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Bayesian estimation of cerebral perfusion using a physiological
model of microvasculature
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Perfusion weighted MRI has proven very useful for deriving
hemodynamic parameters such as CBF, CBV and MTT. These
quantities are important diagnostically, e.g. in acute stroke, where
they are used to delineate ischemic regions. Yet the standard method
for estimating CBF based on singular value decomposition (SVD) has
been demonstrated to underestimate (especially high) flow components
and to be sensitive to delays in the arterial input function (AIF).
Furthermore, the estimated residue functions often oscillate. This
compromises their physiological interpretation/basis and makes
estimation of related measures such as flow heterogeneity difficult. In
this study, we estimate perfusion parameters based on a vascular
model (VM) which represents heterogeneous capillary flow and
explicitly leads to monotonically decreasing residue functions. We use
a fully Bayesian approach to obtain posterior probability distributions
for all parameters. In simulation studies, we show that the VM method
has less bias in CBF estimates than the SVD based method for realistic
SNRs. This also applies to cases where the AIF is delayed. We employ
our method to estimate perfusion maps using data from (i) a healthy
volunteer and (ii) from a stroke patient.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Dynamic susceptibility contrast magnetic resonance imaging
(DSC-MRI) is widely used for quantification of cerebral perfusion.
Several studies have shown that perfusion parameters such as
cerebral blood flow (CBF) and mean transit time (MTT) can be used
in acute stroke patients for delineating the ‘penumbra’; defined here
as tissue with normal diffusion characteristics but abnormal per-
fusion, believed to be at risk of infarct, yet salvageable (Baird and
Warach, 1998; Sorensen et al., 1999). A key issue in inferring crucial
physiological information from perfusion imaging is the conversion
of the observed concentration time curve (CTC) into reliable
estimates of CBF, CBVand MTT. Assuming the injected bolus is an
impulse MTT can be estimated by integrating the normalized CTC,
but since this assumption does not hold, even for rapid i.v. injection
of contrast agent, most techniques are based on the tracer kinetic
observation that the observed CTC is the convolution of the AIF
with a residue function, scaled by CBF. The residue function repre-
sents the fraction of observed tracer remaining in the observed
vasculature at a certain time after its arrival. The predominate tech-
niques for estimating CBF are based on deconvolving the AIF with
the CTC using singular value decomposition (SVD) to estimate the
impulse response (defined as the residue function multiplied by
CBF). Its maximum value is CBF (Ostergaard et al., 1996;Wu et al.,
2003).

Whereas CBF estimates are crucial in delineating critically
hypoperfused tissue and in obtaining accurate MTT values, the
shape of the residue function reflects microvascular retention of
tracer and thereby the distribution of capillary velocities (Ostergaard
et al., 1999). Indeed, it has been speculated that changes in capillary
perfusion patterns may reflect regulatory mechanisms of signifi-
cance in severe ischemia (Ostergaard et al., 2000; Perkio et al., 2005;
Simonsen et al., 2002). Therefore, high accuracy in estimating CBF
and the residue function is of key importance for the study and
diagnosis of acute stroke.

Concentration curves obtained using DSC-MRI typically exhibit
a relatively high noise level (low SNR). This has been demonstrated
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to cause underestimation of CBF especially for low SNR
(Ostergaard et al., 1996). Generally, deconvolution is an ill-posed
problem where small changes in the data (the concentration time
curve) may dramatically influence the response (residue function).
Consequently, any deconvolution technique will produce residue
functions which are intrinsically rough and irregular, lacking the
smoothness and monotonic properties of physiologically admissible
solutions (the fraction of contrast agent as a function of time, after an
impulse injection, is a decreasing function of time).

More robust deconvolution techniques are primarily obtained
through regularization of the residue function. In so-called Gaussian
Process deconvolution (Andersen et al., 2002), it is suggested that
Gaussian priors are used for individual time points of the residue
function. This produces a smoother estimate of the residue function.
The method was shown to compare well to SVD for high SNRs and
results in less biased estimates for low SNRs. A smooth estimate of
the residue function can also be obtained using Tikhonov
regularization where an oscillation penalty is applied in a least
squares solution (Calamante et al., 2003).

Another problem encountered in DSC-MRI analysis is the
estimation of delay between the measured AIF and the observed
concentration time curve. It has been demonstrated that the standard
SVD underestimates CBF when the AIF lags the concentration time
curve (Calamante et al., 2002; Ostergaard et al., 1996). However, an
extended version of SVD known as circular SVD (oSVD) has been
shown to be insensitive to tracer arrival times (Wu et al., 2003).

In this work, we present a novel estimation procedure that
resolves all these problems by using an appropriate forward or
generative model of the signal. This is based on a physiological
model for the capillaries. By modeling the dynamics of the
microvasculature, we ensure smooth, monotonically decreasing
estimates of the residue function. Furthermore, in contrast to SVD
methods, our residue function estimate is completely characterized
by only two parameters. These can be used to assess efficiently how
the shape of the residue function varies among brain regions. Our
approach also has the advantage of allowing prior information about
model parameters to be incorporated into the analysis. For esti-
mation, we use a Bayesian system identification approach (Friston et
al., 2003) based on an EM-algorithm, implemented in the functional
imaging analysis package Statistical Parametric Mapping (SPM)
(http://www.fil.ion.ucl.ac.uk/spm/).

Following a description of the theoretical framework of the
vascular model and the estimation procedure, we present a si-
mulation study, which shows that our procedure compares well to
the SVD methods for low flows but does not underestimate high
flows and is unaffected by low SNR. Furthermore, we demonstrate
that the algorithm is robust to delays between the AIF and the CTC.
The procedure is then applied to perfusion data from a normal
healthy subject and compared to the performance of standard SVD
(sSVD) and oSVD. To illustrate the practical use of the present
approach, we use the algorithm to obtain CBF estimates in a patient
with middle cerebral artery (MCA) occlusion. On these data, we also
assess anecdotally the performance of the vascular model relative to
sSVD and oSVD in ischemic tissue.

Theory

We assume for a given tissue voxel that the intravascular tracer is
delivered to the capillaries from an arteriole and denote by Ca(t) the
tracer concentration at time t in the feeding arteriole. According to
indicator-dilution theory, the concentration of tracer in the capillaries
at time t is proportional to the convolution of Ca(t) with the residue
function R(t)

jCðtÞ ¼ CBF
Z t

0
CaðsÞRðt � sÞds ð1Þ

The residue function describes the fraction of tracer still present
in the capillaries at time t. The constant κ depends on the hematocrit
levels in the arteriole and capillaries and the density of brain tissue.
Since these parameters are generally indeterminable, κ is usually
replaced by an arbitrary but fixed value (Calamante et al., 1999;
Kennan and Jäger, 2003). If we can estimate the product CBF·R(t)
we obtain an estimate for CBF because R(0)=1. Using this estimate,
we can calculate MTT using the central volume theorem (Stewart,
1894)

MTT ¼ CBV
CBF

ð2Þ

where

CBV ¼
R
CðtÞdtR
CaðtÞdt :

Often, these conventional estimates are complemented by some
delay estimation. The delay is defined as the time it takes for the
arterial blood to arrive at the voxel of interest. This delay can be
estimated as the time point corresponding to the maximum of
CBF·R(t).

When C(t) and Ca(t) have been measured at M time points, the
convolution in Eq. (1) (with κ=1) can be written as

CðtiÞ ¼ CBFdDtd
Xi

j¼1

CaðtjÞRðti � tjÞ ð3Þ

Eq. (3) can also be written in matrix notation as

CBFdDtdAr ¼ c ð4Þ
where

A ¼
Caðt1Þ 0 N 0
Caðt2Þ Caðt1Þ 0

v O
CaðtM Þ CaðtM�1Þ Caðt1Þ

0
BB@

1
CCAand r ¼

Rðt1Þ
Rðt2Þ
v

RðtM Þ

0
BB@

1
CCA:

The critical step in this procedure is the estimation of the
residue function. One non-parametric method for this is based on
singular value decomposition (SVD). The matrix A can be written
as

A ¼ ULVT

where the columns of U are the eigenvectors of AAT and L is a
diagonal matrix of the corresponding eigenvalues (Mardia et al.,
1979). Since all matrices on the right hand side in this equation
may be inverted, we can obtain an expression for the inverse of A
and hence solve for r in Eq. (4)

CBFdDtdr ¼ VL�1UTc

In order to regularize the solution for r, elements in L
below a certain threshold are set to zero. This threshold is usually
set to 20% of the maximum element in L (Ostergaard et al.,
1996).
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Fig. 1. Schematic representation of the vascular model. Blood is delivered to
the tissue with a delay δ relative to the measured arterial input function.
Within the tissue, particles are distributed to a number of tubes (N), each
with different transit time Ti. The fraction of particles distributed to tube i is
hi. The hi's form an empirical density function for the transit times which
characterizes the microvasculature. This is indicated by the histogram on the
left hand side. By increasing the number of tubes, the histogram will
converge to and represent an estimate of the underlying continuous density
function h(t) for the transit times t.
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Vascular model

A key issue is how to find a parametric representation of the
residue function which is informed by a physiological model of
microvasculature. We consider a vascular dynamic model similar to
(Kroll et al., 1996; Ostergaard et al., 1999) (see Fig. 1).Wemodel the
capillary system as N parallel tubes where the transit time for a
particle entering tube i is Ti. When blood is delivered to the
capillaries from the feeding artery, it is distributed among these tubes
and the fraction entering the i’th tube is denoted as hi. Hence, the hi’s
comprise a discretized approximation (determined by the values of
Ti) to the density function of the transit times (Fig. 1). Since the
arterial input function is not necessarily measured close to the tissue
voxel, we let the parameter δ model the delay encountered between
the artery and the capillaries.

The ensuing residue function is given by

Ri ¼
X
j>i

hj ¼ 1�
X
j V i

hj:

By setting R(ti)=1−∑ i≤ ti hj in Eq. (3) the parameters h=(h1, …,
hN) can, in principle, be estimated by fitting the right hand side of
Eq. (3) to an observed concentration time curve.

However, the number of tubes needed for a good approximation
to the continuous model Eq. (1) may be rather large. This makes this
parameterization impractical for estimation because the number of
parameters is proportional to the number of tubes. Furthermore, the
particular transit times would have to encompass different tissue
types under normal as well as pathological conditions. A high
number of tubes with similar transit times will lead to imprecise
estimates. A simple way of reducing the effective number of
parameters is to assume a parametric form h(t;θ) of the transport
function h(t), where θ is a vector of model parameters. Experience
with kinetic models of this sort suggests that the family of gamma
distributions

h t;a;bð Þ ¼ 1
baCðaÞ t

a�1e�t=b; a;b > 0

with shape parameter α>0 and scale parameter β>0 is sufficiently
flexible. Note that when α=1 this is an exponential distribution with
mean β; when α= f / 2 and β=1 this is a chi-squared distribution with
f degrees of freedom (see also Fig. 3). In the following, we will let
α=λ and β=CBV/ (λ ·CBF) to ensure that the mean transit time,
which is the product of α and β, is equal to CBV/CBF in accordance
with Eq. (2). We will demonstrate in the simulations that our
parameterization captures all the important features of the transit
function. The residue function is now given by

RðtÞ ¼
Z l

t
hðs;a;bÞds

which can be inserted into Eq. (1). For any set of model parameters,
this enables us to evaluate a predicted concentration time curve C(t)
which can be evaluated numerically (cf. Eq. (3)).

To avoid errors due to undersampling, and to estimate delays,
which are not integer multiples of the TR, we fit a cubic spline to
the measured AIF and resample it at eight times the TR. The free
parameters of the vascular model are θ=(CBF, λ, δ) and in the
following we describe how these can be estimated, based on Eq.
(3).
Observation model

When the paramagnetic contrast agent passes through the
capillaries, the transverse relaxation rate R2 changes linearly in
proportion to the intravascular concentration C of the agent

R2 ¼ R0
2 þ r2C

where R2
0 is the intrinsic SE relaxation rate without the contrast and

r2 is the transverse relaxivity (Villringer et al., 1988; Weisskoff et
al., 1994). Assuming a mono-exponential relaxation the signal
intensity for a T2-weighted sequence is S=S0 exp(− TE ·R2), where
TE is the echo time and S0 is a constant depending on proton
density, repetition time and longitudinal relaxation time, T1. Hence,
the concentration of intravascular contrast agent C(t) at time t in a
tissue voxel is related to the MR signal by

CðtÞ ¼ r�1
2 ðR2ðtÞ � Rð0ÞÞ

¼ � 1
r2TE

log
SðtÞ
Sð0Þ

� �
ð5Þ

where S(0) is the baseline signal measured before bolus arrival.
We can therefore think of the model described above as a
single-input single output (SISO) system where the input is the
arterial input function Ca(t) and the response is the concentra-
tion C(t) which is measured indirectly through the output non-
linearity S(t)=S(0)e− r2C(t)TE. Fig. 2 combines the system and
output equations to show the form of our forward or likelihood
model.

We assume that the signal can be decomposed into a
deterministic component s(t) plus a noise component ε(t) such that
S(t)= s(t)+ε(t) where ε(t)~N(0,∑ε). This means that the likelihood
function L(S|∑ε) is a multidimensional Gaussian pdf. Theoretically,
the MR signal is not Gaussian since it is the magnitude of a complex
signal (and can not be negative), leading to a so-called Rician
distribution (Sijbers et al., 1998). However, this distribution is
approximately normal when the SNR is high (Gudbjartsson and



Fig. 2. Illustration of the non-linear observation model. This is a single input-
single output system where the input is the arterial input function Ca(t), and
the measured output is the signal intensity curve S(t). We assume that the
measured signal can be decomposed into a true signal STrue(t) and a zero-
mean Gaussian error term. The measured signal is determined by the
unobserved concentration time curve which is the response of the capillary
network. This is fully determined by the parameters α,β of the transport
function h.
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Patz, 1995; Sijbers et al., 1998). Note, however, that normality is
not guaranteed after the non-linear transformation to concentration
time curves, Eq (5), which is the reason we choose to directly model
the MR signal intensity S(t) in this study.

Bayesian modeling

A common problem with pure frequentist models is their
inability to incorporate prior knowledge about model parameters.
This information may range from simple interval constraints to
detailed knowledge of distributional properties revealed in previous
or related studies. Increased flexibility in model building can be
achieved using a Bayesian framework. In Bayesian modeling,
knowledge about the parameters of interest is embodied in the form
of a prior distribution on the parameters. In our case, we need to
ensure that all parameters are positive. Therefore, we let the prior
distribution be log-normal, i.e. logθ has a Gaussian distribution.

The posterior distribution of θ is then given by Bayes’ rule

p hjSð Þ ¼ pðhÞLðSjhÞR
H pðhÞLðSjhÞdh :

Note that if the log-transformed parameters are used, then the prior
as well as the likelihood is Gaussian and therefore the product of
the two is again Gaussian (Gelman et al., 2003). In order to obtain
the posterior mean and covariance matrix of θ, we apply a
Bayesian system identification approach first described in Friston
et al. (2003). This is based on a Levenberg–Marquart type
Expectation–Maximization (EM) algorithm. This procedure is
implemented in SPM5 (Statistical Parametric Mapping www.fil.
ion.ucl.ac.uk/spm/software/spm5) and has already been used
extensively for fMRI and EEG data (Friston et al., 2003; Kiebel
et al., 2006). The output of the Bayesian analysis is the posterior
multivariate distribution of the parameters. This allows us to make
inferences using the posterior expectation and covariances of the
parameters.

The Bayesian framework has one further advantage over
frequentist statistics. One can compute the model evidence, which
is useful for model selection (Penny et al., 2004). Although we forgo
any model comparisons in the present paper, we note that model
selection is useful for comparing alternative, competing models for
the same data.

Prior distributions

It is possible to add no further information to the model than the
positivity constraint by setting the diagonal elements of the cova-
riance matrix (the parameter variances) to infinity. But it is more
natural to use readily available approximations to CBF and MTT to
specify the mean of the prior distribution. Here we use the area of the
concentration time curve normalized by the area of the AIF as the
prior CBV and we use the SVD to provide the prior mean of CBF.
Then using the central volume theorem we obtain an estimate of
MTT. The prior mean of the delay parameter is set to the time point
when the SVD residue function attains its maximum. The covariance
matrix for the parameter vector was a diagonal matrix with fixed
values for the prior variances (see Materials and methods).

Materials and methods

Simulations

AnAIFwas simulated using a gamma-variate functionwhich has
been used previously for the parameterization of input functions
(Rausch et al., 2000). The AIF Ca(t) has the following analytic
expression

CaðtÞ ¼ 0 t V t0
aðt � t0Þbe�ðt�t0Þ=c t > t0

�

where we set a=1, t0=0, b=3 and c=1.5 to render an input function
with a shape and size that would typically be obtained using a
standard injection scheme (Calamante et al., 2000; Ostergaard et al.,
1996). Simulations were performed for CBV=4% and 2% which is
considered representative of normal gray andwhite matter (Leenders
et al., 1990). Flow values were varied from 10 to 70 ml/100g/min in
10 ml/100 g/min increments for CBV=4% and from 5 to 35 ml/
100 g/min in 5 ml/100 g/min increments for CBV=2%. In this way,
we obtain the same MTT range in each case, 3.43 s to 24 s, where
MTT is calculated using the central volume theorem Eq. (2). We
used the shape parameter λ to generate two different types of residue
functions. By setting λ=1, we get exponential residue functions and
setting λ=100 we get residue functions which are approximately
box-car functions, see Fig. 3. Concentration time curves were
generated as described in Vascular model using Eq. (3).

Signal curves S(t) were generated using S(t)=S0 exp(−κC(t)TE)
with S0=100 and TE=65 ms. The constant κ was chosen such that
a flow of 60 ml/100g/min and blood volume 4% produces a 40%
signal drop relative to the baseline S0 as is typical for normal gray
matter (Calamante et al., 2000; Ostergaard et al., 1996). The signal
curve for the AIF was generated similarly but with κ calibrated to
give a peak signal drop of 60%. Zero mean Gaussian noise was
added to the signal curves to produce baseline SNRs of either 20 or
100. These values cover the noise range typically found in our
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Fig. 4. Typical residue functions obtained with the vascular model, sSVD
and oSVD (CBF=20 ml/100g/min, CBV=4%, λ=100, zero delay). For
SNR=100 (top) and SNR=20 (bottom), the VM estimates of R(t) are in
close agreement with the true residue function. In comparison, the sSVD and
particularly the oSVD estimates exhibit large oscillations and periodically
take negative values when the true R(t) is zero.

Fig. 3. Examples of residue functions with identical MTT (12 s) but different
values of the shape parameter λ. When λ=1, the residue function is
exponential and with increasing λ, R(t) converges to a box-car function.
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clinical data, and have been used in previous studies on
deconvolution methodology (Wu et al., 2003). Finally, the signal
curves were transformed back to concentration time curves. For
each combination of CBV and CBF, a total of 100 concentration
time curves were generated.

To analyze the case where there is a substantial delay between the
AIF and the concentration time curve, the AIF curve was shifted up
to 5 units, in one unit increments, each time generating another 100
sample concentration time curves for each CBV, CBF combination.

Estimates of CBF were obtained using the vascular model (VM),
standard SVD (sSVD) and circular SVD (oSVD). The prior means
for CBF and delay δ were specified as described in ‘Bayesian
modeling’. No ad hoc estimate of the shape parameter λ is available
and therefore the prior mean was fixed at λ0=10. The prior
covariance of logθ=log(CBF, λ, δ) was a diagonal matrix with
elements (0.1, 10, 10). The prior variances of λ and δ were higher
than the prior variance of flow since these parameters may
realistically come close to zero. This corresponds to large negative
values on the log-scale, far away from the prior mean. In general, the
prior covariance matrix depends on the quality of the data and the
prior means. For sSVD, we used a threshold of 20% as suggested in
Ostergaard et al. (1996). In the case of oSVD, we fixed the oscil-
lation index at 0.065 when SNR=100 and 0.035 for SNR=20 as in
Wu et al. (2003).

Empirical data acquisition

One 64 year old healthy male volunteer was scanned with axial
Spin Echo EPI (TR/TE=1499/75 ms) on a 1.5 T GE Signa LX
imager (GE Medical Systems, Milawukee, WI) during I.V bolus
injection (5 ml/s) of 0.2 mmol/kg gadobutrol (Gadovist® 1.0 M,
Schering) immediately followed by 20 ml saline. One slice, matrix
128×128, at the level of the middle cerebral artery (M1) was
analyzed.

To study the performance of our algorithm in ischemic tissue, we
analyzed perfusion data from a 63 year old female with a right-sided
MCA occlusion, scanned 5 h after symptom onset on a 3.0 T GE
Signa imager (GE Medical Systems, Milawukee, WI) during I.V
bolus injection (5 ml/s) of 0.1 mmol/kg gadobutrol (Gadovist®
1.0 M, Schering) and gradient echo, EPI (TR/TE 1500/45 ms). A
contralateral AIF was determined automatically using a cluster
analysis algorithm (Mouridsen et al., 2006). The SVD threshold was
fixed at 20% and the oSVD threshold set to 0.095 (Ostergaard et al.,
1996;Wu et al., 2003). The prior mean and covariance of parameters
in the vascularmodelwere identical to those applied in the simulation
study. A follow up T2 scan was performed after 3 months.

Results

Simulations

Examples of typical residue functions obtained using VM, sSVD
and oSVD are shown in Fig. 4 for SNR=100 and 20. In both cases,
the true flow is 20 ml/100 g/min and the true residue function is a
box-car function. For SNR=100, the shape of VM residue function
is in excellent agreement with the true residue function while the
curve estimated using sSVD oscillates moderately around the true
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curve. In comparison, the oSVD residue function exhibits large
oscillations and takes negative values on some intervals When
SNR=20, the oscillations in both the sSVD and oSVD residue
functions are evenmore pronounced. For experiment times when the
true residue function is close to zero, both SVD estimates alternate
between positive and negative values. The residue function obtained
with the VM is in good agreement with the true curve.

The ability to correctly estimate true CBF in the range 10 to
70 ml/100g/min when CBV=4% is summarized in Fig. 5 for the
VM, sSVD and oSVD. When SNR=100, the VM produces flow
Fig. 5. Illustration of the association between true or simulated and estimated flow
(CBV=4%). When SNR=100 (left column), the bias in VM flow estimates is s
smallest standard deviations around their means but the bias depends on both delay
standard deviation but depends only on R(t). The same relations between VM and
increased bias in VM estimates and a general increase in standard deviations.
estimates in excellent agreement with the true values uniformly in
the flow spectrum whereas the SVD methods seem unable to
reproduce high flow components. When a delay of 5 times TR is
introduced between the AIF and the concentration time curve, the
VM flow estimates are only marginally biased in the high end of the
range, while the sSVD estimates have dropped further compared to
the case without delay. In line with previous findings (Wu et al.,
2003), we note that oSVD estimates of CBF are close to the
estimates obtained when there is no delay. Also in the case of box-car
residue functions, the VM flow estimates are unbiased. Interestingly,
(in ml/100 g/min) in the Monte Carlo simulations for the VM and o/sSVD
mall compared to o/sSVD estimates. The sSVD estimates demonstrate the
and underlying residue function. In contrast, oSVD estimates have a higher
SVD estimates are observed when SNR=20 (right column) except for an
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the bias in both SVDmethods is negligible compared to exponential
residue functions.

When SNR=20, all estimates generally exhibit larger bias and
higher standard errors. For exponential residue functions, the flow
estimates derived using the VM are closer to the true values
compared to the SVD methods. This is also true in the case of delay
between the AIF and the CTC, although here the VM starts to show a
curvi-linear relation between simulated and estimated values
comparable to the SVD methods. For box-car residue functions,
the bias in VM flow estimates is higher than in the case where
SNR=100, but the relation is still linear, which is not the case for
oSVD estimates.

In Fig. 5, deviations from true flows are seen in the high end of
the flow range, while deviations of the same relative size for low
flows are much harder to detect. Therefore, we used the ratio
between the estimated and the true flow as a measure of agreement
that is independent of the size of the true flow. To compare the three
algorithms, we calculated the mean and standard deviation of this
ratio for each of the algorithms under all simulation conditions. The
results are shown in Tables 1 and 2 for CBV equal to 4% and 2%,
respectively. The values in Table 1 correspond to the plots in Fig. 5.
Table 2 shows that when CBV=2%, the VM has a mean CBFest/
CBFtrue ratio closest to unity, compared to the SVD methods when
the residue function is exponential (0.93±0.16 (VM) compared to
0.74±0.11 (sSVD) and 0.83±0.16 (oSVD) when SNR=100, and
0.95±0.35 (VM) compared to 0.90±0.36 (sSVD) and 0.75±0.27
(oSVD) when SNR=20).

Clinically acquired human MRI data

In order to compare the performance of the vascular model on
actual perfusion data, to sSVD and oSVD, we calculated CBF, MTT
and delay maps using each of these methods, respectively. Results
are shown in Fig. 6. CBF and MTT maps were standardized by
normalization to white matter. For the CBF images, the grey/white
matter contrast is good when using VM and in addition the high
flows in the anterior vessels (the MCA branches) are well
reproduced using this approach relative to the SVD methods. This
is consistent with the simulations. Note also that the dynamic range
of VM estimates is larger than for SVD, which we speculate may
lead to improved delineation of ischemic penumbra. Furthermore,
the VM correctly estimates very long mean transit times in the
ventricles which the contrast agent does not enter if the blood–brain
barrier is intact. The ventricles are less clearly delineated on the SVD
MTT maps.

We analyzed the acute PWI data from a 63 year old female
presenting with occlusion of theMCA. The resulting CBF,MTTand
delay maps are shown in Fig. 7. CBF and MTT images are
standardized by normalization to white matter. In particular, the VM,
but also sSVD, estimates lower flows in the posterior MCA territory
Table 1
Mean ratios between estimated and true CBF values in the Monte Carlo simulatio

SNR=100

VM SVD oS

Exponential 0.95±0.13 0.73±0.10 0.8
Exponential, delay=5 0.87±0.11 0.68±0.14 0.8
Box-car 1.04±0.05 1.01±0.09 1.1

CBV=4%.
compared to oSVD. MTT maps show a clear distinction between
ischemic and normally perfused tissue. However, the dynamic range
of the MTT values estimated using the VM is large compared to the
SVD maps and the contrast to non-ischemic tissue is particularly
clear in this case. No systematic differences between methods are
observed on the delay maps except that quantitatively oSVD
estimates are higher than VM and sSVD estimates.

Discussion

We have presented a general statistical framework for estimation
of perfusion parameters based on a parametric model for the
microvasculature. The major motivation is the observation that
direct unconstrained fitting of Eq. (1) to an observed concentration
time curve leads to oscillating residue functions, which have no
physiological interpretation. These instabilities in the estimates are
due to the ill-posedness of the inverse problem. Although the
oscillations may be reduced by adding a roughness penalty in the
optimization procedure, monotonicity is not guaranteed and the
influence on CBF estimates is unclear.

The key idea in our work is to consider a model for the
microvasculature and assume a parametric form of the transport
function that defines the distribution of transit times in the capil-
laries. We used the gamma-variate pdf because the corresponding
family of residue functions encompasses a wide range of shapes
which are representative of normal (R(t) exponential) as well as
ischemic tissue (R(t) box-car). However, experimental data to guide
selection of an appropriate parametric family are scarce. Other
models could be used as well (e.g., Lorenzians). Furthermore, in
cases of low SNR, the exact functional form of R(t) might not be
critical for estimating perfusion. We note that a principled approach
to explore alternative parameterizations is model comparison using
Bayes factors (Penny et al., 2004).

Assuming a parametric form of the residue function, only the key
quantities flow, delay and residue function shape parameters need to
be estimated, whereas in non-parametric approaches every point on
the residue function must be estimated. Note that the residue func-
tion is guaranteed to be monotonically decreasing without introdu-
cing separate regularization. Although the choice of a vascular
model potentially limits the generality of this approach, a main
finding of this study is that the Bayesian approach and the flexibility
of the model allows the flow estimation for a variety of residue
functions, at least as accurately as with SVD methods.

Essentially, the task of estimating the model parameters for a
given concentration time curve is a non-linear regression problem.
As such any algorithm such as Gauss–Newton for solving non-linear
least squares optimization problems can be used. However, the ill-
posedness of the problem in practical situations calls for prior
information to reduce bias and variance in parameter estimates.
Therefore, we propose a Bayesian estimation scheme.
ns (mean±standard deviation)

SNR=20

VD VM SVD oSVD

3±0.14 0.90±0.22 0.82±0.23 0.73±0.20
3±0.14 0.75±0.20 0.73±0.24 0.74±0.20
6±0.10 1.13±0.18 1.10±0.24 1.07±0.24



Table 2
Mean ratios between estimated and true CBF values in the Monte Carlo simulations (mean±standard deviation)

SNR=100 SNR=20

VM SVD oSVD VM SVD oSVD

Exponential 0.93±0.16 0.74±0.12 0.82±0.17 0.98±0.39 0.93±0.41 0.74±0.27
Exponential, delay=5 0.81±0.11 0.68±0.16 0.82±0.17 0.85±0.40 0.85±0.43 0.76±0.30
Box-car 1.07±0.09 1.02±0.11 1.18±0.14 1.28±0.36 1.20±0.40 1.06±0.33

CBV=2%.
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We have evaluated the performance of the algorithm using
Monte Carlo simulations. Our results indicate that for an SNR of
100 the estimated flow values exhibit negligible bias throughout a
flow range of 10–70 ml/100 g/min under exponential as well as
box-car flow distributions. Furthermore, the estimated flow values
were independent of delay. This signifies an improved ability to
discriminate flow components compared to the SVD methods.
When the signal to noise ratio is low (SNR=20), the mismatch is
increased for high delay and when the residue function is box-car.
This behavior is most likely due to the low SNR, because the SVD-
based methods show similar or larger mismatches. However, with
the present method, we can employ more informative priors (see
below) and still compute meaningful results when SNR is low.

The simulations confirm previous findings that sSVD is sensitive
to delay whereas oSVD estimates are unaffected by temporal shifts
of the AIF. Both methods exhibit a non-linear relation between true
Fig. 6. Perfusion maps estimated using the VM, o/sSVD. CBF and MTT values are
been slightly cropped due to a few outliers). The ability of the VM to correctly rep
branches are clearly delineated. Moreover there seems to be a marked contrast betw
same scale while the dynamical range in the oSVDmap was smaller. There is some d
sSVD estimates.
and estimated flow where notably high flow components are poorly
reproduced. Interestingly, this non-linearity is negligible for box-car
residue functions. Our anecdotal results on the performance of the
VM in clinical MR data suggest that the present approach can
correctly reproduce high flows and establish a degree of face
validity, see Fig. 6. Moreover, the ischemic region in the stroke
patient with MCA occlusion seems more clearly outlined on the
MTT map, relative to the SVD-based maps (Fig. 7). However, we
are aware that this claim can only be substantiated by further
experiments and evaluations of multiple patients’ data. The clinical
data are included to illustrate the application of the present method to
real data. We hope that these analyses demonstrate the potential of
the technique.

It should be noted, that although delay can be modeled using this
parametric approach, our technique does not accommodate disper-
sion effects. This is because it is difficult to separate reliably
standardized to white matter (the VM CBF map and oSVD delay maps have
roduce high flow components is signified in the CBF map where the MCA
een grey and white matter. Relative VM and sSVD CBF estimates are on the
iscrepancy between delay maps. The VM estimates delay to be lower than o/



Fig. 7. Perfusion maps obtained with VM and o/sSVD for patient with acute MCA occlusion. CBF andMTT values are relative to normal appearing white matter
(the VM CBF map and oSVD delay map have been slightly cropped due to a few outliers). The 3 month follow-up T2 is shown to the right. There is a clear
contrast between vessels, grey/white matter and the ischemic region in the VM CBF map. However, all methods seem to overestimate the posterior extent of the
final infarct.
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microvascular retention from retention in the feeding vessels due to
the strong correlation of the relevant parameters. In theory, a voxel-
specific AIF can be estimated by convolving themeasuredCa(t) with
a function describing transport from the site of AIF measurement to
the voxel in question. This estimate will depend on the global
vascular architecture and is therefore not adequate in pathology.
However, both delay and dispersion effects may be minimized by
using local arterial input functions as described in (Alsop et al.,
2002) or (Calamante et al., 2004).

An additional benefit of our model is that the residue function is
characterized using only two parameters representing shape and
scale (or dispersion). We speculate that these parameters can be
used to produce maps representing capillary flow profiles and that
such maps may further help assess the tissue viability in ischemia.
In particular, the smooth residue functions estimated using the VM
may lead to improved estimation of flow heterogeneity (Ostergaard
et al., 1999, 2000), which is determined using the first derivative of
R(t). This in turn results in a better characterization of microscopic
flow profiles. As an initial approach, these parameters may be
entered into predictive algorithms (Wu et al., 2001) together with
traditional perfusion and diffusion indices to quantify the relative
predictive value of these parameters.

The ability to include prior information is a key feature in the
model. Although it is possible to employ uninformative priors, we
have used an empirical Bayes approach for which we obtained
prior means as simple functions of the data. These should be seen
as initial ‘ballpark’ estimates. A similar informative prior would let
the prior mean and covariance depend on CBV, measured SNR
and/or classified tissue type. However, to obtain useful prior
information from clinical data, we need to extract this information
from a large age-matched control group. With such a spatially
normalized data base, it would be rather straightforward to obtain
tissue- or even voxel-specific priors.
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