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This Perspective considers the influential notion of a canonical (cortical) microcircuit in light of recent theories
about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the func-
tional logic of neuronal computations. We revisit the established idea that message passing among hierar-
chical cortical areas implements a form of Bayesian inference—paying careful attention to the implications
for intrinsic connections among neuronal populations. By deriving canonical forms for these computations,
one can associate specific neuronal populations with specific computational roles. This analysis discloses
a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied
by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries
between feedforward and feedback connections and the characteristic frequencies over which they operate.
Introduction
The idea that the brain actively constructs explanations for its

sensory inputs is now generally accepted. This notion builds

on a long history of proposals that the brain uses internal or

generative models to make inferences about the causes of

its sensorium (Helmholtz, 1860; Gregory, 1968, 1980; Dayan

et al., 1995). In terms of implementation, predictive coding

is, arguably, the most plausible neurobiological candidate for

making these inferences (Srinivasan et al., 1982; Mumford,

1992; Rao and Ballard, 1999). This Perspective considers the

canonical microcircuit in light of predictive coding. We focus

on the intrinsic connectivity within a cortical column and the

extrinsic connections between columns in different cortical

areas. We try to relate this circuitry to neuronal computations

by showing that the computational dependencies—implied by

predictive coding—recapitulate the physiological dependencies

implied by quantitative studies of intrinsic connectivity. This

issue is important as distinct neuronal dynamics in different

cortical layers are becoming increasingly apparent (de Kock

et al., 2007; Sakata and Harris, 2009; Maier et al., 2010; Bolli-

munta et al., 2011). For example, recent findings suggest that

the superficial layers of cortex show neuronal synchronization

and spike-field coherence predominantly in the gamma frequen-

cies, while deep layers prefer lower (alpha or beta) frequencies

(Roopun et al., 2006, 2008; Maier et al., 2010; Buffalo et al.,

2011). Since feedforward connections originate predominately

from superficial layers and feedback connections from deep

layers, these differences suggest that feedforward connections

use relatively high frequencies, compared to feedback connec-

tions, as recently demonstrated empirically (Bosman et al.,

2012). These asymmetries call for something quite remarkable:
namely, a synthesis of spectrally distinct inputs to a cortical

column and the segregation of its outputs. This segregation

can only arise from local neuronal computations that are struc-

tured and precisely interconnected. It is the nature of this intrinsic

connectivity—and the dynamics it supports—that we consider.

The aim of this Perspective is to speculate about the functional

roles of neuronal populations in specific cortical layers in terms

of predictive coding. Our long-term aim is to create computa-

tionally informed models of microcircuitry that can be tested

with dynamic causal modeling (David et al., 2006; Moran et al.,

2008, 2011).

This Perspective comprises three sections. We start with an

overview of the anatomy and physiology of cortical connections,

with an emphasis on quantitative advances. The second section

considers the computational role of the canonical microcircuit

that emerges from these studies. The third section provides

a formal treatment of predictive coding and defines the requisite

computations in terms of differential equations. We then asso-

ciate the form of these equations with the canonical microcircuit

to define a computational architecture. We conclude with some

predictions about intrinsic connections and note some important

asymmetries in feedforward and feedback connections that

emerge from this treatment.

The Anatomy and Physiology of Cortical Connections
This section reviews laminar-specific connections that underlie

the notion of a canonical microcircuit (Douglas et al., 1989;

Douglas and Martin, 1991, 2004). We first focus on mammalian

visual cortex and then consider whether visual microcircuitry

can be generalized to a canonical circuit for the entire cortex.

Both functional and anatomical techniques have been applied
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Figure 1. Douglas and Martin Model of the Canonical Microcircuit
This is a schematic of the classical microcircuit adapted from Douglas and
Martin (1991). This minimal circuitry comprises superficial (layers 2 and 3) and
deep (layers 5 and 6) pyramidal cells and a population of smooth inhibitory
cells. Feedforward inputs—from the thalamus—target all cell populations but
with an emphasis on inhibitory interneurons and superficial and granular
layers. Note the symmetrical deployment of inhibitory and excitatory intrinsic
connections that maintain a balance of excitation and inhibition.
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to study intrinsic (intracortical) and extrinsic connections. We will

emphasize the insights from recent studies that combine both

techniques.

Intrinsic Connections and the Canonical Microcircuit
The seminal work of Douglas and Martin (1991), in the cat visual

system, produced a model of how information flows through the

cortical column. Douglas and Martin recorded intracellular

potentials from cells in primary visual cortex during electrical

stimulation of its thalamic afferents. They noted a stereotypical

pattern of fast excitation, followed by slower and longer-lasting

inhibition. The latency of the ensuing hyperpolarization distin-

guished responses in supragranular and infragranular layers.

Using conductance-based models, they showed that a simple

model could reproduce these responses. Their model contained

superficial and deep pyramidal cells with a common pool of

inhibitory cells. All three neuronal populations received thalamic

drive and were fully interconnected. The deep pyramidal cells

received relatively weak thalamic drive but strong inhibition

(Figure 1). These interconnections allowed the circuit to amplify

transient thalamic inputs to generate sustained activity in the

cortex, while maintaining a balance between excitation and

inhibition, two tasks that must be solved by any cortical circuit.

Their circuit, although based on recordings from cat visual

cortex, was also proposed as a basic theme that might be

present and replicated, with minor variations, throughout the

cortical sheet (Douglas et al., 1989).

Subsequent studies have used intracellular recordings and

histology to measure spikes (and depolarization) in pre- and

postsynaptic cells, whose cellular morphology can be deter-

mined. This approach quantifies both the connection proba-
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bility—defined as the number of observed connections divided

by total number of pairs recorded—and connection strength—

defined in terms of postsynaptic responses. Thomson et al.

(2002) used these techniques to study layers 2 to 5 (L2 to L5)

of the cat and rat visual systems. The most frequently connected

cells were located in the same cortical layer, where the largest

interlaminar projections were the ‘‘feedforward’’ connections

from L4 to L3 and from L3 to L5. Excitatory reciprocal ‘‘feed-

back’’ connections were not observed (L3 to L4) or less common

(L5 to L3), suggesting that excitation spreads within the column

in a feedforward fashion. Feedback connections were typically

seen when pyramidal cells in one layer targeted inhibitory cells

in another (see Thomson and Bannister, 2003 for a review).

While many studies have focused on excitatory connections,

a few have examined inhibitory connections. These are more dif-

ficult to study, because inhibitory cells are less common than

excitatory cells, and because there are at least seven distinct

morphological classes (Salin and Bullier, 1995). However, recent

advances in optogenetics have made it possible to target inhib-

itory cells more easily: Kätzel and colleagues combined optoge-

netics and whole-cell recording to investigate the intrinsic

connectivity of inhibitory cells in mouse cortical areas M1, S1,

and V1 (Kätzel et al., 2011). They transgenically expressed chan-

nelrhodopsin in inhibitory neurons and activated them while

recording from pyramidal cells. This allowed them to assess

the effect of inhibition as a function of laminar position relative

to the recorded neuron.

Several conclusions can be drawn from this approach (Kätzel

et al., 2011): first, L4 inhibitory connections are more restricted in

their lateral extent, relative to other layers. This supports the

notion that L4 responses are dominated by thalamic inputs,

while the remaining laminae integrate afferents from a wider

cortical patch. Second, the primary source of inhibition origi-

nates from cells in the same layer, reflecting the prevalence of

inhibitory intralaminar connections. Third, several interlaminar

motifs appeared to be general—at least in granular cortex: prin-

cipally, a strong inhibitory connection from L4 onto supragranu-

lar L2/3 and from infragranular layers onto L4. For more informa-

tion on inhibitory connections, see Yoshimura and Callaway

(2005). Figure 2 provides a summary of key excitatory and inhib-

itory intralaminar connections.

Microcircuits in the Sensorimotor Cortex
Do the features of visual microcircuits generalize to other cortical

areas? Recently, two studies have mapped the intrinsic connec-

tivity of mouse sensory and motor cortices: Lefort et al. (2009)

used multiple whole-cell recordings in mouse barrel cortex to

determine the probability of monosynaptic connections and

the corresponding connection strength. As in visual cortex, the

strongest connections were intralaminar and the strongest inter-

laminar connections were the ascending L4 to L2 and descend-

ing L3 to L5.

One puzzle about canonical microcircuits is whether motor

cortex has a local circuitry that is qualitatively similar to sensory

cortex. This question is important because motor cortex lacks

a clearly defined granular L4 (a property that earns it the name

‘‘agranular cortex’’). Weiler et al. (2008) combined whole-cell

recordings in mouse motor cortex with photostimulation to



Figure 2. The Canonical Cortical
Microcircuit
This is a simplified schematic of the key intrinsic
connections among excitatory (E) and inhibitory (I)
populations in granular (L4), supragranular (L1/
2/3), and infragranular (L5/6) layers. The excitatory
interlaminar connections are based largely on
Gilbert and Wiesel (1983). Forward connections
denote feedforward extrinsic corticocortical or
thalamocortical afferents that are reciprocated by
backward or feedback connections. Anatomical
and functional data suggest that afferent input
enters primarily into L4 and is conveyed to
superficial layers L2/3 that are rich in pyramidal
cells, which project forward to the next cortical
area, forming a disynaptic route between thalamus
and secondary cortical areas (Callaway, 1998).
Information from L2/3 is then sent to L5 and L6,
which sends (intrinsic) feedback projections back
to L4 (Usrey and Fitzpatrick, 1996). L5 cells origi-
nate feedback connections to earlier cortical areas
as well as to the pulvinar, superior colliculus, and
brain stem. In summary, forward input is segre-
gated by intrinsic connections into a superficial
forward stream and a deep backward stream. In
this schematic, we have juxtaposed densely in-
terconnected excitatory and inhibitory populations
within each layer.
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uncage Glutamate. This allowed them to systematically stimu-

late the cortical column in a grid, centered on the pyramidal

neuron from which they recorded. By recording from pyramidal

neurons in L2–L6 (L1 lacks pyramidal cells), the authors mapped

the excitatory influence that each layer exerts over the others.

They found that the L2/3 to L5A/B was the strongest connection,

accounting for one-third of the total synaptic current in the

circuit. The second strongest interlaminar connection was the

reciprocal L5A to L2/3 connection. This pathway may be homol-

ogous to the prominent L4/5A to L2/3 pathway in sensory cortex.

Also, as in sensory cortex, recurrent (intralaminar) connections

were prominent, particularly in L2, L5A/B, and L6. The largest

fraction of synaptic input arrived in L5A/B, consistent with its

key role in accumulating information from a wide range of affer-

ents, before sending its output to the corticospinal tract. In

summary, strong input layer to superficial and superficial to

deep connectivity, together with strong intralaminar connec-

tivity, suggests that the intrinsic circuitry of motor cortex is

similar to other cortical areas.

The Anatomy and Physiology of Extrinsic Connections
Clearly, an account of microcircuits must refer to the layers

of origin of extrinsic connections and their laminar targets.

Although the majority of presynaptic inputs arise from intrinsic

connections, cortical areas are also richly interconnected, where

the balance between intrinsic and extrinsic processing mediates

functional integration among specialized cortical areas (Engel

et al., 2010). By numbers alone, intrinsic connections appear to

dominate—95% of all neurons labeled with a retrograde tracer

lie within about 2 mm of the injection site (Markov et al., 2011).
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The remaining 5% represent cells giving

rise to extrinsic connections, which,

although sparse, can be extremely effec-
tive in driving their targets. A case in point is the LGN to V1

connection: although it is only the sixth strongest connection

to V1, LGN afferents have a substantial effect on V1 responses

(Markov et al., 2011).

Hierarchies and Functional Asymmetries

Current dogma holds that the cortex is hierarchically organized.

The idea of a cortical hierarchy rests on the distinction between

three types of extrinsic connections: feedforward connec-

tions, which link an earlier area to a higher area, feedback

connections, which link a higher to an earlier area, and lateral

connections, which link areas at the same level (reviewed in

Felleman and Van Essen, 1991). These connections are distin-

guished by their laminar origins and targets. Feedforward

connections originate largely from superficial pyramidal cells

and target L4, while feedback connections originate largely

from deep pyramidal cells and terminate outside of L4 (Felleman

and Van Essen, 1991). Clearly, this description of cortical hierar-

chies is a simplification and can be nuanced in many ways: for

example, as the hierarchical distance between two areas in-

creases, the percentage of cells that send feedforward (respec-

tively feedback) projections from a lower (respectively higher)

level becomes increasingly biased toward the superficial (re-

spectively deep) layers (Barone et al., 2000; Vezoli et al., 2004).

In addition to the laminar specificity of their origins and targets,

feedforward and feedback connections also differ in their

synaptic physiology. The traditional view holds that feedforward

connections are strong and driving, capable of eliciting spiking

activity in their targets and conferring classical receptive field

properties—the prototypical example being the synaptic con-

nection between LGN and V1 (Sherman and Guillery, 1998).
ovember 21, 2012 ª2012 Elsevier Inc. 697
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Feedback connections are thought to modulate (extraclassi-

cal) receptive field characteristics according to the current

context; e.g., visual occlusion, attention, salience, etc. The pro-

totypical example of a feedback connection is the cortical L6

to LGN connection. Sherman and Guillery identified several

properties that distinguish drivers from modulators. Driving

connections tend to show a strong ionotropic component in

their synaptic response, evoke large EPSPs, and respond to

multiple EPSPs with depressing synaptic effects. Modulatory

connections produce metabotropic and ionotropic responses

when stimulated, evoke weak EPSPs, and show paired-pulse

facilitation (Sherman and Guillery, 1998, 2011). These distinc-

tions were based upon the inputs to the LGN, where retinal

input is driving and cortical input is modulatory. Until recently,

little data were available to assess whether a similar distinction

applies to corticocortical feedforward and feedback connec-

tions. However, recent studies show that cortical feedback

connections express not only modulatory but also driving char-

acteristics.

Are Feedback Connections Driving, Modulatory, or

Both?

Although it is generally thought that feedback connections

are weak and modulatory (Crick and Koch, 1998; Sherman and

Guillery, 1998), recent evidence suggests that feedback con-

nections do more than modulate lower-level responses: Sher-

man and colleagues recorded cells in mouse areas V1/V2 and

A1/A2, while stimulating feedforward or feedback afferents. In

both cases, driving-like responses as well as modulatory-like

responses were observed (Covic and Sherman, 2011; De Pas-

quale and Sherman, 2011). This indicates that—for these hierar-

chically proximate areas—feedback connections can drive their

targets just as strongly as feedforward connections. This is

consistent with earlier studies showing that feedback connec-

tions can be driving: Mignard and Malpeli (1991) studied the

feedback connection between areas 18 and 17, while layer A

of the LGN was pharmacologically inactivated. This silenced

the cells in L4 in area 17 but spared activity in superficial layers.

However, superficial cells were silenced when area 18 was

lesioned. This is consistent with a driving effect of feedback

connections from area 18, in the absence of geniculate input.

In summary, feedback connections can mediate modulatory

and driving effects. This is important from the point of view of

predictive coding, because top-down predictions have to elicit

obligatory responses in their targets (cells reporting prediction

errors).

In predictive coding, feedforward connections convey predic-

tion errors, while feedback connections convey predictions

from higher cortical areas to suppress prediction errors in lower

areas. In this scheme, feedback connections should therefore be

capable of exerting strong (driving) influences on earlier areas to

suppress or counter feedforward driving inputs. However, as we

will see later, these influences also need to exert nonlinear or

modulatory effects. This is because top-down predictions are

necessarily context sensitive: e.g., the occlusion of one visual

object by another. In short, predictive coding requires feedback

connections to drive cells in lower levels in a context-sensitive

fashion, which necessitates a modulatory aspect to their post-

synaptic effects.
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Are Feedback Connections Excitatory or Inhibitory?

Crucially, because feedback connections convey predictions,

which serve to explain and thereby reduce prediction errors in

lower levels, their effective (polysynaptic) connectivity is gener-

ally assumed to be inhibitory. An overall inhibitory effect of

feedback connections is consistent with in vivo studies. For

example, electrophysiological studies of themismatch negativity

suggest that neural responses to deviant stimuli, which violate

sensory predictions established by a regular stimulus sequence,

are enhanced relative to predicted stimuli (Garrido et al., 2009).

Similarly, violating expectations of auditory repetition causes

enhanced gamma-band responses in early auditory cortex (To-

dorovic et al., 2011). These enhanced responses are thought

to reflect an inability of higher cortical areas to predict, and

thereby suppress, the activity of populations encoding predic-

tion error (Garrido et al., 2007; Wacongne et al., 2011). The

suppression of predictable responses can also be regarded as

repetition suppression, observed in single-unit recordings from

the inferior temporal cortex of macaque monkeys (Desimone,

1996). Furthermore, neurons in monkey inferotemporal cortex

respond significantly less to a predicted sequence of natural

images, compared to an unpredicted sequence (Meyer and Ol-

son, 2011).

The inhibitory effect of feedback connections is further sup-

ported by neuroimaging studies (Murray et al., 2002, 2006; Har-

rison et al., 2007; Summerfield et al., 2008, 2011; Alink et al.,

2010). These studies show that predictable stimuli evoke smaller

responses in early cortical areas. Crucially, this suppression

cannot be explained in terms of local adaptation, because the

attributes of the stimuli that can be predicted are not represented

in early sensory cortex (e.g., Harrison et al., 2007). It should be

noted that the suppression of responses to predictable stimuli

can coexist with (top-down) attentional enhancement of evoked

processing (Wyart et al., 2012): in predictive coding, attention is

mediated by increasing the gain of populations encoding pre-

diction error (Spratling, 2008; Feldman and Friston, 2010). The

resulting attentional modulation (e.g., Hopfinger et al., 2000)

can interact with top-down predictions to override their suppres-

sive influence, as demonstrated empirically (Kok et al., 2012).

See Buschman and Miller (2007), Saalmann et al. (2007),

Anderson et al. (2011), and Armstrong et al. (2012) for further

discussion of top-down connections in attention.

Further evidence for the inhibitory (suppressive) effect of

feedback connections comes from neuropsychology: patients

with damage to the prefrontal cortex (PFC) show disinhibition

of event-related potential (ERP) responses to repeating stimuli

(Knight et al., 1989; Yamaguchi and Knight, 1990; but see Bar-

celó et al., 2000). In contrast, they show reduced-amplitude

P300 ERPs in response to novel stimuli—as if there were a failure

to communicate top-down predictions to sensory cortex (Knight,

1984). Furthermore, normal subjects show a rapid adaptation to

deviant stimuli as they become predictable—an effect not seen

in prefrontal patients.

Several invasive studies complement these human studies in

suggesting an overall inhibitory role for feedback connections.

In a recent seminal study, Olsen et al. studied corticothalamic

feedback between L6 of V1 and the LGN using transgenic

expression of channelrhodopsin in L6 cells of V1. By driving
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these cells optogenetically—while recording units in V1 and the

LGN—the authors showed that deep L6 principal cells inhibited

their extrinsic targets in the LGN and their intrinsic targets in

cortical layers 2 to 5 (Olsen et al., 2012). This suppression was

powerful—in the LGN, visual responses were suppressed by

76%. Suppression was also high in V1, around 80%–84% (Olsen

et al., 2012). This evidence is in line with classical studies of cor-

ticogeniculate contributions to length tuning in the LGN, showing

that cortical feedback contributes to the surround suppression

of feline LGN cells: without feedback, LGN cells are disinhibited

and show weaker surround suppression (Murphy and Sillito,

1987; Sillito et al., 1993; but see Alitto and Usrey, 2008).

While these studies provide convincing evidence that cor-

tical feedback to the LGN is inhibitory, the evidence is more

complicated for corticocortical feedback connections (Sandell

and Schiller, 1982; Johnson and Burkhalter, 1996, 1997). Hupé

et al. (1998) cooled area V5/MT while recording from areas V1,

V2, and V3 in the monkey. When visual stimuli were presented

in the classical receptive field (CRF), cooling of area V5/MT

decreased unit activity in earlier areas, suggesting an excitatory

effect of extrinsic feedback (Hupé et al., 1998). However, when

the authors used a stimulus that spanned the extraclassical

RF, the responses of V1 neurons were, on average, enhanced

after cooling area V5, consistent with the suppressive role of

feedback connections. These results indicate that the inhibitory

effects of feedback connections may depend on (natural) stimuli

that require integration over the visual field. Similar effects were

observed when area V2was cooled and neurons weremeasured

in V1: when stimuli were presented only to the CRF, cooling V2

decreased V1 spiking activity; however, when stimuli were

present in the CRF and the surround, cooling V2 increased V1

activity (Bullier et al., 1996). Finally, others have argued for an

inhibitory effect of feedback based on the timing and spatial

extent of surround suppression in monkey V1, concluding that

the far surround suppression effects were most likely mediated

by feedback (Bair et al., 2003).

The empirical finding that feedback connections can both

facilitate and suppress firing in lower hierarchical areas—de-

pending on the content of classical and extraclassical receptive

fields—is consistent with predictive coding: Rao and Ballard

(1999) trained a hierarchical predictive coding network to recog-

nize natural images. They showed that higher levels in the hier-

archy learn to predict visual features that extend across many

CRFs in the lower levels (e.g., tree trunks or horizons). Hence,

higher visual areas come to predict that visual stimuli will span

the receptive fields of cells in lower visual areas. In this setting,

a stimulus that is confined to a CRF would elicit a strong pre-

diction error signal (because it cannot be predicted). This pro-

vides a simple explanation for the findings of Hupé et al. (1998)

and Bullier et al. (1996): when feedback connections are deacti-

vated, there are no top-down predictions to explain responses in

lower areas, leading to a disinhibition of responses in earlier

areas when—and only when—stimuli can be predicted over

multiple CRFs.

Feedback Connections and Layer 1

How might the inhibitory effect of feedback connections be

mediated? The established view is that extrinsic corticocortical

connections are exclusively excitatory (using glutamate as their
excitatory neurotransmitter), although recent evidence suggests

that inhibitory extrinsic connections exist andmay play an impor-

tant role in synchronizing distant regions (Melzer et al., 2012).

However, one important route by which feedback connections

could mediate selective inhibition is via their termination in L1

(Anderson and Martin, 2006; Shipp, 2007): layer 1 is sometimes

referred to as acellular due to its pale appearance with Nissl

staining (the classical method for separating layers that selec-

tively labels cell bodies). Indeed, a recent study concluded that

L1 contains less than 0.5% of all cells in a cortical column (Meyer

et al., 2011). These L1 cells are almost all inhibitory and intercon-

nect strongly with each other via electrical connections and

chemical synapses (Chu et al., 2003). Simultaneous whole-cell

patch-clamp recordings show that they provide strong mono-

synaptic inhibition to L2/3 pyramidal cells, whose apical

dendrites project into L1 (Chu et al., 2003; Wozny and Williams,

2011). This means that L1 inhibitory cells are in a prime position

to mediate inhibitory effects of extrinsic feedback. The laminar

location highlighted by these studies—the bottom of L1 and

the top of L2/3—has recently been shown to be a ‘‘hotspot’’ of

inhibition in the column (Meyer et al., 2011). Indeed, a study of

rat barrel cortex, which stimulated (and inactivated) L1, showed

that it exerts a powerful inhibitory effect on whisker-evoked

responses (Shlosberg et al., 2006). These studies suggest that

corticocortical feedback connections could deliver strong inhibi-

tion, if they were to recruit the inhibitory potential of L1.

In terms of the excitatory and modulatory effect of feedback

connections, predictive input from higher cortical areas might

have an important impact via the distal dendrites of pyramidal

neurons (Larkum et al., 2009). Furthermore, there is a specific

type of GABAergic neuron that appears to control distal dendritic

excitability, gating top-down excitatory signals differentially

during behavior (Gentet et al., 2012). Table 1 summarizes the

studies we have discussed in relation to the role of feedback

connections.

Feedforward and Transthalamic Connections
While the evidence for an inhibitory effect of feedback connec-

tions has to be evaluated carefully, the evidence for an excitatory

effect of feedforward connections is unequivocal. For example,

in the monkey, V1 projects monosynaptically to V2, V3, V3a,

V4, and V5/MT (Zeki, 1978; Zeki and Shipp, 1988). In all

cases—when V1 is reversibly inactivated through cooling—

single-cell activity in target areas is strongly suppressed (Girard

and Bullier, 1989; Girard et al., 1991a, 1991b, 1992). In the cases

of V2 and V3, the result of cooling area V1 is a near-total silencing

of single-unit activity. These studies illustrate that activity in

higher cortical areas depends on driving inputs from earlier

cortical areas that establish their receptive field properties.

Finally, while many studies have focused on extrinsic connec-

tions that project directly from one cortical area to the next, there

is mounting evidence that feedforward driving connections (and

perhaps feedback) in the cortex could be mediated by transtha-

lamic pathways (Sherman and Guillery, 1998, 2011). The stron-

gest evidence for this claim comes from the somatosensory

system, where it was shown recently that the posterior medial

nucleus of the thalamus (POm)—a higher-order thalamic nucleus

that receives direct input from cortex—can relay information
Neuron 76, November 21, 2012 ª2012 Elsevier Inc. 699



Table 1. Electrophysiological and Neuroimaging Findings Consistent with Predictive Coding

Prediction Violated Area Studied

Neuronal Expression of Prediction

Error Study

Learned visual object pairings Monkey inferotemporal cortex (IT) Enhanced firing rate Meyer and Olson, 2011

Natural image statistics Monkey V1, V2, V3 Enhanced firing rate Hupé et al., 1998; Bullier et al.,

1996; Bair et al., 2003

Repetitive auditory stream Early human auditory cortex Enhanced event-related potentials

(ERPs), enhanced gamma-band

power

Garrido et al., 2007, 2009;

Todorovic et al., 2011

Coherence of visual form and

motion

Human V1, V2, V3, V4, V5/MT Enhanced BOLD response Murray et al., 2002, 2006;

Harrison et al., 2007

Audio-visual congruence of

speech

Visual and auditory cortex Gamma-band oscillatory activity Arnal et al., 2011

Predictability of visual stimuli

as a function of attention

Human V1, V2, V3 Enhanced BOLD response when

unattended, reduced BOLD when

attended

Kok et al., 2012

Hierarchical expectations in

auditory sequences

Human temporal cortex Enhanced ERPs Wacongne et al., 2011

Expected repetition (or alternation)

of face stimuli

FFA in fMRI, parietal and central

electrodes of EEG

Enhanced BOLD response,

diminished repetition suppression

of ERP

Summerfield et al., 2008, 2011

Apparent motion of visual stimulus V1 Enhanced BOLD response Alink et al., 2010
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between S1 and S2 (Theyel et al., 2010). In addition, the thalamic

reticular nucleus has been proposed to mediate the inhibition

that might underlie crossmodal attention or top-down predic-

tions (Yamaguchi and Knight, 1990; Crick, 1984; Wurtz et al.,

2011). Furthermore, computational considerations and recent

experimental findings point to a potentially important role for

higher-order thalamic nuclei in coordinating and synchronizing

cortical responses (Vicente et al., 2008; Saalmann et al., 2012).

The degree to which cortical areas are integrated directly via

corticocortical or indirectly via cortico-thalamo-cortical connec-

tions—and the extent to which transthalamic pathways disso-

ciate feedforward from feedback connections in the same way

as we have proposed for the corticocortical connections—are

open questions.

The Canonical Microcircuit
Central to the idea of a canonical microcircuit is the notion that

a cortical column contains the circuitry necessary to perform

requisite computations and that these circuits can be replicated

with minor variations throughout the cortex. One of the clearest

examples of how cortical circuits process simple inputs—to

generate complex outputs—is the emergence of orientation

tuning in V1. Orientation tuning is a distinctly cortical phenom-

enon because geniculocortical relay cells show no orientation

preferences. A further elaboration of cortical responses can be

found in the distinction between simple and complex cells—

while simple cells possess spatially confined receptive fields,

complex cells are orientation tuned but show less preference

for the location of an oriented bar. Hubel and Wiesel proposed

a model for how intrinsic and extrinsic connectivity could estab-

lish a circuit explaining these receptive field properties. They

proposed that orientation tuning in simple cells could be gener-

ated by a single cortical cell receiving input from several ON
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center-OFF surround geniculate cells arranged along a par-

ticular orientation, thereby endowing it with a preference for

bars oriented in a particular direction (Hubel and Wiesel, 1962).

Complex cells were hypothesized to receive inputs from

several simple cells—with the same orientation preference and

slightly varying receptive field locations. Thus, complex cells

were thought not to receive direct LGN input but to be higher-

order cells in cortex. Subsequent findings supported these

predictions, showing that input layers 4Ca and 4Cb contained

the largest proportion of cells receiving monosynaptic genicu-

late input, while superficial and deep layer cells contain a larger

number of cells receiving disynaptic or polysynaptic input (Bullier

and Henry, 1980). Furthermore, simple cells project mono-

synaptically onto complex cells, where they exert a strong feed-

forward influence (Alonso and Martinez, 1998; Alonso, 2002).

These models suggest that intrinsic cortical circuitry allows pro-

cessing to proceed along discrete steps that are capable of

producing response properties in outputs that are not present

in inputs.

Segregation of Processing Streams
A key property of canonical circuits is the segregation of parallel

streams of processing. For example, in primates, parvocellular

input enters the cortex primarily in layer 4Cb, whereas magno-

cellular inputs enter in 4Ca. The corticogeniculate feedback

pathway from L6 maintains this segregation, as upper L6 cells

preferentially synapse onto parvocellular cells in the LGN, while

lower L6 cells target the magnocellular LGN layers (Fitzpatrick

et al., 1994; Briggs and Usrey, 2009). Further examples of stream

segregation are also present in the dorsal ‘‘where’’ and the

ventral ‘‘what’’ pathways and in the projection from V1 to the

thick, thin, and interstripe regions of V2 (Zeki and Shipp, 1988;

Sincich and Horton, 2005).
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Superficial and deep layers are anatomically interconnected,

but mounting evidence suggests that they constitute functionally

distinct processing streams: in an elegant experiment, Roopun

et al. (2006) showed that L2/3 of rat somatomotor cortex shows

prominent gamma oscillations that are coexpressed with beta

oscillations in L5. Both rhythms persisted when superficial and

deep layers were disconnected at the level of L4. Maier et al.

(2010) used multilaminar recordings to show strong local field

potential (LFP) coherence among sites within the superficial

layers (the superficial compartment), as well as strong coher-

ence among sites in deep layers (the deep compartment) but

weak intercompartment coherence. These studies indicate a

segregation of—potentially autonomous—supragranular and

infragranular dynamics. Maier et al. (2010) found that supragra-

nular sites had higher broadband gamma power than infragranu-

lar sites. This pattern was reversed in the alpha and beta range,

with greater power in the infragranular and granular layers.

Finally, the spiking activity of neurons in the superficial layers

of visual cortex are more coherent with gamma-frequency oscil-

lations in the local field potential, while neurons in deep layers are

more coherent with alpha-frequency oscillations (Buffalo et al.,

2011). This finding is consistent with an earlier study by Living-

stone (1996) showing that 50%of cells in L2/3 of squirrel monkey

V1 expressed gamma oscillations, compared to less than 20%

of cells in L4C and infragranular layers. The different spectral

behavior of superficial and deep layers has led to the interesting

proposal that feedforward and feedback signaling may be medi-

ated by distinct (high and low) frequencies (reviewed in Wang,

2010; see also Buschman and Miller, 2007), a proposal that

has recently received experimental support, at least for the feed-

forward connections (Bosman et al., 2012; see also Gregoriou

et al., 2009).

Integration and Segregation within Canonical Circuits

Given this functional and anatomical segregation into parallel

streams, the question naturally arises, how are these streams

integrated? It has been previously suggested that integration

occurs through the synchronized firing of multiple neurons that

form a neural ensemble (Gray et al., 1989; Singer, 1999), while

others have emphasized interareal phase synchronization or

coherence (Varela et al., 2001; Fries, 2005; Fujisawa and Buz-

sáki, 2011). While a full treatment of this question is beyond

the scope of the current Perspective, we propose that the canon-

ical microcircuit contains a clue for how the dialectic between

segregation and integration might be resolved. While top-down

and bottom-up inputs and outputs may be segregated in layers,

streams, and frequency bands, the canonical microcircuit spec-

ifies the circuitry for how the basic units of cortex are intercon-

nected and therefore how the intrinsic activity of the cortical

column is entrained by extrinsic inputs. This intrinsic connectivity

specifies how the cells of origin and termination of extrinsic

projections are interconnected and thus determines how top-

down and bottom-up streams are integrated within each cortical

column.

Spatial Segregation and Cortical Columns
The notion of a canonical microcircuit implicitly assumes that

each circuit is distinct from its neighbors, which could presum-

ably carry out computations in parallel. Therefore, the canonical
microcircuit specifies the spatial scale over which processing is

integrated. The most likely candidate for this spatial scale is the

cortical column, which can vary over three orders of magnitude

between minicolumns, columns, and hypercolumns. Minicol-

umns are only a few cells wide, estimated to be about 50–

60 mm in diameter by Mountcastle (1997) and are seen in Nissl

sections of cortex as slight variations in cell density. Minicolumns

were originally proposed as elementary units of cortex by Lor-

ente de No (1949) and appear to reflect the migration of cells

from the ventricular zone to the cortical sheet during fetal devel-

opment (reviewed in Horton and Adams, 2005). Hubel and Wie-

sel estimated that orientation columns were on this order of

magnitude, about 25–50 mm wide, although they failed to estab-

lish a correspondence between orientation columns observed

physiologically and the minicolumns seen in Nissl sections

(Hubel and Wiesel, 1974). A cortical column was classically

defined as a vertical alignment of cells containing neurons with

similar receptive field properties, such as orientation preference

and ocular dominance in V1 or touch in somatosensory cortex

(Mountcastle, 1957; Hubel and Wiesel, 1972). These columns

were suggested by Mountcastle to encompass a number of

minicolumns, with a width of 300–400 mm (Mountcastle, 1997).

Finally, Hubel and Wiesel defined a hypercolumn to be the unit

of cortex necessary to traverse all possible values of a particular

receptive field property, such as orientation or eye dominance,

estimated to be between 0.5 and 1 mm wide (Hubel and Wiesel,

1974).

Columns, Connections, and Computations

So is the cortical column the basic unit of cortical computation?

Some authors emphasize that even within a dendrite, there

are all the necessary biophysical mechanisms for performing

surprisingly advanced computations, such as direction selec-

tivity, coincidence detection, or temporal integration (Häusser

and Mel, 2003; London and Häusser, 2005). Others argue that

single neurons can process their inputs at the dendrite, soma,

and initial segment, such that the output spike trains of just

two interconnected cells could mediate computations like

independent components analysis (Klampfl et al., 2009). Others

posit that cortical columns form the basic computational unit

(Mountcastle, 1997; Hubel and Wiesel, 1972; but see Horton

and Adams, 2005). Donald Hebb proposed that neurons distrib-

uted over several cortical areas could form a functional compu-

tational unit called a neural assembly (Hebb, 1949). This view

has re-emerged in recent years, with the development of the

requisite recording and analytic techniques for evaluating this

proposal (Buzsáki, 2010; Canolty et al., 2010; Singer et al.,

1997; Lopes-dos-Santos et al., 2011).

Computational modeling studies indicate that cortical

columns with structured connectivity are computationally more

efficient than a network containing the same number of neurons

but with random connectivity (Haeusler and Maass, 2007).

Others suggest that this circuitry allows the cortex to organize

and integrate bottom-up, lateral, and top-down information (Ull-

man, 1995; Raizada and Grossberg, 2003). Douglas and Martin

suggest that the rich anatomical connectivity of L2/3 pyramidal

cells allows them to collect information from top-down, lateral,

and bottom-up inputs, and—through processing in the dendritic

tree—select the most likely interpretation of its inputs. More
Neuron 76, November 21, 2012 ª2012 Elsevier Inc. 701
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recently, George and Hawkins have suggested that the canon-

ical microcircuit implements a form of Bayesian processing

(George and Hawkins, 2009). In the following section, we pursue

similar ideas but ground them in the framework of predictive

coding and propose a cortical circuit that could implement

predictive coding through canonical interconnections. In partic-

ular, we find that the proposed circuitry agrees remarkably well

with quantitative characterizations of the canonical microcircuit

(Haeusler and Maass, 2007).

A Canonical Microcircuit for Predictive Coding
This section considers the computational role of cortical micro-

circuitry in more detail. We try to show that the computations

performed by canonical microcircuits can be specified more

precisely than one might imagine and that these computations

can be understood within the framework of predictive coding.

In brief, we will show that (hierarchical Bayesian) inference about

the causes of sensory input can be cast as predictive coding.

This is important because it provides formal constraints on the

dynamics one would expect to find in neuronal circuits. Having

established these constraints, we then attempt to match them

with the neurobiological constraints afforded by the canonical

microcircuit. The endpoint of this exercise is a canonical micro-

circuit for predictive coding.

Predictive Coding and the Free Energy Principle
It might be thought impossible to specify the computations per-

formed by the brain. However, there are some fairly fundamental

constraints on the basic form of neuronal dynamics. The argu-

ment goes as follows—and can be regarded as a brief summary

of the free energy principle (see Friston, 2010 for details).

d Biological systems are homeostatic (or allostatic), which

means that they minimize the dispersion (entropy) of their

interoceptive and exteroceptive states.

d Entropy is the average of surprise over time, which means

that biological systems minimize the surprise associated

with their sensory states at each point in time.

d In statistics, surprise is the negative logarithm of Bayesian

model evidence, which means that biological systems—

like the brain—must continually maximize the Bayesian

evidence for their (generative) model of sensory inputs.

d Maximizing Bayesian model evidence corresponds to

Bayesian filtering of sensory inputs. This is also known as

predictive coding.

These arguments mean that by minimizing surprise, through

selecting appropriate sensations, the brain is implicitlymaximizing

the evidence for its own existence—this is known as active infer-

ence. In other words, to maintain a homeostasis, the brain must

predict its sensory states on the basis of a model. Fulfilling those

predictions corresponds to accumulating evidence for that

model—and the brain that embodies it. The implicit maximization

of Bayesian model evidence provides an important link to the

Bayesian brain hypothesis (Hinton and van Camp, 1993; Dayan

et al., 1995; Knill and Pouget, 2004) and many other compelling

proposals about perceptual synthesis, including analysis by

synthesis (Neisser, 1967; Yuille and Kersten, 2006), epistemolog-

ical automata (MacKay, 1956), the principle of minimum redun-
702 Neuron 76, November 21, 2012 ª2012 Elsevier Inc.
dancy (Attneave, 1954; Barlow, 1961; Dan et al., 1996), the Info-

max principle (Linsker, 1990; Atick, 2011; Kay and Phillips,

2011), andperceptionashypothesis testing (Gregory,1968,1980).

The most popular scheme—for Bayesian filtering in neuronal

circuits—is predictive coding (Srinivasan et al., 1982; Buchs-

baum and Gottschalk, 1983; Rao and Ballard, 1999). In this

context, surprise corresponds (roughly) to prediction error. In

predictive coding, top-down predictions are compared with

bottom-up sensory information to form a prediction error.

This prediction error is used to update higher-level representa-

tions, upon which top-down predictions are based. These opti-

mized predictions then reduce prediction error at lower levels.

To predict sensations, the brain must be equipped with a

generative model of how its sensations are caused (Helmholtz,

1860). Indeed, this led Geoffrey Hinton and colleagues to

propose that the brain is an inference (Helmholtz) machine (Hin-

ton and Zemel, 1994; Dayan et al., 1995). A generative model

describes how variables or causes in the environment conspire

to produce sensory input. Generative models map from (hidden)

causes to (sensory) consequences. Perception then corre-

sponds to the inverse mapping from sensations to their causes,

while action can be thought of as the selective sampling of

sensations. Crucially, the form of the generative model dictates

the form of the inversion—for example, predictive coding. Fig-

ure 3 depicts a general model as a probabilistic graphical

model. A special case of these models are hierarchical dynamic

models (see Figure 4), which grandfather most parametric

models in statistics and machine learning (see Friston, 2008).

These models explain sensory data in terms of hidden causes

and states. Hidden causes and states are both hidden variables

that cause sensations but they play slightly different roles:

hidden causes link different levels of the model and mediate

conditional dependencies among hidden states at each level.

Conversely, hidden states model conditional dependencies

over time (i.e., memory) by modeling dynamics in the world. In

short, hidden causes and states mediate structural and dynamic

dependencies, respectively.

The details of the graph in Figure 3 are not important; it just

provides a way of describing conditional dependencies among

hidden states and causes responsible for generating sensory

input. These dependencies mean that we can interpret neuronal

activity as message passing among the nodes of a generative

model, in which each canonical microcircuit contains represen-

tations or expectations about hidden states and causes. In other

words, the form of the underlying generative model defines

the form of the predictive coding architecture used to invert the

model. This is illustrated in Figure 4,where eachnode has a single

parent. We will deal with this simple sort of model because it

lends itself to an unambiguous description in terms of bottom-

up (feedforward) and top-down (feedback) message passing.

We now look at how perception or model inversion—recovering

the hidden states and causes of this model given sensory data—

might be implemented at the level of a microcircuit.

Predictive Coding and Message Passing
In predictive coding, representations (or conditional expecta-

tions) generate top-down predictions to produce prediction

errors. These prediction errors are then passed up the hierarchy



“A bird in song”

Figure 3. Hierarchical Generative Models
This schematic shows an example of a generativemodel. Generativemodels describe how (sensory) data are caused. In this figure, sensory states (blue circles on
the periphery) are generated by hidden variables (in the center). Left: themodel as a probabilistic graphical model, in which unknown variables (hidden causes and
states) are associated with the nodes of a dependency graph and conditional dependencies are indicated by arrows. Hidden states confer memory on the model
by virtue of having dynamics, while hidden causes connect nodes. A graphical model describes the conditional dependencies among hidden variables generating
data. These dependencies are typically modeled as (differential) equations with nonlinear mappings and random fluctuations ~uðiÞ with precision (inverse variance)
PðiÞ (see the equations in the insert on the left). This allows one to specify the precise form of the probabilistic generative model and leads to a simple and efficient
inversion scheme (predictive coding; see Figure 4). Here ~vpaðiÞ denotes the set of hidden causes that constitute the parents of sensory ~sðiÞ or hidden ~xðiÞ states. The
‘‘�’’ indicates states in generalized coordinates ofmotion: ~x = ðx; x0; x00;.Þ. Right: an intuitive version of themodel: here, we imagine that a singing bird is the cause
of sensations, which—through a cascade of dynamical hidden states—producesmodality-specific consequences (e.g., the auditory object of a bird song and the
visual object of a song bird). These intermediate causes are themselves (hierarchically) unpacked to generate sensory signals. The generative model therefore
maps from causes (e.g., concepts) to consequences (e.g., sensations), while its inversion corresponds to mapping from sensations to concepts or represen-
tations. This inversion corresponds to perceptual synthesis, in which the generative model is used to generate predictions. Note that this inversion implicitly
resolves the binding problem by explaining multisensory cues with a single cause.
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in the reverse direction, to update conditional expectations. This

ensures an accurate prediction of sensory input and all its inter-

mediate representations. This hierarchal message passing can

be expressed mathematically as a gradient descent on the

(sum of squared) prediction errors xðiÞ =PðiÞ~εðiÞ, where the predic-

tion errors are weighted by their precision (inverse variance):
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The first pair of equalities just says that conditional expecta-

tions about hidden causes and states ð~mðiÞ
v ; ~mðiÞ

x Þ are updated

based upon the way we would predict them to change—the first

term—and subsequent terms that minimize prediction error. The

second pair of equations simply expresses prediction error

ðxðiÞv ; xðiÞx Þ as the difference between conditional expectations

about hidden causes and (the changes in) hidden states and their

predicted values, weighed by their precisions ðPðiÞ
v ;P

ðiÞ
x Þ. These

predictions are nonlinear functions of conditional expectations

ðgðiÞ; f ðiÞÞ at each level of the hierarchy and the level above.

It is difficult to overstate the generality and importance of

Equation (1)—it grandfathers nearly every known statistical esti-

mation scheme, under parametric assumptions about additive

noise. These range from ordinary least squares to advanced

Bayesian filtering schemes (see Friston, 2008). In this general
Neuron 76, November 21, 2012 ª2012 Elsevier Inc. 703



Figure 4. Hierarchical Inference and
Predictive Coding
This figure describes the predictive coding
scheme associated with a simple hierarchical
model shown on the left. In this model each node
has a single parent. The ensuing inversion or
generalized predictive coding scheme is shown on
the right. The key quantities in this scheme are
(conditional) expectations of the hidden states and
causes and their associated prediction errors. The
basic architecture—implied by the inversion of the
graphical (hierarchical) model—suggests that
prediction errors (caused by unpredicted fluctua-
tions in hidden variables) are passed up the hier-
archy to update conditional expectations. These
conditional expectations now provide predictions
that are passed down the hierarchy to form
prediction errors. We presume that the forward

and backward message passing between hierarchical levels is mediated by extrinsic (feedforward and feedback) connections. Neuronal populations encoding
conditional expectations and prediction errors now have to be deployed in a canonical microcircuit to understand the computational logic of intrinsic
connections—within each level of the hierarchy—as shown in the next figure.
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setting, Equation (1) minimizes variational free energy and corre-

sponds to generalized predictive coding. Under linear models, it

reduces to linear predictive coding, also known as Kalman-Bucy

filtering (see Friston, 2010 for details).

In neuronal network terms, Equation (1) says that prediction

error units receive messages from the same level and the level

above. This is because the hierarchical form of the model only

requires conditional expectations from neighboring levels to

form prediction errors, as can be seen schematically in Figure 4.

Conversely, expectations are driven by prediction error from the

same level and the level below—updating expectations about

hidden states and causes respectively. These constitute the

bottom-up and lateral messages that drive conditional expecta-

tions to provide better predictions—or representations—that

suppress prediction error. This updating corresponds to an accu-

mulation of prediction errors, in that the rate of change of condi-

tional expectations isproportional topredictionerror.Electrophys-

iologically, this means that one would expect to see a transient

prediction error response to bottom-up afferents (in neuronal

populations encoding prediction error) that is suppressed to

baseline firing rates by sustained responses (in neuronal popu-

lations encoding predictions). This is the essence of recurrent

message passing between hierarchical levels to suppress predic-

tion error (see Friston, 2008 for a more detailed discussion).

The nature of this message passing is remarkably consistent

with the anatomical and physiological features of cortical hierar-

chies. An important prediction is that the nonlinear functions of

the generative model—modeling context-sensitive dependen-

cies among hidden variables—appear only in the top-down

and lateral predictions. This means, neurobiologically, we would

predict feedback connections to possess nonlinear or neuromo-

dulatory characteristics, in contrast to feedforward connections

that mediate a linear mixture of prediction errors. This functional

asymmetry is exactly consistent with the empirical evidence

reviewed above. Another key feature of Equation (1) is that the

top-down predictions produce prediction errors through sub-

traction. In other words, feedback connections should exert

inhibitory effects, of the sort seen empirically. Table 2 summa-

rizes the features of extrinsic connectivity (reviewed in the pre-

vious section) that are explained by predictive coding. In the
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remainder of this Perspective, we focus on intrinsic connections

and cortical microcircuits.
The Cortical Microcircuit and Predictive Coding
Wenow try to associate the variables in Equation (1) with specific

populations in the canonical microcircuit. Figure 5 illustrates

a remarkable correspondence between the form of Equation

(1) and the connectivity of the canonical microcircuit. Further-

more, the resulting scheme corresponds almost exactly to the

computational architecture proposed by Mumford (1992). This

correspondence rests upon the following intuitive steps.

d First, we divide the excitatory cells in the superficial

and deep layers into principal (pyramidal) cells and excit-

atory interneurons. This accommodates the fact that (in

macaque V1) a significant percentage of superficial L2/3

cells (about half) and deep L5 excitatory cells (about

80%) do not project outside the cortical column (Callaway

and Wiser, 1996; Briggs and Callaway, 2005).

d Second, we know that the superficial and deep pyramidal

cells provide feedforward and feedback connections,

respectively. This means that superficial pyramidal cells

must encode and broadcast prediction errors on hidden

causes xði +1Þ
v , while deep pyramidal cells must encode

conditional expectations ð~mðiÞ
v ; ~mðiÞ

x Þ so that they can elabo-

rate feedback predictions.

d Third, we know that the (spiny stellate) excitatory cells in

the granular layer receive feedforward connections encod-

ing prediction errors xðiÞv on the hidden causes of the level

below.

d This leaves the inhibitory interneurons in the granular layer,

which, for symmetry, we associate with prediction errors

on the hidden states.

d The remaining populations are the excitatory and inhibi-

tory interneurons in the supragranular layer, to which we

assign expectations about hidden causes and states,

respectively. These are mapped through descending

(intrinsic) feedforward connections to cells in the deep

layers that generate predictions. We do not suppose that

this is a simple one-to-one mapping—rather it mediates



Table 2. The Functional Correlates of the Anatomy and Physiology of Cortical Hierarchies and Their Extrinsic Connections

Anatomy and Physiology Functional Correlates

Hierarchical organization of cortical areas (Zeki and Shipp, 1988;

Felleman and Van Essen, 1991; Barone et al., 2000; Vezoli et al., 2004).

Encoding of conditional dependencies in terms of a graphical model

(Mumford, 1992; Rao and Ballard, 1999; Friston, 2008).

Distinct (laminar-specific) neuronal responses (Douglas et al., 1989;

Douglas and Martin, 1991).

Encoding expected states of the world (superficial pyramidal cells) and

prediction errors (deep pyramidal cells) (Mumford, 1992; Friston, 2008).

Distinct (laminar-specific) extrinsic connections (Zeki and Shipp,

1988; Felleman and Van Essen, 1991; Barone et al., 2000; Vezoli et al.,

2004; Markov et al., 2011).

Forward connections convey prediction error (from superficial

pyramidal cells) and backward connections convey predictions (from

deep pyramidal cells) (Mumford, 1992; Friston, 2008).

Reciprocal extrinsic connectivity (Zeki and Shipp, 1988; Felleman

and Van Essen, 1991; Barone et al., 2000; Vezoli et al., 2004;

Markov et al., 2011).

Recurrent dynamics are intrinsically stable because they are trying to

suppress prediction error (Crick and Koch, 1998; Friston, 2008).

Feedback extrinsic connections are (driving and) modulatory

(Mignard and Malpeli, 1991; Bullier et al., 1996; Sherman and Guillery,

1998; Covic and Sherman, 2011; De Pasquale and Sherman, 2011).

Forward (driving) and backward (driving and modulatory) connections

mediate the (linear) influence of prediction errors and the (linear and

nonlinear) construction of predictions (Friston, 2008, 2010).

Feedback extrinsic connections are inhibitory (Murphy and Sillito,

1987; Sillito et al., 1993; Chu et al., 2003; Olsen et al., 2012; Meyer

et al., 2011; Wozny and Williams, 2011).

Top-down predictions suppress or counter prediction errors

produced by bottom-up inputs (Mumford, 1992; Rao and Ballard,

1999; Friston, 2008).

Differences in neuronal dynamics of superficial and deep layers

(de Kock et al., 2007; Sakata and Harris, 2009; Maier et al., 2010;

Bollimunta et al., 2011; Buffalo et al., 2011).

Principal cells elaborating predictions (deep pyramidal cells) may

show distinct (low-pass) dynamics, relative to those encoding error

(superficial pyramidal cells) (Friston, 2008).

Dense intrinsic and horizontal connectivity (Thomson and Bannister,

2003; Kätzel et al., 2011).

Lateral predictions and prediction errors mediating winnerless

competition and competitive lateral dependencies (Desimone, 1996;

Friston, 2010).

Predominance of nonlinear synaptic (dendritic and neuromodulatory)

infrastructure in superficial layers (Häusser and Mel, 2003; London

and Häusser, 2005; Gentet et al., 2012).

Required to scale prediction errors, in proportion to their precision,

affording a form of cortical bias or gain control that encodes

uncertainty (Feldman and Friston, 2010; Spratling, 2008).
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the nonlinear transformation of expectations to predictions

required by the earlier cortical level.

This arrangement accommodates the fact that the dependen-

cies among hidden states are confined to each node (by the

nature of graphical models), whichmeans that their expectations

and prediction errors should be encoded by interneurons.

Furthermore, the splitting of excitatory cells in the upper layers

into two populations (encoding expectations and prediction

errors on hidden causes) is sensible, because there is a one-

to-one mapping between the expectations on hidden causes

and their prediction errors.

The ensuing architecture bears a striking correspondence to

the microcircuit in Haeusler and Maass (2007) in the left panel

of Figure 5, in the sense that nearly every connection required

by the predictive coding scheme appears to be present in terms

of quantitativemeasures of intrinsic connectivity. However, there

are two exceptions that both involve connections to the inhibi-

tory cells in the granular layer (shown as dotted lines in Figure 5).

Predictive coding requires that these cells (which encode predic-

tion errors on hidden states) compare the expected changes in

hidden states with the actual changes. This suggests that there

should be interlaminar projections from supragranular (inhibitory)

and infragranular (excitatory) cells. In terms of their synaptic

characteristics, one would predict that these intrinsic connec-

tions would be of a feedback sort, in the sense that they convey

predictions. Although not considered in this Haeusler andMaass

scheme, feedback connections from infragranular layers are

an established component of the canonical microcircuit (see

Figure 2).
Functional Asymmetries in the Microcircuit
The circuitry in Figure 5 appears consistent with the broad

scheme of ascending (feedforward) and descending (feedback)

intrinsic connections: feedforward prediction errors from a

lower cortical level arrive at granular layers and are passed

forward to excitatory and inhibitory interneurons in supragranular

layers, encoding expectations. Strong and reciprocal intralami-

nar connections couple superficial excitatory interneurons and

pyramidal cells. Excitatory and inhibitory interneurons in supra-

granular layers then send strong feedforward connections to

the infragranular layer. These connections enable deep pyra-

midal cells and excitatory interneurons to produce (feedback)

predictions, which ascend back to L4 or descend to a lower

hierarchical level. This arrangement recapitulates the functional

asymmetries between extrinsic feedforward and feedback con-

nections and is consistent with the empirical characteristics of

intrinsic connections.

If we focus on the superficial and deep pyramidal cells, the

form of the recognition dynamics in Equation (1) tells us some-

thing quite fundamental: we would anticipate higher frequencies

in the superficial pyramidal cells, relative to the deep pyramidal

cells. One can see this easily by taking the Fourier transform of

the first equality in Equation (1):

ðjuÞ~mðiÞ
v ðuÞ=D~mðiÞ

v ðuÞ � v
~v
~εðiÞ,xðiÞðuÞ � xði + 1Þ

v ðuÞ: (2)

This equation says that the contribution of any (angular)

frequencyu in the prediction errors (encoded by superficial pyra-

midal cells) to the expectations (encoded by the deep pyramidal

cells) is suppressed in proportion to that frequency (Friston,
Neuron 76, November 21, 2012 ª2012 Elsevier Inc. 705



Figure 5. A Canonical Microcircuit for Predictive Coding
Left: the canonical microcircuit based on Haeusler andMaass (2007), in which we have removed inhibitory cells from the deep layers because they have very little
interlaminar connectivity. The numbers denote connection strengths (mean amplitude of PSPs measured at soma in mV) and connection probabilities (in
parentheses) according to Thomson et al. (2002). Right: the proposed cortical microcircuit for predictive coding, in which the quantities of the previous figure have
been associated with various cell types. Here, prediction error populations are highlighted in pink. Inhibitory connections are shown in red, while excitatory
connections are in black. The dotted lines refer to connections that are not present in the microcircuit on the left (but see Figure 2). In this scheme, expectations
(about causes and states) are assigned to (excitatory and inhibitory) interneurons in the supragranular layers, which are passed to infragranular layers. The
corresponding prediction errors occupy granular layers, while superficial pyramidal cells encode prediction errors that are sent forward to the next hierarchical
level. Conditional expectations and prediction errors on hidden causes are associated with excitatory cell types, while the corresponding quantities for hidden
states are assigned to inhibitory cells. Dark circles indicate pyramidal cells. Finally, we have placed the precision of the feedforward prediction errors against the
superficial pyramidal cells. This quantity controls the postsynaptic sensitivity or gain to (intrinsic and top-down) presynaptic inputs. We have previously discussed
this in terms of attentional modulation, whichmay be intimately linked to the synchronization of presynaptic inputs and ensuing postsynaptic responses (Feldman
and Friston, 2010; Fries et al., 2001).
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2008). In other words, high frequencies should be attenuated

when passing from superficial to deep pyramidal cells. There is

nothing mysterious about this attenuation—it is a simple conse-

quence of the fact that conditional expectations accumulate

prediction errors, thereby suppressing high-frequency fluctua-

tions to produce smooth estimates of hidden causes. This

smoothing—inherent in Bayesian filtering—leads to an asym-

metry in frequency content of superficial and deep cells: for

example, superficial cells should express more gamma relative

to beta, and deep cells should express more beta relative to

gamma (Roopun et al., 2006, 2008; Maier et al., 2010).

Figure 6 provides a schematic illustration of the spectral asym-

metry predicted by Equation 2. Note that predictions about the

relative amplitudes of high and low frequencies in superficial

and deep layers pertain to all frequencies—there is nothing in

predictive coding per se to suggest characteristic frequencies

in the gamma and beta ranges. However, one might speculate
706 Neuron 76, November 21, 2012 ª2012 Elsevier Inc.
that the characteristic frequencies of canonical microcircuits

have evolved to model and—through active inference—create

the sensorium (Berkes et al., 2011; Engbert et al., 2011; Friston,

2010). Indeed, there is empirical evidence to support this notion

in the visual (Lakatos et al., 2008; Meirovithz et al., 2012; Bosman

et al., 2012) and motor (Gwin and Ferris, 2012) domain.

In summary, predictions are formed by a linear accumulation

of prediction errors. Conversely, prediction errors are nonlinear

functions of predictions. This means that the conversion of

prediction errors into predictions (Bayesian filtering) necessarily

entails a loss of high frequencies. However, the nonlinearity in

the mapping from predictions to prediction errors means that

high frequencies can be created (consider the effect of squar-

ing a sine wave, which would convert beta into gamma). In

short, prediction errors should express higher frequencies than

the predictions that accumulate them. This is another ex-

ample of a potentially important functional asymmetry between



Figure 6. Spectral Asymmetries in
Superficial and Deep Cells
This schematic illustrates the functional asymme-
try between the spectral activity of superficial and
deep cells predicted theoretically. In this illustra-
tive example, we have ignored the effects of
influences on the expectations of hidden causes
(encoded by deep pyramidal cells), other than the
prediction error on causes (encoded by superficial
pyramidal cells). The bottom panel shows the
spectral density of deep pyramidal cell activity,
given the spectral density of superficial pyramidal
cell activity in the top panel. The equation ex-
presses the spectral density of the deep cells as
a function of the spectral density of the superficial
cells, using Equation (2). This schematic is meant
to illustrate how the relative amounts of low (beta)-
and high (gamma)-frequency activity in superficial
and deep cells can be explained by the evidence
accumulation implicit in predictive coding.
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feedforward and feedbackmessage passing that emerges under

predictive coding. It is particularly interesting given recent evi-

dence that feedforward connections may use higher frequencies

than feedback connections (Bosman et al., 2012).

Conclusion
In conclusion, there is a remarkable correspondence between

the anatomy and physiology of the canonical microcircuit and

the formal constraints implied by generalized predictive coding.

Having said this, there are many variations on the mapping

between computational and neuronal architectures: even if

predictive coding is an appropriate implementation of Bayesian

filtering, there are many variations on the arrangement shown

in Figure 5. For example, feedback connections could arise

directly from cells encoding conditional expectations in supra-

granular layers. Indeed, there is emerging evidence that feed-

back connections between proximate hierarchical levels origi-

nate from both deep and superficial layers (Markov et al.,

2011). Note that this putative splitting of extrinsic streams is

only predicted in the light of empirical constraints on intrinsic

connectivity.

One of our motivations—for considering formal constraints on

connectivity—was to produce dynamic causal models of canon-

ical microcircuits. Dynamic causal modeling enables one to

compare different connectivity models, using empirical elec-

trophysiological responses (David et al., 2006; Moran et al.,

2008, 2011). This form of modeling rests upon Bayesian model
Neuron 76, N
comparison and allows one to assess

the evidence for one microcircuit relative

to another. In principle, this provides

a way to evaluate different microcircuit

models, in terms of their ability to explain

observed activity. One might imagine that

the particular circuits for predictive

coding presented in this paper will be

nuanced as more anatomical and physio-

logical information becomes available.

The ability to compare competing models

or microcircuits—using optogenetics,
local field potentials, and electroencephalography—may be

important for refining neurobiologically informed microcircuits.

In short, many of the predictions and assumptions we have

made about the specific form of the microcircuit for predictive

coding may be testable in the near future.
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