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Dynamic causal modeling: A generative model of slice timing in fMRI
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Dynamic causal modeling (DCM) of functional magnetic resonance
imaging (fMRI) data allows one to make inferences about the
architecture of distributed networks in the brain, in terms of effective
connectivity. fMRI data are usually acquired using echo planar
imaging (EPI). EPI sequences typically acquire slices at different
times over a few seconds. DCM, in its original inception, was not
informed about these slice timings and assumed that all slices were
acquired simultaneously. It has been shown that DCM can cope with
slice timing differences of up to 1 s. However, many fMRI studies
employ a repetition time (TR) of 3 to 5 s, which precludes a
straightforward DCM of these data.

We show that this limitation can be overcome easily by including
slice timing in the DCM. Using synthetic data we show that the
extended DCM furnishes veridical posterior means, even if there are
large slice-timing differences. Model comparisons show that, in
general, the extended DCM out-performs the original model. We
contrast the modeling of slice timing, in the context of DCM, with the
less effective approach of ‘slice-timing correction’, prior to modeling.
We apply our procedure to real data and show that slice timings are
important parameters. We conclude that, generally, one should use
DCM with slice timing.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Functional magnetic resonance imaging; Dynamic causal
modeling; Sampling
Introduction

The aim of dynamic causal modeling (DCM) is to describe
interactions among neuronal populations (Friston et al., 2003).
DCM explains observed fMRI time-series by modeling interactions
at a neuronal level and passing the ensuing neuronal states through
a hemodynamic model to give region-specific blood oxygenation
level-dependent (BOLD) signals (Buxton et al., 2004; Friston,
2002). The DCM is inverted using a variational Bayesian scheme
to give posterior distributions of the model parameters. Inferences
about a specific network are made using the posterior distributions
of interesting parameters; e.g., the connectivity between areas or
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the modulation of connectivity by experimental manipulations.
This makes DCM useful for testing hypotheses about modulatory
effects; i.e., how experimental conditions change directed connec-
tions among areas. For example, it has been shown, using DCM,
that the superior posterior parietal cortex (SPC) exerts a
modulatory role, that mediates attentional effects, on V5 responses
(Friston et al., 2003; Friston and Buchel, 2000). Other examples of
DCM can be found in Mechelli et al. (2004); Noppeney et al.
(2006); and Stephan et al. (2005). DCM uses biophysically and
physiologically inspired generative models.1 This makes it
relatively simple to extend existing DCMs. The usefulness of
changes to the model can then be assessed using model comparison
(Penny et al., 2004).

Currently, DCM for fMRI assumes that data from all areas are
acquired at the same time. Clearly, this is an approximation,
because fMRI data are usually acquired slice by slice. For a
typical fMRI study, it is likely that data from remote areas
(orthogonal to slice orientation) are acquired with a slice-timing
difference in the order of seconds. Friston et al. (2003) showed,
for block designs that the model can cope with slice-timing
differences of up to 1 s. This robustness rests on changes in (non-
interesting) hemodynamic parameters, which explain away slice-
timing effects.

The assumption of simultaneous data acquisition restricts the
application of DCM to data that are acquired with slice-timing
differences of less than a second. The typical repetition time (TR),
i.e., the time needed for acquiring one volume, lies between 3 and
5 s. Note that the TR itself is not the limiting factor; the key factor
is the timing differences among modeled areas. With a TR of
several seconds, it is quite likely that some areas have slice-timing
differences of more than 1 s. This questions the validity of DCM
for such data. Furthermore, for event-related designs, the
robustness of DCM to slice-timing differences has never been
assessed. This is important, because event-related designs are
prevalent in fMRI.

In this paper, we propose an extension that accommodates slice-
timing differences: instead of assuming that data were acquired at
the same time, we incorporate information about temporal
1 By ‘generative’, we mean that a DCM can be regarded as a prescription
of how the observed data were generated (or how we can simulate synthetic
data).

mailto:skiebel@fil.ion.ucl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2006.10.026


1488 S.J. Kiebel et al. / NeuroImage 34 (2007) 1487–1496
sampling into the DCM. This is implemented using an informed
integration scheme, which computes the predicted output given the
model parameters and sampling times. The resulting DCM can be
regarded as a three-level model. The first level models (interesting)
interactions at a neuronal level. The second level models the
hemodynamics. The third (and now explicit) level is the discrete
temporal sampling of continuous second-level output. At this third
level, we specify when the data were acquired from each area. The
contribution of the present work is to show that this temporal
sampling level is a useful extension to the model.

We establish the validity of this extension using simulations. By
comparing models using their log-evidences, we show that the
extended model is superior. We also compare the extended model
with the current practice of ‘slice-timing correction’, i.e., aligning
the data temporally (before using DCM) in an attempt to discount
timing differences. Finally, we demonstrate, using real data, the
importance of modeling slice-timing differences.

Theory

Dynamic causal modeling for fMRI: levels one and two

In this section we review briefly dynamic causal models of
fMRI data (Friston et al., 2003). In the next section, we extend
this model to accommodate slice timing (see Fig. 1 for an
overview).

A dynamic causal model is a multiple-input multiple-output
system that comprises Nu inputs and Nr outputs with one output
per region. The Nu inputs correspond to designed causes (e.g.,
boxcar or impulse stimulus functions used in conventional
analyses). Each region produces a measured output that corre-
sponds to the observed BOLD signal. These Nr time-series would
normally be taken as the averages or first eigenvariates of Nr

selected regions.
The first level models interactions among areas at the neuronal

level. At this level, each region has a single state variable. This
Fig. 1. The neuronal response is formed at the first level. The second level
models the ensuing BOLD response. The third level emulates sampling by
the MRI scanner.
state is a simple summary of neuronal ‘activity’ in an area. Friston
et al. (2003) used a bilinear form to describe these neuronal
dynamics:
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The state vector z contains one scalar per region. The change
in states is described by the sum of three effects. First, the matrix
A describes directed connectivity between pairs of areas. The
elements of this connectivity matrix are not a function of the
input, and can be considered as a fixed connectivity that is
intrinsic to the network of areas. Second, the elements of Bj

represent the changes of connectivity induced by the inputs uj
(i.e., by condition-specific modulations). These bilinear terms Bj

are usually the interesting parameters. Third, there is a direct
influence of each input uj on each area, encoded by the matrix C.
The parameters of this system, at the neuronal level, are given by
θn=(A, B1, …, BNu, C). At this level, one can specify which
connections, i.e., elements of the matrices, one wants to include
in the model. Connections are removed by setting their prior
mean and variance to zero. We will describe some examples
below.

Put simply, a dynamic causal model is, like the general linear
model, an equation which expresses predicted responses in terms
of some parameters and explanatory variables. In our case the
explanatory variables are the experimental inputs u, which
correspond to stimulus functions in conventional models. The
causal aspect comes from control theory, in which the response
of causal models can be predicted from the current and past
input. Critically, dynamic models do not predict the response per
se but its rate of change. This rate of change can be a
complicated nonlinear function of the models unknown para-
meters and known inputs. The form and parameterization of this
function is entailed by the specific DCM used. In fMRI, people
generally use a simple bilinear form with coupling parameter
matrices A, B and C. Critically, the B matrix parameterizes
interactions between the inputs and states; hence bilinear. This
bilinear form can also be regarded as an approximation to any
function F(z, u, θ) because one would get the bilinear equation if
one took its Taylor expansion around z=0 and u=0; and kept
only the terms that were first-order in the states or input. This is
summarized in Eq. (1). Having chosen the form of the DCM, the
objective is to estimate its unknown parameters, which in our
case represent a useful summary of the coupling among brain
regions.

At the second level, for each area, the neuronal state forms an
input to a hemodynamic model that generates the BOLD signal.
Area-specific hemodynamics are modeled by four hemodynamic
state-variables zh. The corresponding first-order ordinary differ-
ential equations are parameterized by five area-specific parameters
θh. See Friston et al. (2003) for a complete description. Here, we



1489S.J. Kiebel et al. / NeuroImage 34 (2007) 1487–1496
summarize the integration of the neuronal and hemodynamic states
by the generalized convolution

vðtÞ ¼ hðuðtÞ;hÞ ð2Þ
By integrating the differential equations of both levels we can

compute the system’s predicted response v(t) as a continuous
function of time given the neuronal and hemodynamic parameters
θ=(θn, θh), input u(t), and some initial states.
Fig. 2. The difference between the original and the extended model: two-area
example. In a hypothetical experiment, the scanner progresses through
acquisition of a session. Each scan is measured in TR seconds. The arrows
indicate the time points of the modeled MRI sampling. Top: the original
model assumes that both areas are sampled from the last slice. Bottom: in the
extended model, the MRI sampling of both areas is modeled at the (known)
times at which they were actually acquired. In our example, the first area was
measured after a quarter of TR (T1), and the second area after three quarters
of TR (T2).
Dynamic causal modeling for fMRI: the third level

The first two levels are not a complete model for fMRI. The
output v(t) is continuous, whereas the measured data y are discrete.
To bridge the gap between model and data, we have to apply some
sampling function to the output; i.e., the sampled response of area i
at scan j is

yij ¼ sjðv;TiÞ þ eij

¼ vððj� 1ÞTRþ TiÞ þ eij ð3Þ

where εi∼N(0, Σi) is a vector of serially correlated and normally
distributed measurement errors εij and i=1, …, Nr and j=1, …,
NT. The vector T encodes the relative timing of region. Each
element of T is the region-specific time from the onset (0 s) of a
scan, until measurement of the slice in which the area is located2

(Fig. 2). The sampling function simply samples, for each region,
the response at the appropriate time, using the region-specific
offset Ti that models slice timing. Note that Friston et al. (2003)
assumed that the sampling times are the same for each area and,
consequently, there was no need to make this sampling explicit.
Here, we relax their assumption by letting T take different values
for each region. We will describe below how T is specified
operationally.

This completes the description of the model. The goal is to
identify the parameters that maximize an objective function,
which measures the discrepancy between the observed data y and
their predicted values. We do this by approximating the poste-
rior distribution on the parameters using standard variational
techniques.

Estimation, inference and model comparison

For a given DCM, say model m, parameter estimation
corresponds to approximating the moments of the posterior
distribution given by Bayes rule

p hjy;mð Þ ¼ pðyjh;mÞpðhjmÞ
pðyjmÞ ð4Þ

The estimation procedure employed in DCM is described in
Friston et al. (2003) and Kiebel et al. (2006). The posterior
moments (conditional mean η and covariance Σ) are updated
iteratively using variational Bayes under a fixed-form Laplace (i.e.,
Gaussian) approximation to the conditional density q(θ)=N(η, Σ).
This is formally equivalent to expectation–maximization (EM) that
employs a local linear approximation of Eqs. (1), (2) and (3) about
2 Note that the response of an area is typically computed over several,
neighboring voxels. By the location of an area we mean some
representative location, e.g., the center of mass.
the current conditional expectation. The source code (Matlab,
MathWorks) of these functions can be accessed in the file
‘spm_nlsi_GN.m’ in the software package http://www.fil.ion.ucl.
ac.uk/spm/software/spm5/.

Bayesian inference proceeds using the conditional or posterior
density. Usually this involves specifying a parameter or
compound of parameters as a contrast cTη. In the results section,
we will focus on the posterior mean (corresponding to a contrast
vector c with a single one and zeros elsewhere) for analysis.
Inferences about this contrast are made using its conditional
covariance cTΣc. For example, one can compute the probability
that any contrast is greater than zero or some meaningful
threshold, given the data. This inference is conditioned on the
particular model specified.

Often, one wants to compare different models for a given data
set. We use Bayesian model comparison using the model evidence
(Penny et al., 2004), which is

pðyjmÞ ¼
Z

pðyjh;mÞpðhjmÞdh: ð5Þ

Note that the model evidence is simply the normalization
constant in Eq. (4). The evidence can be decomposed into two
components: an accuracy term, which quantifies the data fit, and
a complexity term, which penalizes models with redundant
parameters. Therefore, the evidence embodies the two conflict-
ing requirements of a good model; that it explains the data and
is as simple as possible. In the following, we approximate the
model evidence for model m, under the Laplace approximation,
with

ln pðyjmÞcln pðyjk;mÞ ð6Þ

This is simply the maximum value of the objective function
attained by EM. The most likely model is the one with the largest

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/


1490 S.J. Kiebel et al. / NeuroImage 34 (2007) 1487–1496
log-evidence. This enables Bayesian model selection. Model
comparison rests on the likelihood ratio of the evidence for two
models. This ratio is the Bayes factor Bij. For models i and j

ln Bij ¼ ln pðyjm ¼ iÞ � ln pðyjm ¼ jÞ ð7Þ
Conventionally, strong evidence in favor of one model requires

the difference in log-evidence to be about three or more (Penny et
al., 2004). Under the assumption that all models are equally likely
a priori, the marginal densities p(y|m) can be converted into the
probability of the model given the data p(m|y) (by normalizing so
that they sum to one over models). We will use this probability to
quantify model comparisons below.
Slice timing in fMRI

Data for most fMRI studies are acquired using single-shot
echo planar imaging (EPI) techniques (Schmitt et al., 1998).
The advantage of EPI lies in its speed. After an initial radio-
frequency excitation of a single slice, the plane is encoded and
all data are acquired in about 20–100 ms. One slice is encoded
as a matrix whose elements correspond to the measured MR
signal within a voxel (volume element). Voxels typically cover a
brain volume of roughly 3×3×3 mm3. Depending on slice
thickness, one requires around 30–50 slices to cover the whole
brain. The acquisition time for a slice is about 50–150 ms,
including the wait time that is required to achieve the long echo
times (TE) necessary for BOLD contrast. For instance, a typical
sequence, at 1.5 T, would have a TR of 4.32 s with 48 slices.
We refer to the vector encoding the time of slice acquisitions as
‘slice timings’.
Fig. 3. Three-area network used for generating the first synthetic data set. ‘Sensory’
See text for further details.
Slice-timing correction

A potential slice-timing difference of several hundred milli-
seconds should be explained by the model without altering
inference on (interesting) model parameters, e.g., the induced
connections Bj. For a block design with a short TR (1.7 s) Friston
et al. (2003) showed that DCM is indeed robust to slice-timing
differences of up to a second. A widely used procedure to remove
slice-timing differences involves temporal realignment to a single
acquisition time (Henson et al., 1999). This alignment, usually
referred to as ‘slice-timing correction’, is sometimes used as a pre-
processing step, prior to DCM (and other analyses). We assess the
usefulness of slice-timing correction in comparison to the extended
model below. In this paper we implemented the correction as a sinc
interpolation with the Matlab command ‘interp1’ (Matlab 7.01,
MathWorks).

The slice timing for a given location

Here we describe how the slice timings for a given DCM are
retrieved. The data consist of one representative time-series per
area. These are usually taken as the first eigenvariate of a voxel
cluster, centered on the spatial maximum of an SPM. The rationale
for summarizing the response over voxel clusters is that BOLD
effects are dispersed over several millimeters.

The timings of all slices can be derived from the parameters of
the EPI sequence. The next step is to identify the acquisition slices
that encompass each area. For raw (reconstructed) data this is
trivial, because one coordinate axis coincides with the acquisition
order. However, spatial normalization changes the orientation of
the image and can introduce a nonlinear transform (Ashburner and
input either conformed to a block design (shown) or an event-related design.



Fig. 5. First set of simulations: posterior means (solid lines) and confidence
intervals (grey area) for the modulation of the intrinsic connectionA1→A2.
The true value was 0.4 (dashed line). The format is the same as in Fig. 4.
However, we pooled over eight iterations of the same simulation to enhance
important differences between models. The confidence intervals are
computed as the average over the individual confidence intervals.
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Friston, 1999, 2005). To accommodate this one needs the (forward)
mapping from the original image to the normalized space. The
original slice numbers can be computed by applying the inverse of
this mapping to the areas coordinates in standard space. We refer
the reader to instructive Matlab code which performs this inverse
mapping (see ‘get_orig_coord.m’; http://www.fil.ion.ucl.ac.uk/
spm/software/spm5/). Having determined the slice from which
each area was sampled one can then assign the corresponding slice
timing to that area in the vector T=[T1, …, TNy

].

Simulations

Synthetic data

In this section, we validate our model in terms of conditional
inference and model comparison, using simulated data; in which
the true parameters and models are known. We used two synthetic
data sets. We generated the first from a system that was used by
Friston et al. (2003) to validate the original DCM. The second was
generated by a three-area network used in a visual attention study
(Buchel and Friston, 1997; Friston et al., 2003). To generate
synthetic data we selected some model parameters (described
below), and generated data using the generative model described in
Eqs. (1), (2) and (3). The errors εij (Eq. (3)) were identically and
independently distributed (i.i.d.). For all our simulations, we used a
signal-to-noise ratio (SNR) of five (see Discussion). The routine
that generates synthetic data is available as ‘spm_dcm_create.m’

under http://www.fil.ion.ucl.ac.uk/spm/software/spm5/.
With the first data set we show the impact of slice-timing

misspecification on parameter (i.e., connectivity) estimation. The
second data set is a typical example of modulating connectivity
between a sensory area and some higher area and was used to
replicate and generalize the conclusions based on the analysis of
Fig. 4. First simulations: posterior means (solid lines) and 90% confidence
intervals (grey area) for the intrinsic connection A1→A2. The true value
was 0.8 (dashed line). We show four cells, each analyzed with three
methods: in each cell, the left-hand plot shows the result of the extended
method, the middle the original, and the right-hand ‘slice-timing correction’.
The x-axes refer to the slice timing of the 2nd area (measured from the onset
of a scan), ranging from 0 to TR seconds. The other two areas were always
acquired at 1/2 TR seconds. Note that the confidence intervals are very small
and hardly visible.
the first. In brief, we show the best results obtain when slice-timing
information enters the model. This was corroborated by an analysis
(see below) of the corresponding real data (Buchel and Friston,
1997).

Simulations: first study

The first system is a three-area network with two inputs (Fig. 3).
Area A1 receives ‘sensory’ input and has forward connections to
Fig. 6. First set of simulations: model comparison. For each cell and slice
timing we plot the probability of the extended model relative to the original
model, under the assumption that all models are equally likely a priori (i.e.,
flat priors on the models). A high probability means that the extended model
is very likely in comparison to the original model. We added a threshold of
0.95 to help visual interpretation. For the derivation of the probabilities see
Eq. (7) and text thereafter.
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Fig. 7. Three-area network used for generating the second set of synthetic data. The connections and their modulations were based on estimates from a real single
subject data set (see main text).
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A2 and A3. There are reciprocal connections between A2 and A3.
Additionally, the self-connectivity of A3 is modulated by ‘sensory’
input. This ‘contextual’ input is a series of exponential decays
modulating the forward connection from A1 to A2 (top left of
Fig. 3).

With this model, we computed the posterior means of the
parameters under a 3×2×2 factorial design: the levels of the first
factor corresponded to different inversion schemes, while the
remaining two factors corresponded to different ways of
generating synthetic data; in terms of experimental design3 and
TR:

1. Factor 1: method
⁎ original model (without slice timings)
⁎ extended model (with slice timings)
⁎ slice-timing correction (with slice timings)

2. Factor 2: design
⁎ event-related design
⁎ block design

3. Factor 3: TR
⁎ short TR (1.7 s)
⁎ long TR (4.0 s)

We chose these factors to test the hypothesis that event-related
studies, with a long TR (i.e., potentially large slice-timing
difference), would benefit most from the inclusion of slice timing
3 Note that we do not analyze this factorial design with a classical
‘analysis of variance’ (ANOVA), but use a Bayesian analysis following
Eqs. (4), (5), (6) and (7).
during model inversion. Our reasoning was that event-related
inputs generate rather transient effects, which make timing more
important. For block designs, we expected less dependence on
temporal sampling, because the responses are longer lasting.
Furthermore, robustness with short TRs has been established
already (Friston et al., 2003). We derived an event-related design
by replacing the blocked ‘sensory’ input (Fig. 3) by an event-
related input. The event-related input had an inter-stimulus interval
of 3.37 s, using a random jitter of −0.5 to 0.5 s (uniformly
distributed), and 40% null events. We chose 1.7 and 4 s as short
and long TRs to emulate typical repetition times.

For each cell of our multifactorial simulations, we varied the
temporal sampling of area A2 from 0 to TR seconds, in 16 steps.
The other two areas A1 and A3 were always acquired at the same
time (1/2 TR). In other words, we simulated data sets, for which we
sampled A1 and A3 in the middle of each scan, while A2 was
sampled at different times (ranging from the top to the bottom of
the volume). The maximum slice time differences between A2 and
A1/A3 were −1/2 and 1/2 TR.

To show the effects of the slice timing on the posterior density
of an interesting parameter, we selected one representative
connection (A1→A2) and looked at the posterior mean (i.e.,
conditional expectation, see Eq. (4) and thereafter) of its fixed
connectivity and its modulation by experimental input. We
observed qualitatively similar results for other connections.

Fig. 4 shows the posterior means for the intrinsic connection
A1→A2 as a function of slice timing. The true value was 0.8. The
most striking finding is that, for all TRs, designs and sampling
differences, inversion of the slice-timing model delivers veridical
estimates. In contrast, inverting the original model returns posterior



Fig. 8. Second set of simulations. Left: extended model, right: original
model. (A) Posterior means (solid lines) and confidence intervals (grey area)
for the intrinsic connection V5→SPC. The true value was 0.58 (dashed
line). (B) Posterior means (solid lines) and confidence intervals (grey area)
for the modulation of the intrinsic connection SPC→V5. The true value was
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means with large deviations from the true value. This is most
apparent for the event-related design (both short and long TR) for
which the posterior means deviate substantially (>50%) from their
true value. This is consistent with our conjecture that event-related
designs are more susceptible to timing errors. For the block design
and long TR, we observed deviations of around 25% from the true
value for slice-timing differences as small as half a second. Note
that Friston et al. (2003) looked exclusively at block designs with
short TR. Under these models, we confirm the robustness of the
original model, with respect to slice timing.

Slice-timing correction proved a reliable pre-processing method
for short TRs. In Fig. 4, the estimates are mostly veridical and
improved over the original method, for both event-related and
block designs. However, with the long TR, there are large biases
for the event-related design. For the block design, the estimates are
much improved over the original model, but still worse than for the
extended model. The difference in performance between short and
long TR can be explained by the nature of the correction: this
approach uses a simple interpolation device, which only works
when the sampling frequency is sufficiently high. The difference in
the improvement, between event-related and block designs can be
explained by noting that experimental variance in block designs is
deployed in lower frequencies. These components are interpolated
more accurately in relation to the higher frequencies of event-
related designs.

Fig. 5 shows the results for the modulation of the A1→A2
connection. Again, the extended model gives veridical results for
all cells (true value: 0.4). Due to large variability, we plotted the
posterior means, pooled over eight replications of the simulations.
For the extended model, we obtain veridical estimates, except for
some small positive bias. For the original model, the estimates
mirror the findings for the A1→A2 connectivity (Fig. 4): For all
designs, there is a mismatch between true values and estimates,
with the least error in the short block design. The slice timing
correction actually performs well, with the notable exception for
the event-related design with long TR.

In Fig. 6, we show the results of a pair-wise model comparison
between the original and extended model for each cell of our
multifactorial design and each slice-timing difference.4 This shows
the probability of the extended DCM under flat priors over both
models. For the long TR, the relative probability of the extended
model, is nearly always 100% except when the slice-timing
differences are very small (<250 ms). For the short TR and the
block design, model comparison does not find strong evidence for
the extended model, except for large slice-timing differences of
around 1/2 TR. For the short TR and event-related design, model
comparison suggests that for differences exceeding 300 ms, the
extended model supervenes.

Simulations: second study

The second simulation was based on a DCM of an fMRI study
of attention to visual motion (Buchel and Friston, 1997; Friston et
al., 2003). We consider this data set as representative for models
of bottom-up and top-down modulations, from and to primary
sensory areas (Fig. 7). A primary visual area (V1) receives
‘photic’ input and has reciprocal connections with the motion-
sensitive area V5. ‘Motion’ input modulates the forward
4 Note that we cannot include ‘slice-timing correction’ in the comparison,
because the temporal alignment changes the data.
connection from V1 to V5. Area V5 has reciprocal connections
with superior parietal cortex (SPC). ‘Attention’ input modulates
the top-down connection from SPC to V5. For a detailed
description of the experiment, see Buchel and Friston (1997). The
data were acquired on a 2-T Magnetom VISION (Siemens,
Erlangen) whole-body MRI system equipped with a head volume
coil. T2*-weighted fMRI images (TE=40 ms; 90 ms/image;
64×64 pixels [19.2×19.2 cm]) were obtained with echo planar
imaging (EPI) using an axial slice orientation. The volume
acquired covered the whole brain except for the lower half of the
cerebellum and the most inferior part of the temporal lobes (32
slices; slice thickness 3 mm, giving 9.6 cm vertical field of view).
The effective repetition time was 3.22 s. Slices were acquired
starting from the top of the head in a contiguous fashion, such that
the primary visual cortex was covered by the last slices of each
volume. The pre-processing included spatial normalization and
smoothing.

We simulated a single-subject data set. We set the slice timings
to the last slice for all three areas. Taking the posterior means from
the real data (see below) as true parameters, we generated a series
of data sets, which had different slice timings for the second area
V5. This was varied from 0 to 3.22 s in 16 steps. We estimated
parameters using the original and the extended model. In Fig. 8A
we show the posterior means and confidence intervals for a single
0.32 (dashed line). Both plots: the x-axes refer to the slice timing of the V5
area, ranging from 0 to TR seconds. The other two areas were always
acquired at TR seconds (i.e., with the last slice).



Fig. 10. Real data set: log-evidence as a function of slice timing in the first
two areas V1 and V5, averaged over slice timing of the third area SPC. The
higher the model evidence, the better the model.
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connection. The extended model leads to veridical estimates. As
with the first simulation, the posterior means of this connection’s
modulation, for both the original and extended model, are close to
the true value (Fig. 8B). This confirms that DCM is robust to slice-
timing errors, with respect to induced or bilinear effects. In Fig. 9,
we show that the probability of the extended model (relative to the
original) as a function of simulated slice-timing differences. When
the original model assumes an early (erroneous) slice timing for
V5, the probability that the extended model is better is 100%. This
is strong evidence in favor of the extended model.

Model inversion using real data

In this section we present an analysis of the single-subject data
used to provide the parameters for the second simulation of the
previous section. These data have also been used for DCM
validation purposes (Friston et al., 2003) and are available from
http://www.fil.ion.ucl.ac.uk/spm/data/.

We specified extended models for all combinations of 8
different slice timings for each of the three areas (ranging from 0 to
3.22 s in 8 steps of 0.40 s). This resulted in 83=512 different
models. Each of these models places the three areas V1, V5 and
SPC into a different combination of slices. For each model, we
computed its log-evidence. The true (known) slice timings of V1,
V5, and SPC were (2.07, 1.89, 0.81 s). The slice timings of the
first two areas V1 and V5 have by far the biggest impact on model
evidence. In Fig. 10 we plot the model evidence as a function of
the slice timing of V1 and V5, averaged over slice timings of area
SPC. The average log-evidences range from −1731 to −1645. The
greatest log-evidence was achieved when the areas were sampled at
3.22, 1.84 and 1.38 s. For this model, the slice timing of V5 was
identical to its true value, and the SPC slice timing was close to its
true value. The mismatch for V1 is most likely due to a late onset
of the V1 BOLD response, which is well captured by a slice timing
of 3.22 s. Clearly, slice timing of area V1 is the most important
determinant of model evidence. This is probably due to the relative
magnitude of the response from each area. The activity in V1
varied between −10 to 10 (percent whole brain mean), while the
other two areas lay between −2 and 2 (data not shown).
Fig. 9. Second set of simulations, model comparison. For each slice timing
of area V5, ranging from 0 to TR seconds, we show the probability of the
extended model relative to the original model.
In Fig. 11, we show the posterior means of the two modulation
parameters for motion and attention under different slice timings
(again averaged over SPC timings). As expected, the parameters
vary systematically with slice timing. Note that inversion with the
original model corresponds to inversion of the extended model
Fig. 11. Real data set: posterior means of the two modulation parameters as a
function of slice timing in the first two areas V1 and V5, averaged over slice
timing of the third area SPC.

http://www.fil.ion.ucl.ac.uk/spm/data/
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with slice timing fixed at the last slice (3.22 s) for both areas.
Therefore, the variation in parameter estimates about this value
reflects their quantitative dependence on the third level of the
model and the slice timings actually used. In this case, the posterior
probability that the bilinear parameters were greater than zero was
greater than 99%; i.e., the inference does not change with different
slice timings.

Because the objective function in Eq. (6) is exactly the same as
our approximation to the log-evidence, the series of model
inversions summarized above could also be construed as a search
for the most likely slice-timing parameters (i.e., those that optimize
the objective function). This speaks to the possibility of making
slice timing a free parameter for each area, which can be estimated
using observed data. Although this would be easy to implement,
we have chosen to treat the slicing-timing parameters as fixed,
because they are known quantities. In addition, our results stress
that slice timings are, of course, correlated with the area-specific
onset of the BOLD response. These are in turn correlated with
connectivity parameters. To minimize conditional dependencies
between non-interesting parameters (BOLD and slice timings) and
coupling parameters, we recommend fixing known parameters like
slice timings. In summary, we present evidence, using real data,
that slice-timing information is an important model parameter.

Discussion

Our analyses indicate that event-related designs are the most
susceptible to failures in modeling slice timing correctly. Our
simulations suggest that even with a short TR of less than 2 s and a
small difference in slice timing (between areas) of 0.5 s, one can
get large deviations from the true connectivity parameters, for the
fixed coupling and their modulations parameters (Figs. 4 and 5).
Model comparisons show that including slice-timing results in
better models (Fig. 6). For block designs, the original model is
more robust to slice-timing differences, especially for short TRs
(<2 s). The extended model always furnishes veridical estimates,
for both design types, and both TRs.

From our simulations, we find that slice-timing correction (i.e.,
alignment of data in time) is quite useful. The notable exception is
the event-related design with a long TR. For such a design, the
error in the connectivity and modulation estimates is quite large,
and we recommend using the extended model for these designs.

Our results were derived under a rather high SNR of five. We
repeated all the simulations for a low SNR of two and found
qualitatively equivalent results (data not shown).5 However, we
did note an increased variability in the individual estimates and
inflated posterior variances. Also, for some connections, we
noticed a (slight) systematic deviation from the true value, for all
approaches (due to the use of shrinkage priors). However, this bias
was small in comparison to the variability of estimates over
simulations.

A situation in which we do not recommend using this procedure
is when the data were acquired using an interleaved EPI sequence.
An interleaved sequence acquires slices, not in a contiguous
fashion, but ‘jumps’ between slices such that neighboring slices are
acquired at different times. The issue with this sequence is that all
pre-processing steps (motion correction, normalization and espe-
cially spatial smoothing) average data from neighboring slices,
5 Note that the input data are averaged over a cluster of voxels, which
increases their SNR.
which are sampled at different times (usually separated by 1/2 TR).
This renders the activity of each area a mixture of data from
different slice timings. It is unlikely that the extended model is
useful for these data. Instead, we suggest using slice-timing
correction before normalization and smoothing. One can then
invert the extended model with slice timing for all areas set to the
reference slice selected during ‘correction’.

Conclusion

We have presented an extension to dynamic causal modeling
for functional magnetic resonance imaging data. Our analyses of
synthetic and real data suggest that slice-timing differences
between areas should and can be modeled. The extended model
gives veridical estimates and higher model evidences, as
compared to the original formulation. Furthermore, we can drop
the former limitation that slice-timing differences between areas
must not exceed 1 s. This makes DCM applicable to a much wider
range of fMRI data with large slice-timing differences and a range
of TRs.

Software note

We have implemented the extended model in the most recent
version of Statistical Parametric Mapping (SPM5), see http://www.
fil.ion.ucl.ac.uk/spm/. In practice, to use the extended model, one
performs the following steps:

1. Omit ‘slice-timing correction’
2. Retrieve the acquisition slice for each area and specify DCM
3. Estimate parameters (as usual)
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