can be thought of as a bottom-up bias, 
based on the prior expectation that salient events recur in the same 
part of the visual field. On the other hand the effect of endogenous 
cues must be mediated by top-down bias. However, these top-down 
effects do not necessarily call on semantic or explicit processing: 
for example, Decaix et al. (2002) examined performance on the 
Posner paradigm when subjects were not informed about the cue-
target relationship but subjects still learnt cue-target relationships 
within 90 trials, and performance was independent of whether 
the learnt relationship was accessible to verbal report. Bartolomeo 
et al. (2007) compared performance of informed and non-informed 
subjects and found no effect of explicit knowledge on reaction time. 
Finally, Risko and Stolz (2010) demonstrated that knowledge of 
the proportion of valid trials did not affect reaction time. In short, 
the basic phenomena disclosed in the Posner paradigm may not 
depend on high-level cognitive processing. This suggests that a 
low-level simulation of perceptual processing should be able to 
account for cue-validity effects. This is what we attempt to show 
and demonstrate that cue-validity effects are Bayes-optimal. In the 
next section, we review the principles that lie behind Bayes-optimal 
perception and apply these principles to the Posner paradigm in 
the subsequent section.

separation between stimuli, which induces suppressive interactions, 
increases at higher levels of visual processing, which is consistent 
with increasing receptive field size (Kastner et al., 2001).

Large RFs thus cause stimuli to compete. The probability with 
which stimuli are represented by cells is thought to be influenced 
by a number of top-down and bottom-up biases. Bottom-up biases 
result from the properties of the stimulus itself, such as visual or 
emotional salience and novelty. Abrupt-onset stimuli, which have 
high temporal contrast, and thus salience, can attract attention 
even if they are task-irrelevant (Yantis and Jonides, 1984). In the 
visual search paradigm, used to address feature-integration and 
binding (Treisman and Gelade, 1980; Treisman and Schmidt, 1982; 
Treisman, 1998), subjects are required to find a unique object in a 
display cluttered with distracters. If the unique object is particu-
larly salient, for example if it is brighter than the distracters or 
has a unique color, the search time remains constant regardless of 
the number of distracters. This phenomenon is called “pop-out.” 
Salience does not have to be a function of simple visual attributes: 
distractor faces exhibiting negative emotions slow search times 
more than neutral faces (Pessoa et al., 2002). Novelty preference, the 
well-documented tendency for neurons to respond more strongly 
to a new stimulus than to a familiar one, can also be considered as 
a bottom-up bias (Desimone, 1996).

Top-down biases reflect the cognitive requirements of the task 
rather than the stimuli. Top-down biases have been most studied 
via spatially-directed attention experiments. Electrophysiologically, 
if attention is directed toward one of two competing stimuli in a 
receptive field, the mutually suppressive effect disappears and the 
response of the cell emulates the response to the attended stimulus 
alone (Moran and Desimone, 1985; Chelazzi et al., 1993; Treue and 
Maunsell, 1996; Desimone, 1998). Even in the absence of visual 
stimulation, baseline increases in firing rate of 30–40% may be 
seen, if attention is directed to a location within a cell’s receptive 
field (Luck et al., 1997). Indeed, in fMRI studies, responses are 
increased in visual areas after attentional cuing but before stimu-
lus onset (Chawla et al., 1999b; Kastner et al., 1999; O’Connor 
et al., 2002; Stokes et al., 2009). In addition, cells respond more 
strongly to attended than unattended stimuli (Luck et al., 1997). 
Thus, top-down bias has both additive (baseline shift) and mul-
tiplicative (attentional gain) components that may depend on 
each other (Chawla et al., 1999b). In summary, biased competi-
tion is a mechanistic framework, which provides a plausible neu-
robiological account of attention. Later, we will see how biased 
competition emerges naturally in predictive coding formations of 
Bayes-optimal perception.

The Posner paradigm
In later sections we will simulate optimal perception under the 
Posner task, a covert attention task. Attending to an object usually 
involves looking at it; that is placing its image at the fovea (the 
central area of the retina with highest acuity). However, attention 
can be directed independently of eye movement (Posner et al., 
1978). Under the Posner paradigm, subjects are required to foveate 
a central spot and respond as quickly as possible to the appear-
ance of a peripheral target. The target is cued with either a central 
arrow indicating the side it will appear on, or a peripheral box 
around the target’s eventual location. The cue is correct (valid) 
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itself is the path integral of free-energy ϕ(t), which is created 
simply by adding a non-negative function of the recognition 
density to surprise:
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The free-energy has been expressed here in terms of (t), the 
negentropy of q(t) and an energy (t) expected under q(t). The 
energy (t) reports the surprise about sensations and their causes 
under a generative model. If we assume that recognition density 
q(ϑ) = (μ, C) is Gaussian (known as the Laplace assumption), 
we can express free-energy in terms of the mean and covariance 
of the recognition density
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1
2

1
2 2 2tr en

 
(5)

Where n = dim(μ) and subscripts denote derivatives. We can 
now minimize free-energy with respect to the conditional precision 
(inverse covariance). The free-energy is minimized when  = −1 = 
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Crucially, this means the free-energy is only a function of the 
conditional mean or expectation. The expectations that minimize 
free-energy are the solutions to the following differential equations. 
For the generalized states u t( ) ⊂ ϑ
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Where  is a derivative matrix operator with identity matrices 
above the leading diagonal, such that  u u u= ′ ⊕ ′′ ⊕…. Here and 
throughout, we assume all gradients are evaluated at the mean; here 

u u= µ( ). The stationary solution of Eq. 7 minimizes free-energy and 

its path integral:  

 

µ µ δ( ) ( ) .u u
u u− = ⇒ = ⇒ =  0 0 0  This ensures 

that when free-energy is minimized the mean of the motion is the 
motion of the mean; that is  
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methods
Free-energy And bAyes-optImAl perceptIon
This section reviews the theoretical principles used later to explain 
perception and attention. This treatment is a bit technical but 
serves as a standalone summary of the mathematical principles 
behind the simulations of subsequent sections. More mathemati-
cal details can be found in (Friston et al., 2010b). Readers who are 
familiar with generalized predictive coding should skip directly to 
“Perception and Attention.” We start with the objective of the free-
energy formulation; namely to suppress surprise. We end with a set 
of ordinary differential equations describing changes in synaptic 
activity, gain and efficacy. These dynamics correspond to percep-
tual inference, attention and learning respectively. Basically, the 
resulting scheme can be regarded as a form of evidence accumula-
tion (Mazurek et al., 2003) that is formally equivalent to general-
ized predictive coding. Free-energy is a bound on surprise and 
is therefore a bound on the log-evidence for the brain’s genera-
tive model of its world. The second half of this section consid-
ers particular forms of these generative models, with a focus on 
state-dependent noise and the implications for the neurobiology 
of perception. The amount of this noise is measured in terms of 
its variance, which reflects the degree of randomness in the proc-
esses generating sensory data. Inverse variance is called precision; 
therefore precision increases with certainty about states of the 
world. We will see that precision is encoded by the post-synaptic 
gain of sensory or prediction error-units. This means that state-
dependent changes in precision may be modeled in the brain by 
activity-dependent modulation of the synaptic gain of principal 
cells originating forward connections. This is the optimization we 
associate with attention.

Recognition from basic principles
Our objective, given a model (brain), m, is to minimize the aver-
age uncertainty (entropy) about some generalized sensory states, 


s s s s S= ⊕ ′ ⊕ ′′ ⊕ ∈  it experiences (⊕ means concatenation). 
Generalized states comprise the state itself, its velocity, accelera-
tion, jerk, etc. This average uncertainty is

H S m p s m p s m ds( | ) ( | )ln ( | )= −∫   

 
(1)

Under ergodic assumptions, this is proportional to the long-
term average of surprise, also known as negative log-evidence 
− ( )ln ( )|p s t m

H S m dt p s t m
T

| ln ( )|( ) ∝ − ( )∫ 

0  

(2)

Minimizing sensory entropy therefore corresponds to maxi-
mizing the accumulated log-evidence for a model of the world. 
Although sensory entropy cannot be minimized directly, we can 
create an upper bound ( , ) ( ).s q H S≥  This bound is induced 
with a recognition density q(t) := q(ϑ) on the causes (i.e., envi-
ronmental states and parameters) of sensory signals. We will see 
later that these causes comprise time-varying states u(t) ⊂ ϑ and 
slowly varying parameters ϕ(t) ⊂ ϑ. The recognition density is 
sometimes called a proposal density and becomes the conditional 
density over causes, when it minimizes the bound. The bound 
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Where the generalized predictions are
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(11)

Equation 10 means that Gaussian assumptions about the ran-
dom fluctuations specify a generative model in terms of a likelihood 
and empirical priors on the motion of hidden states

p s x v m f

p Dx x v m f
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x x
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(12)

These probability densities are encoded by their covariances 
Σ( )u  or precisions  Π Π( ) ( ): ( , , )u ux v= γ  with precision parameters 
γ ⊂ ϕ that control the amplitude and smoothness of the random 
fluctuations. Generally, the covariances factorize; Σ Σ( ) ( ) ( )u u uV= ⊗  
into a covariance proper and a matrix of correlations V(u) among 
generalized fluctuations that encodes their smoothness.

Given this generative model we can now write down the energy 
as a function of the conditional means, which has a simple quadratic 
form (ignoring constants)
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(13)

Here, the auxiliary variables ε ϕ( ) : , ,j j v x∈  are prediction errors for 
sensory data, the motion of hidden states and parameters respectively. 
The predictions for the states are f u v xu( )( ) : ,µ ∈  and the predictions 
for the parameters are the prior expectations η ϕ( ). Equation 13 assumes 
flat priors on the states and that priors p m( | ) ( , )( ) ( )ϕ η ϕ ϕ=  

Σ  on the 
parameters are Gaussian. We next consider hierarchical forms of this 
model. These are just special cases of Eq. 9, in which we make certain 
conditional independencies explicit. Although they may look more 
complicated, they are simpler than the general form above. They are 
useful because they provide an empirical Bayesian perspective on 
inference and learning that may be exploited by the brain. Hierarchical 
dynamic models have the following form

s f x v z

x f x v z

v
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x x
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(14)

For slowly varying parameters ϕ(t) ⊂ ϑ this motion disappears 
and we can use the following scheme





µ µ

µ κµ

ϕ ϕ

ϕ
ϕ

ϕ

( ) ( )

( ) ( )

= ′

′ = − − ′
 

(8)

Here, the solution µ ϕ( ) = 0 minimizes free-energy, under 
constraint that the motion of the expected parameters is small: 
 µ µ δϕ ϕ

ϕ ϕ
( ) ( ) .= ′ = ⇒ = ⇒ =0 0 0   The last equality δϕ = 0 just 

means that variations in the parameters do change the path integral 
of free-energy (cf, keeping to the floor of a valley to minimize the 
average height of ones path).

Equations 7 and 8 prescribe recognition dynamics for the 
expected states and parameters of the world respectively. The 
dynamics for states can be thought of as a gradient descent in a 
frame of reference that moves with the expected motion of the 
world (cf, surfing a wave). Conversely, the dynamics for the param-
eters can be thought of as a gradient descent that resists transient 
fluctuations with a damping term (−κμ′(ϕ)), which instantiates our 
prior belief that the fluctuations in the parameters are small. We 
use κ = N, where N is the number of sensory samples.

In summary, we have derived recognition dynamics for expected 
states (in generalized coordinates of motion) and parameters, which 
cause sensory samples. The solutions to these equations mini-
mize free-energy and therefore minimize a bound on surprise or 
(negative) log-evidence. Optimization of the expected states and 
parameters corresponds to perceptual inference and learning respec-
tively. The precise form of the recognition depends on the energy 
( ) ln ( ( ), | )t p s t m= −  ϑ  associated with a particular generative 
model. In what follows, we examine dynamic models of the world.

Hierarchical dynamic models
We next introduce a very general model based on the hierarchal 
dynamic model discussed in Friston (2008). We will assume that any 
sensory data can be modeled with a special case of this model

s f x v z z x v

x f x v z

v v v v

x x

= ( ) + ( )
= ( ) +

( ) ( ) ( ) ( )

( ) (

, , : ~ , ( , , )

, ,

θ γ

θ

 0 Σ



)) ( ) ( ): ~ , ( , , )z x vx x 0 Σ γ( )
 

(9)

The non-linear functions f (u) : u ∈ v, x represent a sensory mapping 
and equations of motion respectively and are parameterized by θ ⊂ ϕ. 
The variables v ⊂ u are referred to as hidden causes, while hidden 
states x ⊂ u meditate the influence of the causes on sensory data and 
endow the system with memory. We assume the random fluctuations 
z(u) are analytic, such that the covariance of z u( ) is well defined. Unlike 
our previous treatments (Friston, 2008), this model allows for state-
dependent changes in the amplitude of random fluctuations. It is this 
generalization that furnishes a model of attention and introduces the 
key distinction between the effect of states on first- and second-order 
sensory dynamics. These effects are meditated by the vector and matrix 
functions f (u) ∈ ℜdim(u) and Σ(u) ∈ ℜdim(u) × dim(u) respectively, which are 
parameterized by first- and second-order parameters {θ, γ} ⊂ ϕ.

Under local linearity assumptions, the generalized motion of the 
sensory response and hidden states can be expressed compactly as













s f z

x f z

v v

x x

= +

= +

( ) ( )

( ) ( )
 

(10)
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The vector function π(i,u) := π(x, v, γ(i,u)) returns state-dependent 
log-precisions and R(i,u) is the inverse smoothness matrix V(i,u). In 
what follows we will quantify the amplitude (variance) of random 
fluctuations in terms of log-precisions, such that the associated 
variance is exp(−π(i,u)). With this particular form for the preci-
sions, the terms Ωw

i u( , ) and λw
i u

w
i utr( , ) ( , )= ( )Ω  are constant for states 

w v x∈  ,  that affect the log-precisions linearly and zero if they 
have no effect.

It is difficult to overstate the generality and importance of 
Eq. 16: it grandfathers nearly every known statistical estima-
tion scheme, under parametric assumptions about either addi-
tive or multiplicative noise. These range from ordinary least 
squares to advanced variational deconvolution schemes (see 
Friston, 2008). For example, the schemes used to invert sto-
chastic dynamic causal models of imaging time series (e.g., 
Daunizeau et al., 2009) use Eq. 16. This is generalized predic-
tive coding.

In neural network terms, Eq. 16 says that error-units receive 
messages from the states in the same level and the level above. 
Conversely, state-units are driven by error-units in the same level 
and the level below, were χw

i u u v x( , ) : ,∈  are the forward connection 
strengths to the state-unit representing w v x∈  , . Crucially, recogni-
tion requires only the prediction error from the lower level ξ(i,v) and 
the level in question, ξ(i,x) and ξ(i+1,v) (see Figure 1). These constitute 
bottom-up and lateral messages that drive conditional means µ( , )i u  
toward a better prediction, which reduces the prediction error in 
the level below. These top-down and lateral predictions correspond 
to f i u( , ). This is the essence of recurrent message passing between 
hierarchical levels to optimize free-energy or suppress prediction 
error; i.e., perceptual inference (see Friston, 2008 for a more detailed 
discussion).

In the present context, the key thing about this scheme is that 
the precisions  Π Π( , ) ( ) ( ) ( , ): ( , , )i u i i i uv x= γ  depend on the expected 
hidden causes and states. It is this dependency that we propose 
mediates attentional processing. Equation 16 tells us that the 
state-dependent precisions modulate the responses of the error-
units to their pre-synaptic inputs. This modulation depends 
on the conditional expectations about the states and suggests 
something intuitive; attention is mediated by activity-dependent 
modulation of the synaptic gain of principal cells that convey 
sensory information (prediction error) from one cortical level 
to the next. These are generally thought to be the superficial 
pyramidal cells responsible for generating EEG signals. More 
specifically, precision sets the synaptic gain of error-units to 
their top-down and lateral inputs. In hierarchical models, 
the gain modulation of error-unit activity ξ(i,u) depends on 
Π v xi i i u( ) ( ) ( , ), ,γ( ) and therefore depends on the conditional expec-

tations of x(i) in the current level and v(i) in the level above. This 
translates into a top-down control of synaptic gain in principal 
(superficial pyramidal) cells elaborating prediction errors and 
fits comfortably with the modulatory effects of top-down con-
nections in cortical hierarchies that have been associated with 
attention. Note that the precisions or synaptic gain Π( , )i u  also 
depends on the slowly varying parameters γ ⊂ ϕ responsible 
for learning. It is these parameters we associate with the slower 
dynamics of classical neuromodulation (e.g., cholinergic neu-
rotransmission; Friston, 2008).

Again, f (i,u) := f (u)(x(i), v(i), θ) : u ∈ v, x are continuous non-linear 
functions and η(v)(t) is a prior mean on the hidden causes at the 
highest level. The random terms z(i,u) ∼ (0, Σ(x(i), v(i), γ(i,u)) are 
conditionally independent and enter each level of the hierarchy. 
They play the role of observation error or noise at the first level 
and induce random fluctuations in the states at higher levels. The 
causes v = v(1) ⊕ v(2) ⊕… link levels, whereas the hidden states 
x = x(1) ⊕ x(2) ⊕… link dynamics over time. In hierarchical form, 
the output of one level acts as an input to the next. This input 
can enter non-linearly to produce quite complicated generalized 
convolutions with deep (hierarchical) structure. This structure 
appears in the energy as empirical priors (i,u) : u ∈ x, v where, 
ignoring constants
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(15)

Note that the data enter the prediction errors at the lowest level; 


ε( , ) ( , ).1 1v vs f= −  At intermediate levels the prediction errors mediate 
empirical priors on the causes.

In summary, these models are as general as one could imagine; they 
comprise hidden causes and states, whose dynamics can be coupled 
with arbitrary (analytic) non-linear functions. Furthermore, these 
states can be subject to random fluctuations with state-dependent 
changes in amplitude and arbitrary (analytic) autocorrelation func-
tions. A key aspect is their hierarchical form, which induces empirical 
priors on the causes. In the next section, we look at the recognition 
dynamics entailed by this form of generative model, with a particular 
focus on how recognition might be implemented in the brain. We 
consider perception first and then attention. For completeness, we 
also mention learning; but will only pursue this in subsequent papers 
on learning and related phenomena (e.g., inhibition of return; Posner 
and Cohen, 1984; Rafal et al., 1989).

Perception and attention
If we now write down the recognition dynamics (Eq. 7) using 
precision-weighted prediction errors ξ ε( , ) ( , ) ( , )i u i u i u=  Π  from Eq. 15, 
one can see the hierarchical message passing this scheme entails 
(ignoring the derivatives of the energy curvature);
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Here, we have assumed the amplitude of random fluctuations 
is parameterized in terms of log-precisions, where
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As with perceptual learning, the precision parameters change 
in proportion to a synaptic tag that decays in proportion to the 
precision per se and the amount of tag. This tag accumulates sum 
of squared predications errors, weighted by  Ω Πγ

( , ) ( , )i u i u  to select those 
errors whose precision is encoded. In this paper, we will focus on 
perceptual inference and return to learning in a later paper. The 
numerics of the integration scheme used to simulate inference (Eq. 
16) and learning (Eq. 8) are provided in Appendix “Integrating the 
Recognition Dynamics (Generalized Filtering).”

Summary
In this section, we have applied the general form of recognition 
dynamics prescribed by the free-energy treatment to a generic 
hierarchical dynamic model with state-dependent noise. When 
formulated as a neuronal message-passing scheme something quite 
important emerges; namely, a lateral and top-down modulation 
of synaptic gain in principal cells that convey sensory informa-
tion (prediction error) from one cortical level to the next. It is this 
necessary and integral component of perpetual inference that we 
associate with attention.

results
sImulAtIng the posner pArAdIgm
In this section, we use the hierarchical dynamic model of the pre-
vious section as a generative model of stimuli used in the Posner 
paradigm. Inversion of this model, using generalized predictive 
coding (Eq. 16) will be used to simulate neuronal responses. This 
allows us to explore some of the inferential and empirical aspects 
of perception the Posner paradigm was designed to study. We first 

Perceptual learning
Perceptual learning corresponds to optimizing the first-order 
parameters θ ⊂ ϕ according to Eq. 8. This describes a process that 
is remarkably similar to models of associative plasticity based on 
correlated pre- and post-synaptic activity. This can be seen most 
easily by assuming an explicit form for the generating functions; 
for example (for a single parameter and ignoring high-order 
derivatives)
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Here μ(θ) is the connection strength mediating the influence 
of the p-th hidden state on the motion of the q-th, at hierarchical 
level i ∈ 1, 2,… This strength changes in proportion to a “synaptic 
tag” μ′(θ) that accumulates in proportion to the product of the p-th 
pre-synaptic input µp

i x( , ) and post-synaptic response ξq
i x( , ) of the q-th 

error-unit (first term of Eq. 18). The tag is auto-regulated by the 
synaptic strength and decays with first-order kinetics (second and 
third terms respectively).

We conclude by considering the equivalent dynamics for the 
second-order (precision) parameters γ ⊂ ϕ. These precision param-
eters govern lateral and top-down state-dependent gain control and 
are learned according to Eq. 8 (for a single parameter)
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(19)

Figure 1 | Schematic detailing the neuronal architecture that might 
implement the generalized predictive coding described in eq. 16. This 
shows the speculative cells of origin of forward driving connections that 
convey prediction error from a lower area to a higher area and the backward 
connections that construct predictions (Mumford, 1992; Friston, 2008). These 
predictions try to explain away prediction error in lower levels. In this scheme, 

the sources of forward and backward connections are superficial and deep 
pyramidal cells respectively. The equations represent a gradient descent on 
free-energy under a hierarchical dynamic model (see Eq. 16). State-units are 
in black and error-units in red. Here, neuronal populations are deployed 
hierarchically within three cortical areas (or macro-columns). Subscripts 
denote derivatives.
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left and a low precision on the right and vice versa. In other words, 
they induce a redistribution of precision to the left and right in a 
complementary way. The first cause vL

( )1  generates a stimulus s
L
 in 

the left hemi-field and drives its corresponding hidden state xL
( )1  

to increase precision on the left; similarly for the right cause. This 
means that hidden causes not only cause sensory signals but also 
augment their precision. In other words, they cause precise visual 
information with spatial specificity.

Note how the log-precision π(1,v)(x(1), γ) of sensory noise 
z(1,v) ∼ (0, diag(exp(−π(1,v)))) depends on the hidden states. The 
motivation for this dependency is simple: high levels of signal are 
generally associated with lower levels of noise (i.e., high signal to 
noise). More formally, this represents a prior expectation that sen-
sory input conforms to Weber’s law (Formankiewicz and Mollon, 
2009): for stimulus intensities with a fixed precision (of sensory 
noise), under Weber’s law (after log-transform) the log-precision 
scales with the magnitude of the signal. See Appendix “State-
Dependent Noise and Weber’s Law.”

The ensuing increase in local precision can be regarded as anal-
ogous to exogenous cuing in the Posner paradigm, in the sense 
that it co-localizes in space and time with its sensory expression. 
Endogenous effects on precision that do not co-localize correspond 
to the probabilistic context established by vC

( )1  that enables endog-
enous cuing. This hidden cause drives hidden states to increase 
precision on the right. One can think of s

C
 as the corresponding 

endogenous cue in the center of the field of view. Note that the hid-
den states decay slowly. This represents a formal prior that once a 
cause has been expressed in any part of the visual field, subsequent 
causes will be expressed in the same vicinity with a high sensory 
precision. The time constants for the accumulation of hidden causes 
by hidden states (4 and 2) and their decay (32) are somewhat arbi-
trary, because we can assign any units of time to the dynamics. The 
important thing is that the decay is slower than the accumulation 
(by factors of 8 and 16 here).

Some readers may wonder why we have used two hidden states 
that are placed in (redundant) opposition to each other. The reason 
for this is that we will use this model for more realistic simulations 
in the future, where hidden states encode a high precision in their 
circumscribed part of the visual field: this involves generating data 
in multiple sensory channels, with a hidden state for each channel or 
location. The vectors of ones and minus ones in Eq. 20 then become 
(radial) basis functions. Furthermore, one can easily add further 
hierarchical levels to make the sensory dynamics more realistic (i.e., 
the causes at the sensory level could excite hidden states in a lower 
level to produce spatiotemporally structured or moving stimuli; 
cf, Nobre et al., 2007). However, the basic behavior we want to 
illustrate here does not change. Finally, note that there is no hand-
crafted gain modulation of sensory signals in the generative model. 
Attentional boosting of sensory signals is an emergent property of 
model inversion, which we now consider:

From the perspective of model inversion (mapping from sensory 
signals to causes) the predictive coding scheme of the previous 
section implies the following sort of behavior. When a cue s

C
 is 

presented, it induces high-precision prediction errors, which excite 
the representation of the hidden cause vC

( )1  at the higher level. This 
then drives up the hidden states biasing precision to the valid (right) 
hemi-field, which remain activated after the cue disappears. If a 

describe the particular model and stimuli used. We then present 
simulated responses to valid and invalid targets to highlight their 
differences, in terms of implicit speed-accuracy trade-offs and their 
electrophysiological correlates.

The Posner model
We deliberately tried to keep the generative model as simple as 
possible so that its basic behavior can be seen clearly. To this end, 
we used a model with two levels, the first representing visual input 
and the second representing the causes of that input. The model 
has the following form, which we unpack below.
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(20)

This minimal model has all the ingredients needed to demon-
strate some complicated but intuitive phenomena. It helps to bear in 
mind that this is a generative model of how sensory data are caused 
that is used by the (synthetic) brain; we actually generated sensory 
data by simply presenting visual cues in various positions. Because 
this is a model the prior assumptions about the causes of visual 
input are that they are just random fluctuations about a mean of 
zero; i.e., v(1) = z(2,v). Perception (model inversion) uses this model 
to explain sensory input in terms of conditional expectations about 
what caused that input.

We first describe the model in terms of the way that it explains 
sensory data; in other words, how it maps from causes to conse-
quences. We then reprise the description in terms of its inversion; 
namely, mapping from consequences (sensory data) to causes 
(percepts). As a generative model, Eq. 20 describes how hidden 
causes generate sensory input. There are three causes, which are 
just random fluctuations with a mean of zero and a precision of 
one. Two causes generate targets in the right and left visual fields 
vL R,

( )1  respectively and a third vC
( )1  generates a cue. This cue establishes 

the probabilistic context in which the first two causes are expressed. 
This context is determined by hidden states xL R,

( ) ,1  which modulate 
the log-precision (inverse amplitude) of random fluctuations that 
are added to the hidden causes to create sensory data. Here, xL R,

( )1  
are mean centered versions and γ ⊂ ϕ is a constant that controls 
the potency of hidden states. Unless stated otherwise we used γ = 2. 
Crucially, the hidden causes induce sensory signals directly but also 
drive increases or decreases in the hidden states (second equality 
in Eq. 20). The two hidden states represent a high precision on the 
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inferred, then it will take considerably longer before the prediction 
error increases its own potency (by changing the hidden causes and 
states). In short, invalid targets will be perceived later and with a 
lower degree of conditional certainty (cf. Vibell et al., 2007).

Figure 2 shows an example of these dynamics. In this simula-
tion, both cue and target stimuli were generated with Gaussian 
functions presented one-quarter and two-thirds of the way dur-
ing the trial (each trial comprised sixty-four 10 ms time bins; 
i.e., 640 ms). When generating stimuli we suppressed all random 

subsequent (valid) target is presented, it will induce high-precision 
prediction errors and a consequent representation of its associated 
cause at the second level vR

( ),1  with a reasonably high degree of con-
ditional confidence. Conversely, if an invalid target is presented, it 
faces two challenges. First, the prediction errors it elicits have low 
precision and will therefore exert less drive on its associated cause 
vL

( ).1  Furthermore, this cause has to activate its associated hidden or 
contextual state xL

( )1  from much lower (negative) levels. This means 
that the invalid target may never actually be perceived or, if it is 

Figure 2 | Simulation of the Posner task (validly cued target). Upper left 
panel: the time-dependent expression of the cue and target stimuli are shown as 
broken gray lines, while the respective predictions are in red sC and green sL 
respectively. The dotted red lines show the prediction error and reflect the small 
amount of noise we used in these simulations. Lower left panel: the ensuing 
conditional expectations of the underlying hidden causes v v vR C L

( ) ( ) ( ), ,1 1 1 are shown 

below. The gray areas correspond to 90% conditional confidence tubes; this 
confidence reflects the estimated precision of the sensory data, which is encoded 
by the expectations of the hidden states in the upper right panel. The green line 
corresponds to a precision or attentional bias to the right xR

( )1 and the blue line to 
the left xL

( ).1  They gray lines are the true precisions. Lower right panel: this insert 
indicates the sort of stimuli that would be generated by these hidden causes.
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hidden states or context. The reason that precision behaves like 
a resource is that the generative model contains prior beliefs that 
log-precision is redistributed over sensory channels in a context-
sensitive fashion but is conserved over all channels.

The psychophysics of the Posner paradigm
The difference in the confidence tubes between valid and invalidly 
cued targets (Figure 3; lower right) can be usefully interpreted in 
relation to behavior (cf. Gordon, 1967). At each point in peristimu-
lus time, the conditional density implicit in the conditional mean 
and precision can be used to compute the conditional probabil-
ity that the target intensity is present. This provides the posterior 
probability p v s m i R Li( | , ) : ,( )1 0> ∈  of the presence of a target as a 
function of peristimulus time shown in Figure 4 (left panel). These 
results can be interpreted in terms of a speed-accuracy trade-off. For 
example, one can identify the amount of peristimulus time required 
to accumulate sufficient evidence for a fixed level of accuracy, as 
determined by the posterior conditional confidence. Note how the 
conditional probability of the target being present shrinks toward 
chance (50%) levels, under invalid cueing. In this example, 80% 
conditional confidence for valid targets (solid line) is attained at 
about 20 ms before the same accuracy for invalid targets (broken 
line). This translates into a reaction time advantage for valid targets 
of about 20 ms.

Figure 4 (right panel) shows the time taken to reach 80% con-
ditional confidence after the onset of invalid, neutral and valid cues 
(we simulated these reaction times with γ = 0.8). Neutral cues are 
modeled by reducing γ = 0.2 and removing any spatial bias afforded 
by the hidden states (by only using valid targets). This produces a 
temporal facilitation (temporal alerting effect) but without spatial 
specificity. The reaction time advantage with valid cues and the 
cost with invalid cues can be seen clearly. The reaction time to 
neutrally cued stimuli lies between these values. Note the asym-
metry between the reaction time benefit of a valid cue and the 
cost of an invalid cue; this asymmetry is evident in behavioral data 
and is an emergent property of the non-linearities inherent in this 
Bayes-optimal scheme.

Recall that the time course of the Posner effect depends on the 
slowly-decaying hidden states encoding precision (with a time 
constant of 32 in Eq. 20). This reflects a formal prior that changes 
in precision show a temporal persistence at any location in visual 
space. This sort of prior means that attentional biasing will persist 
but decay monotonically following a cue. This effect manifests in 
reaction times as a slow decay of benefits and costs with valid and 
invalid cures respectively. Figure 5 (left panel) shows the difference 
in reaction times following the three types of cue for various asyn-
chronies between cue and stimulus onset (the “foreperiod”). The 
small benefit seen for neutral cues is due to a temporal alerting effect 
and reflects an increase in precision with no spatial bias (i.e., a small 
increase in precision at both locations). Note that cue-dependent 
effects emerge over 200 ms, during which time conditional expecta-
tions accumulate evidence (see Figure 2; upper right panel). The 
ensuing profiles of reaction times are pleasing similar to empirical 
observations. The right panel of Figure 5 shows the corresponding 
behavioral results reported in Posner et al. (1978). Note again that 
the asymmetry in costs and benefits, over different foreperiods, is 
an emergent property of the scheme used in the simulations.

fluctuations, using a log-precision of eight. The cue was a simple 
bump function with a duration (standard deviation) of about 
45 ms. The target was a (biphasic) time derivative of a Gaussian 
bump function with a duration of about 90 ms. The cue and target 
stimuli are shown as broken gray lines in Figure 2. These are nearly 
underneath the respective predictions in red s

C
 and green s

L
 respec-

tively. The dotted red lines show the prediction error and reflect the 
small amount of noise we used in the simulations (a log-precision 
of eight; see Eq. 20). The ensuing conditional expectations of the 
underlying causal states v v vR C L

( ) ( ) ( ), ,1 1 1  are shown below (lower left). 
The gray areas around the expectations correspond to 90% con-
ditional confidence regions (referred to as tubes). Note that the 
conditional tube for the cued target (green line vR

( )1 ) is relatively 
tight because the precision of the prediction errors associated with 
this location is high. Conversely, the tube for the non-target vL

( )1  
is somewhat wider but correctly centered on an expectation of 
zero. The precisions are determined by the hidden states shown 
on the upper right. The green line corresponds to a precision or 
attentional bias to the right xR

( )1  and the blue line to the left xL
( ).1  It 

can be seen that by the time the target arrives, the log-precision is 
about four (see Eq. 20). This is substantially greater than the prior 
precision on the hidden causes (we set this to a log-precision of 
zero). Therefore, the representation of the hidden cause (target) 
is driven primarily by sensory input. The insert on the lower level 
provides a schematic indicating the sort of stimuli that would be 
generated by these hidden causes. Now, compare these results with 
the equivalent responses to an identical stimulus but presented in 
the other hemi-field.

Figure 3 uses the same format as Figure 2 to show the responses 
to an invalid target (blue lines) presented on the right. It can be 
seen here that the predictions on this sensory channel are substan-
tially less than the true value (compare the blue and dotted gray 
lines) with a consequent and marked expression of prediction 
error (dotted red line). As anticipated, the conditional confidence 
regions for the conditional expectation of this invalid target (lower 
left panel) are now much larger; with the 90% confidence tube 
always containing the value zero. The reason for this is that this 
invalid cue has failed to reverse the attentional context and is still 
operating under low levels of precision. This is reflected by the 
hidden states. In comparison with the previous figure, the atten-
tional bias (difference between the right and left hidden states) 
has been subverted by the invalid cue but has not been reversed 
(the dotted gray lines show the true values of these hidden or 
contextual states).

The result of this asymmetry between valid and invalid cue-
ing means that responses to valid targets are of higher amplitude 
and have much tighter confidence tubes, in relation to invalid 
targets. This is shown on the lower right panel of Figure 3, where 
one can compare the conditional estimates of the valid (green) 
and the invalid (blue) cause. Note that these profoundly different 
responses were elicited using exactly the same stimulus amplitude, 
after the cue had disappeared. This means that the difference is 
attributable only to the context (hidden states) that is instantiated 
by the endogenous cue. This is the basic phenomenon that we 
wanted to demonstrate, namely attentional bias in the ability of 
stimuli to capture attentional resources, where these resources cor-
respond to the precision of sensory samples encoded by inferred 
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The speed-accuracy trade-off is a useful psychophysical func-
tion, which can also be interpreted in terms of relative accuracies 
at a fixed reaction time. In this example, at 360 ms after the cue 
(about 50 ms after the onset of the target), the posterior confidence 
about the presence of valid targets is about 98%, whereas it is only 
about 70% for invalid targets (Figure 4). The relative position and 
divergence of the speed-accuracy curves may provide a useful and 
quantitative link to empirical psychophysical data. In a subsequent 
paper, we will use the stimuli generated by Eq. 20 to elicit speed-
accuracy performances from real subjects and use this performance 
to optimize the model and its parameters.

The electrophysiology of the Posner paradigm
In what follows, we attempt to explain the well characterized elec-
trophysiological correlates of the Posner paradigm using simulated 
event-related activity evoked by target stimuli. Spatial cueing effects 
are expressed in the modulation of event-related potentials (ERPs) 
to valid and invalid cues (Mangun and Hillyard, 1991; Eimer,  
1993; Perchet et al., 2001). Generally, one sees an increase in P1 
and N1 and a decrease in posterior P3 components in validly 
cued trials with respect to invalid ones. In other words, there is 
usually a validity-related enhancement of early components and 
an invalidity-related enhancement of late components. The P1 

Figure 3 | This figure uses the same format as Figure 2 but shows responses 
to an invalid target (blue line) presented on the right. The predictions of this 
sensory channel are substantially less than the true value (compare the blue and 
dotted gray lines) with a consequent expression of prediction error (dotted red line). 
The conditional confidence regions for the conditional expectation of this invalid 

target (lower left panel) are now much larger than in the previous figure. This is 
shown in the lower right panel, where one can compare the conditional estimates of 
the valid (green; see Figure 2) and the invalid (blue) hidden cause, with their 
respective conditional confidences (gray). Note that these responses were elicited 
using exactly the same stimulus amplitude.
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Figure 4 | Left panel: the posterior probability of a target being present as 
a function of peristimulus time, which can be interpreted in terms of a 
speed-accuracy trade-off. A reaction time can be derived from this data, as the 
post-stimulus time taken to achieve a fixed level of accuracy, as determined by 
the posterior or conditional confidence. In this example, 80% conditional 
confidence is attained at about 340 ms for valid targets (solid line). However, for 

invalid targets (broken line) the same accuracy is only attained after about 
360 ms. This translates into a reaction time advantage for valid targets of about 
20 ms. Right panel: this shows the reaction times for invalid, neural and valid 
cues, where neutral cues caused a small reduction in precision but with no 
spatial bias. The reaction times here are shown to within an additive constant, to 
better reflect empirical data (see Figure 5).

Figure 5 | Left panel: simulated reaction times showing the time course of 
the Posner effect over different delays (foreperiod) between the onset of 
the cue and the target increases. Right panel: empirical reaction time data, 
redrawn from Posner et al. (1978). In both the simulated and empirical data, 
reaction time benefit and cost increase swiftly to a maximum and then decay 
slowly. This reflects the quick rise and slow decay of the inferred hidden states 
seen in Figures 2 and 3 (upper right panels). There is a slight reaction time 

benefit for neutral cues due to a temporal alerting effect. This was modeled by 
allowing neutral cues to induce a small rise in both the inferred hidden states. 
The simulated reaction times were taken as the time at which there was 80% 
confidence that the target was present. The simulated reaction times are shown 
to within an arbitrary constant (to accommodated unmodeled motor responses). 
The asymmetric difference between the cost for an invalid cue and the benefit 
for a valid cue is an emergent property of the simulations.

component is the earliest component showing attentional modu-
lation and is considered to reflect attentional gain or the cost of 
attending to the wrong location (Luck et al., 1990; Mangun and 
Hillyard, 1991; Coull, 1998). It is well known that the amplitude 
of the later P3 component is inversely related to the probability of 

stimuli (Donchin and Coles, 1988). The anterior P3a is generally 
evoked by stimuli that deviate from expectations. Indeed, novel 
stimuli generate a higher-amplitude P3a component than devi-
ant but repeated stimuli (Friedman et al., 2001). The P3b is a late 
positive component with a parietal (posterior) distribution seen in 
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oddball paradigms and is thought to represent a context-updating 
operation (Donchin and Coles, 1988; Polich, 2007). Increased P3 
amplitudes during invalid trials, relative to valid trials, suggest 
that invalidly cued targets produce a novelty-like effect (P3a) and 
change the representation of probabilistic contingencies (P3b) or 
context (Vossel et al., 2006; Gómez et al., 2008). These hypotheses 
sit very comfortably with the formal scheme in this paper; in that 
sensory signals (prediction errors) evoked by valid targets will enjoy 
a selective gain, leading to enhanced early (P1 and N1) responses. 
Conversely, initial responses to invalid targets are suppressed until 
they revise the probabilistic context encoded by inferred hidden 
states. The prediction errors on the hidden states reflect (and drive) 
this revision and may contribute the later (P3) ERP components. 
The prediction errors on the hidden causes and states representing 
the content and context respectively are shown in Figure 6.

Figure 6 shows synthetic ERPs based on the simulations in 
Figures 2 and 3. Here, we have made the simplifying assumption 
that electrophysiological signals represent the activity of superfi-
cial pyramidal cells (which we presume encode prediction error; 
Friston, 2008). This means we can focus on the prediction error 
as a proxy for electrophysiological responses. The results in the 
top panels of Figure 6 show the prediction errors on the sensory 
signals (ε( , )1 v  – left panel) and hidden states (ε( , )1 x  – right panel). 
The prediction errors for valid trials are shown as dotted lines and 
invalid trials as solid lines. These simulations show an early sup-
pression of prediction error for an invalidly cued target, as its low 
precision fails to drive its representation to its veridical level. This 
violation of predictions causes prediction errors on the hidden 
states encoding context that are expressed later in peristimulus time 
and drive the hidden states to revise their conditional expectations 
(shown in Figures 2 and 3). This double dissociation between valid-
ity effects in early and late peristimulus time is exactly the same 
as that observed by Mangun and Hillyard (1991). The empirical 
results of their ERP study are shown in the lower panel of Figure 6 
and are very similar to the simulations.

Summary
In summary, this section has applied the Bayes-optimal scheme 
established in the previous section to a minimal model of the Posner 
paradigm. This model provides a mechanistic if somewhat simpli-
fied explanation for some of the key psychophysical and electro-
physiological aspects of the Posner effect, namely, validity effects on 
reaction times and the time course of these effects as stimulus onset 
asynchrony increases. Furthermore, the model exhibits an asym-
metry in costs and benefits for invalid and valid trials respectively. 
Electrophysiologically, it suggests early attentional P1 enhance-
ment can be attributed to a boosting or biasing of sensory signals 
(prediction errors) evoked by a target, while later P3 invalidity (cf, 
novelty) effects are mediated by prediction errors about the context 
in which targets appear.

sImulAtIng bIAsed competItIon
In this final section, we revisit the simulations above but from the 
point of view of biased competition. Although the Posner paradigm 
considers a much greater spatial and temporal scale than the para-
digms normally employed in a monkey electrophysiology, we can 
emulate similar phenomena by presenting both cued and  non-cued 

targets simultaneously using the Posner model. We hoped to see 
a competitive interaction between stimuli that favored the cued 
target. Furthermore, we hoped to see responses to the unattended 
(invalid) target changed in the presence of an attended target. This is 
one of the hallmarks of biased competition and is usually attributed 
to lateral interactions among competing representations for stimuli, 
within a cell’s receptive field (see Attention, Biased Competition 
and the Posner Paradigm). Although our model is too simple to 
distinguish between stimuli presented inside and outside the clas-
sical receptive field (because we do not model the spatial support 
of sensory channels in this paper), we can assume that targets fall 

Figure 6 | Simulated eeg data from our simulations (upper panels) and 
empirical eeg data (lower panel) from Mangun and Hillyard (1991). The 
EEG traces were created from the prediction errors on the hidden causes (left) 
and states (right). The empirical data were recorded via EEG from the occipital 
cortex contralateral to the target (i.e., the cortex processing the target). The 
simulated data exhibits two important features of empirical studies: early in 
peristimulus time, stimulus-driven responses are greater for valid cues (upper 
left panel) relative to invalid cues. This is often attributed to a validity 
enhancement of early (e.g., N1) components. Conversely, later in peristimulus 
time, invalid responses are greater in amplitude. This can be related to novelty 
(and salience) responses usually associated with late waveform components 
(e.g., P3). In the simulations, this invalidity effect is explained simply by greater 
prediction errors on inferred hidden states encoding precision (upper right 
panel). It is these prediction errors that report a surprising or novel context, 
following the failure to predict invalidly cued stimuli in an optimal fashion.
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within the extraclassical receptive of field of units representing 
hidden causes. This is because the response to one target depends 
on the presence of the other, as we will see next.

Figure 7 shows the results of presenting both stimuli simulta-
neously. Again the cue is in red, the valid target in green and the 
invalid (unattended) target in blue. It is immediately obvious that 
biased competition between the targets is profound, such that the 
response to the unattended target is about half of the response to 
the attended target. Furthermore, the conditional confidence about 
the unattended target is substantially less than that for the attended 
target (light and dark confidence tubes in the lower left panel). The 
lower right panel of Figure 7 compares the conditional expectations 

and confidence intervals associated with the unattended (invalid) 
target presented with and without the attended (valid) target. The 
latter response is exactly the same as the data presented in the 
lower left of Figure 3 simulating invalid cue responses. One can see 
that when the same stimulus is presented in conjunction with an 
attended target, its conditional expectation is attenuated by about 
20% and the conditional confidence tubes are much wider (light 
with an attended distractor and dark without). In other words, the 
attended target has competed for attentional resources to subvert 
conditional confidence about the unattended target. This is despite 
the fact that both unattended targets were identical; they were just 
presented in a different context.

Figure 7 | This figure uses the same format as Figures 2 and 3 but reports the 
results when both targets are presented simultaneously. The ensuing conditional 
responses can be compared with the responses in Figure 3, when the invalidly cued 
target was presented alone: when the valid target is also presented, it prevents the 

invalid target from reversing the precision bias established by the cue; i.e., it fails to 
capture attention resources. The lower right panel shows the conditional expectation 
and confidence regions for the invalid target, with and without the valid target, to 
show how the responses evoked are suppressed; i.e., biased competition.
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This context is encoded by the expected hidden states and explains 
the biased competition for resources: in contrast with the hidden 
states inferred with the invalid target alone (see the equivalent panel 
in Figure 3) the partial reversal of contextual representations has 
been precluded by the presence of the valid target. This means that 
the invalid cue can no longer capture precision and consequently is 
never able to fully express itself, through precise prediction errors, 
on the conditional representation of its cause. It is this effect, and 
only this effect, that is needed to explain biased competition. Note 
that we have not needed to model lateral interactions or explicit 
competition among representations; competition emerges naturally 
in a Bayes-optimal fashion through the non-linear effects of preci-
sion encoded by the units representing context, where the influence 
of these units is mediated by top-down or lateral projections.

The results in Figure 7 are strikingly similar to data obtained 
from electrophysiological studies. Figure 8 (upper panel) shows the 
conditional expectations about valid (solid line) and invalid (dashed 
line) targets from Figure 7. The lower panel shows peristimulus 
histograms reported in Luck et al. (1997) following simultaneous 
presentation of two (effective and ineffective) stimuli averaged over 
V4 neurons that showed a significant attention effect. The solid 
line reports trials in which attention was directed to the effective 
stimulus (cf, responses to a valid target) and the dashed line when 
attention was directed to the ineffective stimulus (cf, responses to 
an invalid target). The quantitative agreement between these simu-
lated and empirical responses is evident and speaks quantitatively 
to biased competition among stimuli.

Summary
Biased competition emerges naturally in Bayes-optimal schemes as 
a simple consequence of the fact that only one context can exist at a 
time. This unique aspect of context is encoded in the way that the 
representation of hidden states (context) modulates or distributes 
precision over sensory channels. Optimizing this representation 
leads to competition among stimuli to make the inferred context 
more consistent with their existence. This highlights the simplicity 
and usefulness of appealing to formal (Bayes-optimal) schemes, 
when trying to understand perception.

dIscussIon
Our treatment of attention is one of many accounts that emphasize 
the role of probabilistic inference in sensory processing; includ-
ing sensorimotor integration (Wolpert et al., 1995; Körding and 
Wolpert, 2004), sensory integration (Jacobs, 1999; Ernst and Banks, 
2002; Knill and Saunders, 2003; Alais and Burr, 2004), salience and 
value estimation (Trommershauser et al., 2003b; Seydell et al., 2008; 
Whiteley and Sahani, 2008) and perception (Langer and Bulthoff, 
2001; Adams et al., 2004). There have been some notable Bayesian 
accounts of attention using formal models (Rao, 2005; Spratling, 
2008, 2010). Others have tried to define statistical measures of sali-
ency, i.e., that which draws our attention (Duncan and Humphreys, 
1989; Bruce and Tsotsos, 2009; Itti and Baldi, 2009). We now discuss 
these developments in the light of the more general free-energy 
formulation used in this paper.

The free-energy formulation is a generalization of information 
theoretic treatments that subsumes Bayesian schemes by assuming 
the brain is trying to optimize the evidence for its model of the 

Figure 8 | This figure demonstrates how generalized predictive coding 
reproduces some quantitative aspects of biased competition. The 
simulation (upper panel) reproduces the conditional expectations in the 
previous figure about valid (solid line) and invalid (dashed line) targets, when 
presented simultaneously. These two responses resemble those reported in 
Luck et al. (1997). Lower panel: peristimulus histograms (over 20 ms bins) 
redrawn from Luck et al. (1997), following simultaneous presentation of two 
(effective and ineffective) stimuli averaged over 29 V4 neurons that showed a 
significant attention effect. The solid line reports trials in which attention was 
directed to the effective stimulus (cf, responses to a valid target) and the 
dashed line when attention was directed to the ineffective stimulus (cf, 
responses to an invalid target). Note that the empirical data are non-negative 
spike counts, whereas the simulated activity represent firing rate deviations 
around baseline levels.

world. This optimization involves changing the model to better 
account for sensory samples or by selectively sampling sensations 
that can be accounted for by the model (cf, perception and action). 
Attention can be viewed as a selective sampling of sensory data 
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complex neural architecture and employs non-linear modifications 
to prevent cells from having a negative firing rate. These modifica-
tions are interesting and relate to important theories based on divi-
sive normalization (Heeger, 1993). This form of (divisive) predictive 
coding can explain a remarkable range of classical and extraclassical 
receptive field properties in V1 (see Spratling, 2010).

The formulation in this paper reaffirms that there is no tension 
between biased competition and predictive coding: it demonstrates 
that the characteristic behaviors of biased competition emerge nat-
urally under predictive coding. They key thing that reconciles these 
two theories is to realize that predictive coding can be generalized to 
cover both states and precisions and that (state-dependent) preci-
sion is itself optimized. This leads to non-linear interactions among 
states implicit in the precision-weighting of prediction errors and 
provides a simple explanation for attentional gain effects. It will be 
interesting to relate the ensuing bias or weighting of sensory signals 
(prediction errors) by precision to the divisive schemes above (e.g., 
Heeger, 1993; Spratling, 2010).

bAselIne shIFts And precIsIon
In this paper, we have focussed on reaction time and event-related 
responses to targets. However, many electrophysiological and neu-
roimaging studies of attentional paradigms (e.g., Chelazzi et al., 
1993; Chawla et al., 1999b; Kastner et al., 1999; Stokes et al., 2009) 
have demonstrated cue-related increases in the basal firing rate of 
cells, whose receptive fields correspond to the attended location. A 
non-invasive electrophysiological correlate of these baseline shifts is 
called the Contingent Negative Variation component (CNV), which 
follows a cue that furnishes information about subsequent (impera-
tive) target stimuli (Walter et al., 1964; Rockstroh et al., 1982). 
Crucially, the cortical sources generating the CNV can include those 
responsible for processing the stimuli (Gómez et al., 2001). These 
baseline shifts may be accounted for, in the computational scheme, 
by the dynamics of expected hidden states, shown in the top left 
panels of Figures 2 and 3. These accumulate evidence from cues 
and represent changes in context that persist over time. It is possible 
that the activity of these representational units could contribute to 
the CNV or baseline shift directly. However, it is also possible that 
they could modulate baseline activity (caused by ambient sensory 
signals) in the prediction error-units they modulate. This would 
be consistent with baseline shifts seen with fMRI in retinotopically 
mapped areas of directed attention (e.g., Macaluso et al., 2003), 
and the reduction in non-attended areas (Smith et al., 2000). This 
suggests that baseline (endogenous) activity may be a quantitative 
proxy for the expected precision of sensory information in the cor-
responding sensory area (cf., Hesselmann et al., 2008). This hypoth-
esis was tested recently: using fMRI, Hesselmann et al. (2010) linked 
perceptual estimates of precision with baseline increases in activ-
ity; showing that baseline activity before a (subliminal) stimulus 
was correlated with the accuracy of deciding if the stimulus was 
present (and not whether the stimulus was present or absent). This 
means that baseline activity may reflect the inferred precision of 
sensory signals. Specifically, they found that neuronal activity in 
sensory areas (extrastriate visual and early auditory cortex) biases 
perceptual decisions toward correct inference and not toward a 
specific percept. They conclude: “In accord with predictive coding 
models and the free-energy principle, this observation suggests 

that have high-precision (signal to noise) in relation to the model’s 
predictions. Crucially, the model is also trying to predict precision. 
It is this (state-dependent) prediction we associate with attention. 
In short, perception, attention and action are trying to suppress 
free-energy, which is an upper bound on (Shannon) surprise (or 
the negative log-evidence for the brain’s model of the world). Under 
some simplifying assumptions, free-energy is just the amount of 
prediction error, which means free-energy minimization can be 
cast as predictive coding. So how does this relate to other formal 
treatments?

AttentIon And surprIse
Rao (2005) has introduced a compelling model of visual attention 
using Bayesian belief propagation. However, although consistent 
with Bayesian (free-energy) principles, belief propagation schemes 
rest on (discrete) representations of hidden causes and states, which 
are not compatible with the dimensionality of states in the real 
world (Friston, 2009). Using a more descriptive approach, Itti and 
Baldi (2006; 2009) proposed that many factors, which influence 
visual salience, can be integrated with prior expectations by calcu-
lating Bayesian surprise (Baldi and Itti, 2010). This is (heuristically) 
related to another measure of saliency, proposed by Bruce and 
Tsotsos (2009), who suggest that visual searches are attracted to 
areas of the visual field which maximize the information sampled. 
Crucially, reducing free-energy or (Shannon) surprise increases 
Bayesian surprise and increases the changes in the conditional 
representations afforded by sensory information. This is because 
Bayesian surprise is the difference (Kullback–Leibler divergence) 
between the posterior (conditional) and prior densities on hidden 
causes or states. This difference reports the change in the con-
ditional density after sampling new information. It is also called 
complexity in the Bayesian model comparison literature. Free-
energy can be expressed as complexity minus accuracy (Friston, 
2009). This means that minimizing (Shannon) surprise by updating 
conditional representations to increase accuracy (decrease predic-
tion errors), necessarily entails an increase in complexity (Bayesian 
surprise). In short, increases in Bayesian surprise are necessarily 
associated with decreases in free-energy (they are the complexity 
cost of reducing prediction errors) but Bayesian surprise per se is 
not optimized in Bayes-optimal schemes.

bIAsed competItIon And predIctIve codIng
It is becoming increasingly clear that estimates of the precision 
play an important role in sensory inference. Whiteley and Sahani 
(2008) demonstrated very neatly that the brain possesses (and uses) 
a model of sensory uncertainty (i.e., precision) in decision-making, 
and that this model is available even under intermittent feedback, 
showing that is estimated internally rather than learnt. Thinking 
of attention as optimizing representations of uncertainty or preci-
sion resolves any potential conflict between biased competition and 
predictive coding schemes: Spratling (2008) noted the potential 
difficulty in reconciling these two theories and proposed a variant 
of predictive coding, in which representations compete via negative 
feedback. Specifically, he showed that a particular implementation 
of the biased competition model, in which nodes compete via inhi-
bition that targets the inputs to a cortical region, is mathematically 
equivalent to linear predictive coding. This scheme relies on a rather 
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for perception based upon optimizing a free-energy bound on 
surprise or the log-evidence for a model of the world. Minimizing 
this bound, using gradient descent, furnishes recognition dynam-
ics that are formally equivalent to evidence accumulation schemes. 
Under some simplifying assumptions, the free-energy reduces to 
prediction error and the scheme can be regarded as generalized 
predictive coding. The key thing that we have tried to demon-
strate is that all the quantities required for making an inference 
have to be optimized. This includes the precisions that encode 
uncertainty or the amplitude of random fluctuations generating 
sensory information. By casting attention as inferring precision, 
we can explain several perspectives on attentional processing 
that fit comfortably with their putative neurobiological mecha-
nisms. Furthermore, by considering how states of the world 
influence uncertainty, one arrives at a plausible architecture, in 
which conditional expectations about states modulate their own 
precision. This leads naturally to competition and other non-
linear phenomena during perception. We have tried to illustrate 
these ideas in the context of a classical paradigm (the Posner 
paradigm) and relate the ensuing behavior to biased competition 
evident in electrophysiological responses recorded from awake, 
behaving monkeys. In future work, we will use the theoretical 
framework in this paper to model empirical psychophysical and 
electrophysiological data and pursue this hypothesis using formal 
model comparison.
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glossAry oF terms
Bayesian surprise: A measure of salience based on the (Kullback–

Leibler) divergence between the recognition and prior densities. It 
measures the information in the data that can be recognized.

Conditional density: Conditional density or posterior density 
is the probability distribution of causes or model parameters, given 
some data; i.e., a probabilistic mapping from observed data (con-
sequences) to causes.

(Kullback–Leibler) Divergence: Information divergence, infor-
mation gain or relative entropy is a non-commutative measure of 
the difference between two probability distributions.

Empirical prior: Priors that are induced by hierarchical models; 
they provide constraints on the recognition density is the usual way 
but depend on the data.

Entropy: The average surprise of outcomes sampled from a 
probability distribution or density. A density with low entropy 
means, on average, the outcome is relatively predictable 
(certain).

Free-energy: An information theory measure that bounds (is 
greater than) the surprise on sampling some data, given a genera-
tive model.

Generalized coordinates: Generalized coordinates of motion 
cover the value of a variable, its motion, acceleration, jerk and 
higher orders of motion. A point in generalized coordinates cor-
responds to a path or trajectory over time.

that cortical activity in sensory brain areas reflects the precision of 
prediction errors and not just the sensory evidence or prediction 
errors per se.”

The neurobiological (resp. computational) mechanisms that 
might underlie these effects tie several strands of evidence together 
rather neatly: as noted in the introduction the most plausible can-
didate for modulating activity-dependent (resp. state-dependent) 
synaptic gain (resp. precision) are fast synchronous interactions 
associated with attention (Börgers et al., 2005; Womelsdorf and 
Fries, 2006; Fries et al., 2008; Zeitler et al., 2008). The associ-
ated increase in synchronous gain is necessarily accompanied by 
increased levels of population activity that are both supported by 
and support synchrony (Chawla et al., 1999a; Salinas and Sejnowski, 
2001). These are manifest as high frequency (gamma) activity and 
elevated fMRI signals seen in attentional paradigms (Gruber et al., 
1999; Sokolov et al., 1999; Steinmetz et al., 2000; Bichot et al., 2005; 
Pavlova et al., 2006; Vidal et al., 2006; Fries et al., 2008).

AttentIon, gAIn And leArnIng
In closing, we pre-empt a potentially interesting argument about 
the specificity of gain mechanisms and attention. The idea pursued 
in this paper is that attention corresponds to inference about uncer-
tainty or precision and that this inference is encoded by dynamic 
changes in post-synaptic gain. However, non-linear (gain) post-
synaptic responses are ubiquitous in the brain; so what is special 
about the non-linearities associated with attention? We suggest that 
attention is mediated by gain modulation of prediction error-units 
(forward or bottom-up information) in contradistinction to gain 
modulation of prediction units (backward, lateral or top-down 
information). In other words, non-linearities in the brain’s gen-
erative model encoding context-sensitive expectations are distinct 
from non-linearities (gain) entailed by optimal recognition. The 
distinction may seem subtle but there is a fundamental difference 
between inferring the context-dependent contingencies and causes 
of sensations (perception) and their precision (attention). In this 
sense, there is an implicit distinction between inferring what is rel-
evant for a task (as in classical attention tasks like dichotic listening) 
and the uncertainty about what is relevant. We have side-stepped 
this issue with the Posner task, because all cues are task relevant.

There is a final distinction that may be mechanistically impor-
tant: we have focussed on activity-dependent optimization of gain 
but have not considered the (slower) learning of how and when 
this optimization should be deployed. For example, the latency 
of saccades to a target can be reduced if the target is more likely 
to appear on one side – and this relationship can be learned in as 
few as 150 trials (Carpenter and Williams, 1995; Anderson and 
Carpenter, 2006; Brodersen et al., 2008). This sort of learning cor-
responds to the optimization of the precision parameters in Eq. 19 
and may involve modulatory neurotransmitters. We will pursue this 
elsewhere and try to relate this learning to the psychopharmacol-
ogy of attention and related theories about uncertainty (e.g., Yu 
and Dayan, 2005).

conclusIon
In this paper, we have tried to establish the face validity of optimiz-
ing the precision of sensory signals as an explanation for attention 
in perceptual inference. We started with an established scheme 
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The corresponding curvatures are (neglecting second-order 
terms involving states and parameters and second-order deriva-
tives of the conditional entropy)
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Finally, the conditional precision and its derivatives are given 
by the curvature of the (Gibbs) energy
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AppendIx
IntegrAtIng the recognItIon dynAmIcs (generAlIzed FIlterIng)
Generalized filtering (Friston et al., 2010b) involves integrating the 
ordinary differential Eqs 7 and 8 to optimize the conditional means. 
We can simplify the numerics for hierarchical dynamic models by 
first collapsing over the hierarchy, then over generalized motion 
and finally over hidden causes and states:
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This gives a simple form for the (Gibbs) energy that comprises 
a log-likelihood and prior
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with the following integration scheme
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This system can be solved (integrated) using a local linearization 
(Ozaki, 1992) with updates ∆ ∆y t I t y= ℑ − ℑ −(exp( ) ) ( ) 1

  over time 
steps ∆t, where ℑ(t) the filter’s Jacobian. Note that we have omitted 
terms that mediate changes in the motion of state estimates due to 
changes in parameter estimates. This is because changes in param-
eter estimates are negligible at the time scale of changes in states. 
The requisite gradients (evaluated at the conditional expectation) 
are, with a slight abuse of notion when dealing with derivatives 
with respect to vectors
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negative variables ς ∈ ℜ+ sampled from a Poisson distribution 
with rate λ, we have from Eq. 9 (and using a first-order Taylor 
expansion):
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This means that as the expected amplitude of the sensory input 
increases, f (v) = ln λ, so does its precision Π(v) = λ = exp(f (v)).

Note that we have simplified the numerics here by neglecting 
conditional dependencies between the precisions and the states or 
parameters. These equations may look complicated but can be eval-
uated automatically using numerical derivatives. All the simulations 
in this paper used just one routine – spm_LAP.m. Demonstrations 
of this scheme are available as part of the SPM software (http://
www.fil.ion.ion.ucl.ac.uk/spm; DEM_demo.m) and reproduce the 
examples in the figures.

stAte-dependent noIse And weber’s lAw
Sensory signals are invariably registered as non-negative quanti-
ties (e.g., firing rates of photoreceptors). If we assume the sensory 
signals s ≈ lnς are an approximate log-transform of some non-


