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Dynamic causal modelling is an approach to characterising evoked
responses as measured by magneto/electroencephalography (M/EEG).
A dynamic causal model (DCM) is a spatiotemporal, generative
network model for event-related fields/responses (ERP/ERF) data.
Using Bayesian model inversion, one can compute the posterior
distributions of the DCM’s physiological parameters and its marginal
likelihood for model comparison. Model comparison can be used to test
mechanistic hypotheses about how electrophysiological data were
generated. In this work, we look at the relative importance of changes
in intrinsic (within source) and extrinsic (between sources) connections
in generating mismatch responses. In short, we introduce the
modulation of intrinsic connectivity to the DCM framework. This is
useful for testing hypotheses about adaptation of neuronal responses to
local influences, in relation to influences that are mediated by long-
range extrinsic connections (forward, backward, and lateral) from
other sources. We illustrate this extension using synthetic data and
empirical data from an oddball ERP experiment.
© 2007 Elsevier Inc. All rights reserved.
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Introduction
In dynamic causal modelling, one views the brain as a dynamic
network that produces observable output. This perspective is useful
for constructing fully spatiotemporal, generative or forward models
for evoked responses as measured with M/EEG (David et al., 2005;
Friston et al., 2003). The aim of DCM is to make inferences about
effective connections and their changes in different experimental
contexts. This is an important advance over conventional analyses
of evoked responses, and allows one to test mechanistic hypotheses
about distributed responses derived from cognitive or physiological
theories. In brief, DCM entails specification of a plausible model of
electrodynamic responses. This model is inverted by optimising a
variational free-energy bound on the model’s evidence to provide
⁎ Corresponding author. Fax: +44 20 7813 1420.
E-mail address: skiebel@fil.ion.ucl.ac.uk (S.J. Kiebel).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2007.02.046
the conditional density of the model parameters and the evidence
itself for model comparison. Bayesian model comparison allows
one to select the best model without the risk of ‘over-fitting’ when
using classical ‘goodness-of-fit’ approaches (Penny et al., 2004).

In DCM for M/EEG, a network usually consists of a few
sources (between two and eight), which communicate via directed
extrinsic connections. Sensory input enters at primary sources,
after passing through thalamic structures. The dynamics are
described quantitatively by ordinary differential equations using
a state–space description. The spatial expression of each source, at
the sensors, is described by the lead field, whose free parameters
(e.g., dipole locations and moments) are parameters of the DCM.
We use a neural mass model to describe the neuronal dynamics of
each source (Jansen and Rit, 1995) and established principles for
extrinsic connections among sources (David et al., 2005).
Although a clear simplification, the ensuing network model is
based on anatomical and physiological features of the brain. These
neurobiological constraints furnish spatiotemporal priors for model
inversion and enforce a biological parameterisation, which
distinguishes DCM from conventional inversion techniques.

In the original application of DCM to ERPs, the difference
between two evoked responses was attributed exclusively to
changes in extrinsic (between-sources) connectivity (David et al.,
2006). Extrinsic connections are mediated by axons that leave grey
matter and connect to other sources via the white matter (DeFelipe
et al., 2002; Peters, 2002). Conversely, intrinsic connections use
axons that do not leave grey matter, i.e., they connect neuronal
populations horizontally or vertically within or between cortical
layers. To test hypotheses about local adaptation of neuronal
populations, this paper extends the original formulation and allows
changes in intrinsic connections to explain ERP differences.

We use synthetic data to validate our extension and show that
DCM can disambiguate between data generated by changes in
intrinsic or extrinsic connections. Furthermore, we will illustrate
the use of the ensuing DCM in a multi-subject mismatch negativity
(MMN) study (Garrido et al., 2006). The MMN has been studied
extensively (Naatanen et al., 2005). In brief, it is the differential
response to an unexpected (rare) auditory stimulus relative to an
expected (standard) stimulus. The conventional understanding of
its genesis rests on an auditory network of change-sensitive
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populations. In this note, we will consider two recently described
MMN hypotheses, which explain the MMN either by adaptation
or within a predictive coding framework (Friston, 2005; Garrido
et al., 2006; Jaaskelainen et al., 2004). We will show that both
these hypotheses can be formulated and tested using DCM. This
paper focuses on the methodology and motivation for DCM of
intrinsic changes; consequently, we will focus on the grand mean
average of the multi-subject study. A subsequent paper will
present a full ERP analysis of each subject and discuss the
neurobiological implications of the results from a cognitive
neuroscience perspective.

In what follows, we first review the DCM approach to ERPs,
with a special focus on the experimental modulation of intrinsic
parameters. We then briefly review the MMN hypotheses to be
tested. In the results section, we will establish face-validity of the
model using synthetic data. Finally, we illustrate the approach
using real ERP data.

Dynamic causal modelling

Dynamic causal modelling of evoked responses

For completeness, we review the current DCM for evoked
responses. Chapter 6 of Friston et al. (2006) provides a
comprehensive summary of the larger research context embed-
ding the DCM approach. Intuitively, the DCM scheme regards an
experiment as a designed perturbation of neuronal dynamics that
are promulgated and distributed throughout a system of coupled
anatomical sources to produce region-specific responses. This
system is modelled using a dynamic input–state–output system
with multiple inputs and outputs. Responses are evoked by
deterministic inputs that correspond to experimental manipula-
tions (i.e., presentation of stimuli). Experimental factors (i.e.,
stimulus attributes or context) can also change the parameters or
causal architecture of the system producing these responses. The
state variables cover both the neuronal activities and other
neurophysiological or biophysical variables needed to form the
outputs.

DCM starts with a reasonably realistic neuronal model of
interacting cortical regions. This model is then supplemented
with a spatial forward model of how neuronal activity is
transformed into measured M/EEG responses in the sensors.
This output is assumed to be the depolarization of large
populations of pyramidal cells (Baillet et al., 2001). The spatial
model is a forward model of electromagnetic measurements that
accounts for volume conduction effects (Mosher et al., 1999).
For example, for both EEG and MEG, one can use an equivalent
current dipole (ECD) model to construct the observation
equations (Kiebel et al., 2006). This makes DCM a full
spatiotemporal model of evoked responses (over sensors and
peri-stimulus time) and enables us to invert the model, i.e., to
compute the posterior distributions of parameters, from all the
observed data.

Intrinsic architecture

DCMs for M/EEG adopt a neural mass model (David and
Friston, 2003) to explain source activity in terms of the ensemble
dynamics of interacting inhibitory and excitatory subpopulations
of neurons, based on the model of Jansen and Rit (1995). This
model emulates the activity of a source using three neural
subpopulations, each assigned to one of three cortical layers; an
excitatory subpopulation in the granular layer, an inhibitory
subpopulation in the supra-granular layer and a population of deep
pyramidal cells in the infra-granular layer. The excitatory
pyramidal cells receive excitatory and inhibitory input from local
interneurons (via intrinsic connections, confined to the cortical
sheet), and send excitatory outputs to remote cortical sources via
extrinsic connections.

Extrinsic architecture

In David et al. (2005) we developed a hierarchical cortical
model to study the influence of forward, backward and lateral
connections on evoked responses. This model embodies directed
extrinsic connections among a number of sources, each based on
the Jansen model (Jansen and Rit, 1995), using the connectivity
rules described in Felleman and Van Essen (1991). Using these
rules, it is straightforward to construct any hierarchical cortico-
cortical network model of cortical sources. Under simplifying
assumptions, directed connections can be classified as: (i)
Bottom-up or forward connections that originate in the infra-
granular layers and terminate in the granular layer. (ii) Top–down
or backward connections that connect from infragranular to
agranular layers. (iii) Lateral connections that originate in infra-
granular layers and target all layers. These long-range or extrinsic
cortico-cortical connections are excitatory and are mediated
through the axonal processes of pyramidal cells. For simplicity,
we do not consider thalamic connections, but model thalamic
output as a function operating on the input (see below). In the
following, we focus on the neuronal state equations (as opposed
to the EEG or MEG observation equations), and show where
intrinsic and extrinsic connectivity (and their modulation) enter
the model.

The neuronal forward model

The ensuing DCM is specified in terms of its state equations
and an observer or output equation

�x ¼ f ðx;u;hÞ

h ¼ gðx;hÞ ð1Þ

where x are the neuronal states of cortical sources, u are exogenous
inputs and h is the output of the system. θ are quantities that
parameterize the state and observer equations (see also below
under ‘The model priors’). The state equations are ordinary
second-order differential equations and are derived from the
behaviour of the three neuronal subpopulations, which operate as
linear damped oscillators. The integration of the differential
equations pertaining to each subpopulation can be expressed as a
convolution (David and Friston, 2003). This convolution trans-
forms the average density of its pre-synaptic inputs into an average
postsynaptic membrane potential. The convolution kernel is given
by

pðtÞe ¼
He

se
texpð�t=seÞ tz 0

0 t < 0

(
ð2Þ

where subscript “e” stands for “excitatory” and the subscript “i” is
used for inhibitory synapses. He,i controls the maximum post-
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synaptic potential and τe,i represents a lumped rate constant. An
operator S transforms the potential of each subpopulation into
mean firing rate, which is the input to other subpopulations. This
operator is assumed to be an instantaneous sigmoid nonlinearity

S xð Þ ¼ 1
1þ expð�q1ðx� q2ÞÞ

� 1
1þ expðq1q2Þ

ð3Þ

where the free parameters ρ1 and ρ2 determine its form (slope and
translation). Interactions, among the subpopulations, depend on
internal coupling constants γ1,2,3,4, which control the strength of
intrinsic connections and reflect the total number of synapses
expressed by each subpopulation (Fig. 1). The integration of this
model, to form predicted responses, rests on formulating these two
operators (Eqs. (2) and (3)) in terms of a set of differential
equations as shown in Fig. 1.

Note that Fig. 1 represents several sources in matrix/vector
notation, e.g., a state vector is given by xj=[xj

(1), xj
(2), …]T, where

the subscript stands for state j and the superscript for source i. For
the i-th source, x0

(i), …, x8
(i) represent the mean trans-membrane

potentials and currents of its three subpopulations. The equations
specify the rate of change of voltage as a function of current and
how currents change as a function of voltage and current. For
schematic reasons we have lumped superficial and deep pyramidal
units together, in the infra-granular layer. The matrices AF, AB, AL

encode forward, backward and lateral extrinsic connections
respectively. For example, extrinsic connections mediating changes
Fig. 1. Neuronal state equations. A source consists of three neuronal subpopulatio
Mean firing rates (Eq. (3)) from other sources arrive via forward AF, backward AB

sources. The output of each subpopulation is its trans-membrane potential (Eq. (2
in mean excitatory [depolarizing] current x8, in the supragranular
layer, are restricted to backward and lateral connections. The
depolarization of pyramidal cells x0 represents a mixture of
potentials induced by excitatory and inhibitory [depolarizing and
hyperpolarizing] currents, respectively. This pyramidal potential is
not only the output to other sources, but also the presumed source
of observed MEG/EEG signals. Note that these equations operate
with propagation delays between and within sources, giving
delayed differential equations: the full equations have been
described in David et al. (2005) but delays are omitted here for
clarity.

Modulation of extrinsic connectivity
We can model the differential responses to the different stimuli

in two ways. The first (David et al., 2006) is that effects of
experimental factors are mediated through changes in extrinsic
connection strengths. For example, this extrinsic mechanism can
be used to explain response changes by modulating forward
(bottom–up) or backward (top–down) coupling. The second
mechanism, introduced here, is mediated by changing the intrinsic
architecture; of the sort mediating local adaptation. In the following
we describe how both intrinsic and extrinsic modulations are
implemented.

Changes in extrinsic connectivity are expressed as differences
in forward, backward or lateral connections that confer a selective
sensitivity on each source, in terms of its response to others. The
ns, which are connected by four intrinsic connections with weights γ1,2,3,4.
and lateral connections AL. Similarly, exogenous input Cu enters receiving
)).
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experimental or stimulus-specific effects are modelled by coupling
gains

AF
ijk ¼ AF

ijBijk

AB
ijk ¼ AB

ij Bijk

AL
ijk ¼ AL

ijBijk ð4Þ

Here,Aij encodes the strength of a connection to the i-th source from the
j-th andBijk encodes its gain for the k-th ERP. The superscripts (A, B, or
L) indicate the type of connection, i.e., forward, backward or lateral (see
also Fig. 1). By convention, we set the gain of the first ERP to unity, so
that the gains of subsequent ERPs are relative to the first. The reasonwe
model extrinsicmodulations in terms of gain (amultiplicative factor), as
opposed to additive effects, is that by construction, connections should
be always positive. This is assured; provided both the connection and its
gain are positive. In this context, a [positive] gain of less than one
represents a decrease in connection strength.

Modulation of intrinsic connectivity
We model the modulation of intrinsic connectivity by a gain on the

amplitude He of the synaptic kernel (Eq. (2)). A gain greater than one
effectively increases the maximum response that can be elicited from
a source (see Simulations and empirical results). For the i-th source:

H ðiÞ
ek ¼ H ðiÞ

e Biik ð5Þ

Note that if we considered the gains as elements of a gain
matrix, the intrinsic gain would occupy the leading diagonal.
Intrinsic modulation can explain important features of typically
evoked responses, which are difficult to model with a modulation
of extrinsic connections (see Simulations and empirical results).

The aim of introducing intrinsic modulation is to provide for a
mechanism that changes the response of a source that is inherently
local to that source. Potential candidates for modelling intrinsic effects
comprise the four connectivity parameters γ1, …, γ4 and the two
amplitude parameters He and Hi of the synaptic kernel. Our choice to
allow changes in He, as opposed to other intrinsic parameters is
motivated by the fact that this is the only parameter that changes the
intrinsic excitability of cells: For example, consider the dynamics of
the transmembrane currents of the spiny stellate cells (see Fig. 1);
τex
.
4=He((A

F+AL+γ1I)S(x0)+Cu)−2x4−x1/τe. A change in γ1 would
model a selective change in sensitivity to intrinsic afferents from the
pyramidal cells. Conversely, a change in He models generalised
changes in responses to all (extrinsic, intrinsic and exogenous) inputs
that is an inherent property of the postsynaptic cells (cf., spike-rate
adaptation seen empirically).

Other possible modulations include synaptic time-constants;
however, in this work we are interested in evaluating the relative
role of intrinsic and extrinsic connectivity, as opposed to synaptic
dynamics. In the simulations section we will illustrate the effects of
changing all the intrinsic parameters to show that, phenomen-
ologically, modulating He has the greatest face-validity in terms of
changing evoked population responses.
Event-related input
The exogenous input u (Fig. 1) models afferent activity relayed

by subcortical structures and is modelled with two components:
The first is a gamma density function (truncated to peri-stimulus
time). This models an event-related burst of input that is delayed
with respect to stimulus onset and dispersed by subcortical
synapses and axonal conduction. Being a density function, this
component integrates to unity over peri-stimulus time. The second
component is a discrete cosine set modelling systematic fluctua-
tions in input, as a function of peri-stimulus time. In our
implementation time is treated as an additional state variable,
allowing the input to be computed explicitly during integration.
Critically, the event-related input is exactly the same for all evoked
responses.

Integration
The equations in Fig. 1, for all areas, can be integrated using the

matrix exponential of the systems Jacobian as described in the
appendix of David et al. (2006). Note that the integration scheme
allows for conduction delays on the connections, which are free
parameters of the model. The output of source i is the
depolarization of pyramidal cells. This enters the spatial part of
the model to generate predicted responses.

The spatial forward model
The dendritic signal of the pyramidal subpopulation of the i-th

source x0
(i) is detected remotely in the M/EEG sensors. The

relationship between sensor data h and pyramidal activity is linear
and instantaneous

h ¼ gðx;hÞ ¼ LðhLÞx0 ð6Þ

where L is a lead–field matrix (i.e., spatial forward model), which
accounts for passive conduction of the electromagnetic field
(Mosher et al., 1999). The lead–field is a function of some
parameters, i.e., L(θL). Here, we assume that each source is well
described by a single equivalent current dipole (ECD). Our head
model for the EEG-dipoles is based on four concentric spheres,
each with homogeneous and isotropic conductivity. The four
spheres approximate the brain, skull, cerebrospinal fluid (CSF) and
scalp. The lead–field of each ECD is a function of three location
and three orientation or moment parameters, θL (Kiebel et al.,
2006).
Data reduction
For computational reasons, it is expedient to reduce the

dimensionality of the sensor data, while retaining the maximum
amount of information. This is assured by projecting the data onto
a subspace defined by its principal eigenvectors E

ypEy

LpEL

epEe ð7Þ

where ε is the observation error and y is the data (see next
subsection). The eigenvectors are computed using principal
component analysis or, equivalently, a singular value decomposi-
tion (SVD). Because this projection is orthonormal, the indepen-
dence of the projected errors is preserved and the form of the error
covariance components assumed by the observation model remains
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unchanged. In this note, we reduce the sensor data to four modes,
which usually contain the interesting evoked response components.

The model likelihood
In summary, our DCM comprises a state equation that is based

on neurobiological heuristics and an observer equation based on an
electromagnetic forward model. By integrating the state equation
and passing the ensuing states through the observer equation we
generate a predicted measurement. This corresponds to a general-
ized convolution of the inputs to generate an output h(θ) (Eq. (6)).
This generalized convolution is used for an observation model for
the vectorised data1 y and the associated likelihood

y ¼ vecðhðhÞ þ XhX Þ þ e

pðyjh; kÞ ¼ N vecðhðhÞ þ XhX Þ;diagðkÞ � V
� � ð8Þ

Measurement noise ε is assumed to be zero mean Gaussian and
independent over channels, i.e., Cov(vec(ε))=diag(λ)�V, where λ
is an unknown vector of mode-specific variances. V represents the
error temporal autocorrelation matrix, which we assume is the
identity matrix. This is tenable because we typically down-sample
the data (to about 8 ms). Low frequency noise or drift components
are modelled by X, which is a block diagonal matrix with a low-
order discrete cosine set for each evoked response and channel.
The order of this set can be determined by Bayesian model
selection (see below).

This model is fitted to data by tuning the free parameters θ to
minimize the discrepancy between predicted and observed M/EEG
time series under model-complexity constraints (more formally, the
parameters minimize a variational free energy bound on the
marginal likelihood of the model). These parameters specify the
constants in the state and observation equations above. In addition
to minimizing the prediction error, the parameters are constrained
by a prior specification of the range they are likely to lie in (Friston
et al., 2003). These constraints, which take the form of a prior
density p(θ), are combined with the likelihood p(y|θ), to form a
posterior density p(θ|y)~p(y|θ)p(θ) according to Bayes’ rule. It is
this posterior or conditional density we want to estimate. Gaussian
assumptions about the errors in Eq. (8) enable us to compute the
likelihood from the prediction error. The only outstanding
quantities we require are the priors.
The model priors
The parameters of the state equation can be divided into six

subsets: (i) extrinsic connection parameters, which specify the
coupling strengths among sources, (ii) intrinsic connection
parameters, which reflect our knowledge about canonical micro-
circuitry within a source, (iii) conduction delays, (iv) synaptic and
sigmoid parameters controlling the dynamics within an source, (v)
input parameters, which control the subcortical delay and
dispersion of event-related responses, and, importantly, (vi)
intrinsic and extrinsic gain parameters. Table 1 list the priors for
these parameters; see also David et al. (2006) for details. Note that
we fixed the values of intrinsic coupling parameters as described in
Jansen and Rit (1995). Inter-laminar conduction delays were fixed
at 2 ms and inter-regional delays had a prior expectation of 16 ms.
1 Concatenated column vectors of data from each channel.
Inference and model comparison
For a given DCM, say model m, parameter estimation

corresponds to approximating the moments of the posterior
distribution given by Bayes’ rule

pðhjy;mÞ ¼ pðyjh;mÞpðh;mÞ
pðyjmÞ ð9Þ

The estimation procedure employed in DCM is described in
Friston (2002). The posterior moments (conditional mean η and
covariance ∑) are updated iteratively using Variational Bayes
under a fixed-form Laplace (i.e., Gaussian) approximation to the
conditional density q(θ)=N(η,∑). This can be regarded as an
Expectation-Maximization (EM) algorithm that employs a local
linear approximation of Eq. (6) about the current conditional
expectation. The E-step conforms to a Fisher-scoring scheme
(Fahrmeir and Tutz, 1994) that performs a descent on the
variational free energy F(q, λ, m) with respect to the conditional
moments. In the M-step, the error variances λ are updated in
exactly the same way. The estimation scheme can be summarized
as follows:

Repeat until convergence

E−Step qpmin
q

Fðq;k;mÞ

M−Step kpmin
k

Fðq;k;mÞ

Fðq;k;mÞ ¼ lnqðhÞ � lnpðyjh;k;mÞ � lnpðhjmÞh iq

¼ Dðqtpðhjy;k;mÞÞ � lnpðyjk;mÞ ð10Þ

Note that the free energy is simply a function of the log-
likelihood and the log-prior for a particular DCM and q(θ). The
expression 〈·〉q denotes the expectation under the density q. q(θ) is
the approximation to the posterior density p(θ|y, λ, m) we require.
The E-step updates the moments of q(θ) (these are the variational
parameters η and ∑) by minimizing the variational free energy.
The free energy is the Kullback–Leibler divergence (denoted by
D(·‖·)), between the real and approximate conditional density
minus the log-likelihood. This means that the conditional moments
or variational parameters maximize the marginal log-likelihood,
while minimizing the discrepancy between the true and approx-
imate conditional density. Because the divergence does not depend
on the covariance parameters, minimizing the free energy in the
M-step is equivalent to finding the maximum likelihood estimates
of the covariance parameters. This scheme is identical to that
employed by DCM for functional magnetic resonance imaging
(Friston, 2002; Friston et al., 2003). Source code for this routine
can be found in the Statistical Parametric Mapping software
package (see Software Note), in the function ‘spm_nlsi_GN.m’.

Bayesian inference proceeds using the conditional or posterior
density estimated by iterating Eq. (10). Usually this involves
specifying a parameter or compound of parameters as a contrast cTη.
Inferences about this contrast are made using its conditional
covariance cT∑c. For example, one can compute the probability
that any contrast is greater than zero or some meaningful threshold,
given the data. This inference is conditioned on the particular model
specified. In other words, given the data and model, inference is
based on the probability that a particular contrast is bigger than a
specified threshold. In some situations one may want to compare
different models. This entails Bayesian model comparison.
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Different models are compared using their evidence (Penny et
al., 2004). The model evidence is

pðyjmÞ ¼
Z

pðyjh;mÞpðhjmÞdh ð11Þ

Note that themodel evidence is simply the normalization constant
in Eq. (9). The evidence can be decomposed into two components: an
accuracy term, which quantifies the data fit, and a complexity term,
which penalizes models with a large number of parameters.
Therefore, the evidence embodies the two conflicting requirements
of a good model, that it explains the data and is as simple as possible.
In the following, we approximate the model evidence for model m,
under a normal approximation (Friston et al., 2003), by

lnpðyjmÞclnpðyjk;mÞ ð12Þ

This is simply the maximum value of the objective function
attained by EM (see theM-step in Eq. (10)). The most likely model
is the one with the largest log-evidence. This enables Bayesian
model selection. Model comparison rests on the likelihood ratio of
the evidence for two models. This ratio is the Bayes factor Bij. For
models i and j

lnBij ¼ lnpðyjm ¼ iÞ � lnpðyjm ¼ jÞ ð13Þ

Conventionally, strong evidence in favour of one model
requires the difference in log-evidence to be three or more (Penny
et al., 2004). This threshold criterion (i.e., the Bayes factor) plays a
similar role as a p-value of 0.05=1/20 in classical statistics (used to
reject the null hypothesis in favour of the alternative model). A
difference in log-evidence of greater than three (i.e., a Bayes factor
more than exp(3)∼20) indicates that the data provide strong
evidence in favour of one model over the other. This is a standard
way to assess the differences in log-evidence quantitatively.

In the next section, we look at how DCMs can be formulated to
test hypotheses framed in cognitive or physiological terms. In this
case, we look at the DCMs entailed by different mechanistic ideas
concerning the MMN.
Mismatch negativity: Hypotheses and models

In this section, we briefly review three hypotheses about the
genesis of the mismatch negativity (MMN), the ‘traditional’,
‘adaptation’, and ‘predictive coding’ hypotheses. Here, we use the
‘adaptation’ and ‘predictive coding’ hypotheses to motivate the
potential importance of both intrinsic and extrinsic mechanisms for
the MMN that can be expressed formally as a DCM.

The traditional hypothesis (change-sensitive neurons)

The term ‘mismatch negativity’ describes an evoked response
component elicited by the presentation of a rare auditory stimulus in
a sequence of repetitive standard stimuli (Naatanen, 2003). The rare
stimulus typically causes a more negative response over peri-
stimulus time. The difference between oddball and standard tone
reaches a minimum at 85 ms, and exhibits a second minimum later
between 100 and 200ms. The sustained interest in theMMN derives
mainly from the finding that the MMN can be elicited in the absence
of attention to the auditory stimuli andwithout task requirements. As
the name suggests, the MMN is thought to be the consequence of
change-sensitive processes. The MMN seems to be related to the
‘automatic’ detection of auditory changes (i.e., an oddball preceded
by a series of standard tones), and their pre-attentive processing.
Because of its robustness, the MMN paradigm is attractive for
clinical purposes, and engages sensory and memory systems, and
may correlate with involuntary attention switches (Naatanen, 2003).

The adaptation hypothesis (feature-sensitive neurons)

While the traditional hypothesis is largely an explanation for the
MMN at the cognitive level, it does not offer a mechanistic
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explanation of how the MMN is generated at a neuronal level. May
et al. (1999) addressed this question and suggested, based on
experimental results combined with computational modelling, that
the MMN can be explained by neuronal adaptation, either caused
locally or by backward/lateral connectivity. This theme was later
experimentally pursued by Jaaskelainen et al. (2004), who found
that their data (M/EEG and fMRI) could be modelled by two
differentially adapting populations in auditory cortex. Importantly,
these sources were found to be at the same location as the sources
that generate the evoked auditory response per se. Note that
Jaaskelainen et al. (2004) did not discuss the question how the
adaptation of feature-specific neuronal populations is caused. In this
note, we assume that their hypothesis postulates an intrinsic
adaptation of feature-specific neuronal populations.

The predictive coding hypothesis

Recently, predictive coding has been advanced as a parsimo-
nious explanation for several phenomena (Friston, 2005; Rao and
Ballard, 1999). It explains the MMN in terms of predictive coding,
which assumes that the brain infers the causes of its sensory inputs
by predicting them and adjusting the predictions based upon the
mismatch or prediction error. Consequently, one would expect that
the brain supports an online representation and, in particular,
predictions about the auditory environment (see also Winkler et al.,
1996). With respect to the MMN, the mechanism for computing
the prediction and its dynamic comparison with auditory input is
assumed to be implemented by hierarchically organised sources in
auditory cortex. Primary auditory sources receive input, which is
compared with top–down predictions. The resulting error is then
passed up to the next level of the hierarchy so that the prediction
can be adjusted. This prediction is then passed back down the
hierarchy in an attempt to explain away the prediction error. These
recurrent dynamics are presumed to cause the MMN which
represents a failure to suppress prediction error. In this model one
could interpret the N1-component as an error signal due to the
occurrence of an auditory tone that is rapidly explained away by
top–down predictions. When the tone is rare or unpredictable this
‘explaining-away’ will take longer, leading to the emergence of the
MMN. Crucially, to the extent that predictions are derived from
higher levels of cortical processing, the MMN is a consequence of
difference in both intrinsic and extrinsic influences; with intrinsic
connections constructing the prediction error and extrinsic
connection passing messages between hierarchical levels. As with
the adaptation hypothesis, the MMN is modelled as an integral part
of the auditory network response. The difference between the
adaptation and predictive coding hypotheses is that predictive
coding does not make an assumption about feature-sensitive
populations. Rather, the whole system makes ongoing predictions
about the input. For example, as noted by Naatanen et al. (2005),
the adaptation hypothesis would fail to explain missing (but
expected) tones (which cause an MMN), or the MMN response to a
violation in some predictable feature-changes (e.g., a tone ladder).

In terms of causal architectures, the adaptation of feature-
selective populations can be explained by purely intrinsic neuronal
mechanisms, whereas hierarchical inference using predictive
coding invokes recurrent interactions that are mediated by extrinsic
forward and backward connections. Under the predictive coding
hypothesis, differences between responses to predictable and
unpredictable stimuli would be manifest as changes in both
intrinsic and extrinsic coupling.
We now describe how one can express the adaptation and
predictive coding hypotheses in DCM. The idea is to model the
data using plausible but competing models that embody the
different hypotheses, invert these models and use their evidences to
find the best model or hypothesis. As mentioned in the
Introduction, we will illustrate the approach using the grand mean
(i.e., the average of the evoked responses from all subjects). The
analysis of the grand mean is quasi-standard in most ERP/ERF
analyses and is informative, because it reveals features that are
common to single-subject responses. Practically, because of its
high signal-to-noise ratio, people often use the grand mean for
source localization or feature selection (e.g., identifying peaks in
peri-stimulus time and channels).

DCM for the adaptation hypothesis

The architecture of the DCMs we tested was motivated by
recent electrophysiological and neuroimaging studies looking at
the sources underlying the MMN (Doeller et al., 2003; Opitz et al.,
2002). We use a five-source network (Fig. 2). As described in
Garrido et al. (2006) the input feeds via subcortical structures into
two bilateral sources in posterior auditory cortex (lA1 and rA1).
These have reciprocal forward and backward connections to two
bilateral sources in anterior auditory cortex, i.e., superior temporal
gyri (lSTG and rSTG). These two sources are laterally and
reciprocally connected via the corpus callosum. The fifth source is
located in the right inferior frontal gyrus (rIFG) and is reciprocally
connected with rSTG. The prior expectations of the location of all
five sources are listed in Table 2. The evoked response to standard
tones is modelled by this network. The response to rare tones is
modelled by the same network, except for a gain in the intrinsic
excitability of all sources.

DCM for the predictive coding hypothesis

We use the same network as for the adaptation hypothesis. The
difference is that we allowed extrinsic changes. Following Garrido
et al. (2006), we used three different models with changes only in
the extrinsic connections: The first model allows for a modulation
of forward connections (F), the second for a modulation of
backward connections (B), and the third model for both (FB). We
will refer to these as extrinsic models. However, most formulations
of predictive coding would predict both intrinsic and extrinsic
modulation within the same model. In this context, it is possible
that the mismatch response comprises two components: an N1
adaptation, mediated by intrinsic changes and a later MMN proper,
mediated by changes in extrinsic connections. In terms of the
theoretical perspectives on these mechanisms, one could construe
intrinsic adaptation as that part of predictive coding which involves
changes in lateral interactions within a cortical level (Friston,
2005).

From all possible combinations of intrinsic and extrinsic
modulation, we focussed on two types: First, a mixture of F, B,
and FB models with intrinsic modulation of the first two sources
(lA1 and rA1). This corresponds to a predictive coding mechanism
for all hierarchical levels but allows for intrinsic adaptation of the
primary auditory responses. The intrinsic modulations serve as a
mechanism to explain differences in the N1-component (a large
response around 100 ms in peri-stimulus time), while extrinsic
changes may explain later difference corresponding to the MMN
per se. The resulting models are called FI, BI, and FBI. Second,



Table 3
Modulations used in eleven models for the MMN

Extrinsic
forward

Extrinsic
backward

Extrinsic
lateral

Intrinsic
bilateral A1

Intrinsic all
sources

Fig. 2. Neuronal network used for explaining the mismatch response with
DCM. Different models are derived from gain modulation of subsets of the
indicated intrinsic and extrinsic connections. For example, model F allows
for the modulation of extrinsic forward connections only, whereas model
FBA uses all possible modulations (as shown here). See text for further
description.
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we allow for intrinsic modulations of all sources in the three
extrinsic models. We call the resulting models FA, BA, FBA. In
summary, there are ten models: One intrinsic adaptation model A,
three extrinsic models (F, B, FB), and six combined models (FI,
BI, FBI), and (FA, BA, FBA). This is complemented by a null
model, in which we do not allow for any modulation (0). See also
Table 3 for a list of all models.

Simulations and empirical results

Simulations

In this section, we motivate and validate the extension of DCM
using simulated data in which the true parameters and their
Table 2
Prior coordinates Li

pos of equivalent current dipoles for MMNmodel, in MNI
space (mm)

Left primary auditory cortex (lA1) −42 −22 7
Right primary auditory cortex (rA1) 46 −14 8
Left superior temporal gyrus (lSTG) −61 −32 8
Right superior temporal gyrus (rSTG) 59 −25 8
Right inferior frontal gyrus (rIFG) 46 20 8
changes are known. With these simulations we establish face-
validity, i.e., we check whether the model inversion is veridical,
given data that have been generated from the same class of models.
We performed three sets of simulations. In the first, we compared
four potential mechanisms of intrinsic adaptation. These were
modelled as gains on parameters (i) γ1, (ii) γ2, (iii) He, and (iv) Hi.
We show that the modulation of either γ2 or He provides a suitable
modulation of intrinsic dynamics in phenomenological terms (i.e.,
establish face-validity). In the second simulations, we demonstrate
that the modulation of intrinsic versus extrinsic connectivity
parameters leads to distinct dynamics in simple networks. We
illustrate this by inverting DCMs of synthetic data generated by a
two-source network. We will use model comparison to examine
whether one can identify the correct model, given alternative
models (i.e., establish predictive validity). In the third and final
simulations, we will generate realistic data using the MMN models
defined above. The aim of these simulations is the same as above,
i.e., to assess whether the correct model can be identified using
model comparison, using responses observed through the lead
field.

Synthetic data: single-source models

We looked at the effects of changing the parametersγ2 and He

and on γ1, and Hi, using a single-source system (Fig. 3A). For
these simulations, we set all the parameters to their prior
expectations (Table 1). Note that we did not use a lead field for
generating data, because we wanted to focus on the neuronal
responses. We varied each of the four intrinsic parameters around a
gain of one (i.e., no modulation). We generated data by integrating
the resulting system (0 to 300 ms in peri-stimulus time) using a
gamma-function as input. In Fig. 3C, one can see that increasing
both γ2 and He produce marked quantitative increases in evoked
responses. This is evidently not the case forγ1, because of the
saturation imposed by the sigmoid non-linearity, the magnitude of
the modulated response reaches a maximum only slightly higher
than the non-modulated response (see Fig. 3B). Rather, a high γ1
tends to prolong the response. Modulation of Hi causes a change in
the response after the peak, i.e., the undershoot is more pronounced
for higher values and is attenuated with low values.

The response changes due to the modulation of γ2 and He are
very similar. The only difference is that He, given the same peak
response magnitude, causes a slightly earlier return to baseline and
a slightly more negative undershoot (Fig. 3B). This behaviour is
F X
B X
FB X
FI X X
BI X X
FBI X X
FA X X
BA X X
FBA X X
A X
0



Fig. 3. First set of simulations. (A) The generating network. The intrinsic connectivity of the single source changed between two evoked responses. We generated
data for a modulation of four different parameters:γ1, γ2, He, and Hi. (B) The non-modulated response and responses for gain factors 3.1 (γ1), 2.28 (γ2), 1.48
(He), and 1.43 (Hi). The modulation of γ2 and He results in an amplitude modulation, whereas a modulation of γ1 and Hi changes the response after the peak. (C)
The modulated responses for all four parameters over some representative range. We selected gains such that the largest amplitude modulation was three times the
amplitude of the non-modulated response (∼0.45, see B).
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due to the concurrent modulation of inhibitory interneuron
responses to excitatory input, which hyperpolarises pyramidal
cells. Phenomenologically, γ2 and He are both candidates for
modelling adaptation or changes in excitability. We selected He

because its effects are closer to a simple response modulation and it
avoids specific assumptions about the synaptic mechanisms
entailed by changing γ2.

Synthetic data: two-source models

In these simulations, we show that the change in sensor space,
due to a modulation of He can be distinguished from changes
caused by an extrinsic connectivity modulation. This is important
because detectable differences are necessary to identify changes in
intrinsic and extrinsic parameters that are conditionally indepen-
dent. In the following, we present a case study to show the changes
one can typically expect under different modulation mechanisms.

We generated data from a two-source network (Fig. 4). The first
source A1 received the input. Source A1 is connected with A2 via
forward and backward connections. As in the first set of
simulations, the data are observed directly at the source level.
We used four models: (i) intrinsic modulation of the first source
(i1), (ii) intrinsic modulation of the second source (i2), (iii)
extrinsic forward modulation (F), and (iv) extrinsic backward
modulation (B).

The intrinsic parameters were set to their prior mean (Table 1).
The forward connectivity (A1 to A2) was two and the backward
connectivity (A2 to A1) was five. For model i1 and i2 we used an
intrinsic gain (on He) of 1.4. For models F and B we used a gain of
three on both the forward and backward connections. We generated
300 ms of data, starting at stimulus presentation. The responses of
all four models (without noise) are shown in Fig. 5A. The
responses of the four models have distinct characteristics: For
example, the response of i1 is unique in the sense that no other
model generates an amplitude modulation for the A1 source.
Similarly, it is difficult to emulate the response of model B with
any other model: With B the dynamics only change after 100 ms,
whereas all other models produce some change in the early
response component, either in the first or second source.

This intuition is supported by inverting each of the four models
using the four data sets (after the addition of white noise with 5%
standard deviation of the peak amplitude of the second source). In
Fig. 5B we show all log-evidences for the sixteen inversions.
Usually, a difference of about three or more constitutes strong
evidence for one model over another (Penny et al., 2004). All four
models are identified correctly. The smallest differences in model
evidence were seen for the data-model combination i2− i2 and
i2−F (867−852=15). The differences between the responses of i2
and F are subtle (Fig. 5A); in the second source, the response of the
i2 model is slightly more delayed than the F model.

Two observations are important and hold for networks with
more than two sources: (i) The modulation of intrinsic parameters
within the first source cannot be emulated by changes in extrinsic
parameters and represents a potentially important degree of
freedom for DCMs of evoked responses. (ii) Intrinsic modulation
of higher sources resembles the effects of increasing forward
connectivity to that source. However, the extrinsic changes will be
specific to the afferent connection eliciting a response.

Synthetic data: five-source models

In the final simulations we used a realistic five-source network
to show that (i) models with a combination of intrinsic and
extrinsic modulations can be inverted successfully and (ii) that the



Fig. 4. Second set of simulations, two-source models. We used four different models (i1, i2, F, B) to generate data. Models i1 and i2 implement a modulation of
the intrinsic parameter He, for the first and second sources. Models F and B implement a modulation of the forward and backward connection. Each model
resulted in four times-series, two for each source, with and without modulation.
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correct model can be identified on the basis of its log-evidence. For
each of ten models (A, F, B, FB, FI, BI, FBI, FA, BA, FBA – see
above), data were generated using both the neuronal state equations
(Fig. 1) and the M/EEG observation equations (Eq. (6)). We added
white noise with a standard deviation of 0.5. The model parameters
were taken from the analysis of the real ERP data presented in the
next section (i.e., the conditional means). For each model, this gave
two ERPs (standard and rare responses), over channels and peri-
stimulus time 0 to 200 ms. As in the previous section, we inverted
each model using all ten synthetic data sets. In Table 4, we list all
the log-evidences for the ensuing hundred inversions. Each column
contains the log-evidences for each data set.
Table 4
Log-evidences for third set of simulations (see text)

Grey elements: model with maximum log evidence for each data set (see also Fig
This matrix is shown as an image in Fig. 6 (after subtracting the
maximum from each column): Most of the maximum values
(coded as white) can be found on the diagonal, i.e., the true model
had the greatest evidence, among all models. In three cases, the
maximum log-evidences were for other models: for data generated
by FA, BA, and FBA the maximum evidences were for models FI,
BI, and FBI. However, in none of these cases did we found strong
evidence in favour of the wrong model. The evidence for the true
model was always close to the maximum log-evidence (i.e., a
difference of less than three) and therefore cannot be discounted as
a viable model. There were other cases where the log-evidences of
models for a given data set were similar. This was expected
. 6).



Fig. 5. Second set of simulations: results. (A) Plots of generated data for each of the four models (see Fig. 2). (B) White noise (see text) was added to the
data and for each data set, we inverted each of the four models and show all log model evidences. Grey cells indicate the best and, in all cases, correct
model.

Fig. 6. Third set of simulations: log-model evidences, normalised for
visualization purposes (see text for details). Each column shows the log-
evidences for a given data set. White blocks indicate the highest model
evidence, for each column. Grey values indicate log-evidences up to a
difference of minus five, relative to the maximum for a given data set. Black
indicates models whose log-evidences were five or more under the
maximum.
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because many of our models are nested, i.e., one model is an
extension of another (e.g., FBA is an extension of FBI, because
FBA is equal to model FBI with the addition of three intrinsic
modulations). In cases when a model extension actually explains
an important part of the data, one finds large log-evidences
differences between nested models. For example, with data
generated by model FB, and explained by model B and FB. For
these data, model B (−920; see Table 4) has a much lower model
evidence than model FB (−378). In this case, changes in forward
connectivity are necessary to explain these data.
Mismatch negativity study
We studied a group of fourteen healthy volunteers aged 24–35

(5 females). Each subject gave signed informed consent before the
study, conducted under local ethical committee guidelines.
Subjects sat on a comfortable chair in front of a desk in a dimly
illuminated room. Electroencephalographic activity was measured
during an auditory ‘oddball’ paradigm; subjects heard “standard”
(1000 Hz) and “deviant” tones (2000 Hz), occurring 80% (480
trials) and 20% (120 trials) of the time, respectively, in a pseudo-
random sequence. The stimuli were presented binaurally via
headphones for 15 min every 2 s. The duration of each tone was
70 ms with 5 ms rise and fall times. The subjects were instructed
not to move, to keep their eyes closed and to count the deviant
tones.



Fig. 7. Mismatch data: This plot shows log-evidences of ten models,
adjusted with respect to the null model. See text for a description of the
models. The two best models are the adaptation model A, and model FBI,
which uses a mixture of extrinsic and intrinsic modulation.
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Acquisition and pre-processing

EEG data were recorded with a Biosemi system and 128 scalp
electrodes at a sampling rate of 512 Hz. Vertical and horizontal
eye movements were monitored using EOG (electro-oculogram)
electrodes. Data was epoched offline, with a peri-stimulus
window of −100 to 400 ms, down-sampled to 200 Hz, band-
pass filtered between 0.5 and 40 Hz and re-referenced to the
average of the right and left ear lobes. Trials in which the
absolute amplitude of the signal exceeded 100 μV were excluded.
Two of the subjects were eliminated from further analysis due to
excessive numbers of trials containing artefacts. In the remaining
subjects an average 18% of trials were excluded. We formed the
grand mean of all remaining subjects, i.e., the average over all
ERPs. For computational expediency the dimensionality of the
data was reduced to four spatial modes (see above). These were
the principal modes of a singular value decomposition of the
channel data between 0 and 200 ms, from both trial types. The
four principal eigenvariates preserved 93.4% of the experimental
variance.

Dynamic causal modelling

We assumed five cortical sources, modelled as equivalent
current dipoles (ECDs), over left and right primary auditory
cortices (lA1, rA1), left and right superior temporal gyrus (lSTG,
rSTG) and right inferior frontal gyrus (rIFG). The prior means of
the dipole locations are provided in Table 2. The prior variance was
32 mm in each direction. The parameters encoding orientation
(moments in three orthogonal directions) had a prior mean of zero
and a variance of eight.

As described above, we inverted eleven DCMs. An adaptation
model A, three extrinsic models (F, B, FB), the mixed models (FI,
BI, FBI, FA, BA, FBA), and a null model (0). In Fig. 7, we plot
the log-evidence for each model, minus the log-evidence of the
null model.2 The intrinsic adaptation (A) has the largest log-
evidence (159.8), followed by FBI (158.0), and FBA (156.1).
Because of the negligible difference (1.8) between their log-
evidences, the A and FBI models are the best among the models,
for these data. As previously established by Garrido et al. (2006),
the B model (95.9) is not a compelling model. However, note that
once the B model is complemented with intrinsic modulations, the
ensuing models BI (132.9) and BA (145.7) are much better. For
the forward models F (144.0), FI (145.5), and FA (146.8), model
evidences remain relatively unchanged. This suggests that includ-
ing intrinsic modulations in a forward-modulation model offers
only a slight advantage.

In Fig. 8, the posterior means of the coupling gains of the two
best models (A and FBI) are shown: we only show changes that
have a posterior probability of 95% or more. For the FBI model,
this probability is more than 99% for the two intrinsic modulations,
two of the forward connections, and the left backward connection.
For the A model, this is true for the intrinsic adaptation of four
sources (both A1 and STG).

In summary, one can conclude that intrinsic adaptation is
necessary to explain the grand mean data and if changes in
extrinsic connections cause a mismatch response, these changes are
likely to involve both forward and backward connections. We will
2 This subtraction is just for visualisation purposes. It does not change the
inference made, because we subtract the same value from all log-evidences.
present a fuller analysis of this issue (and the implications for the
various theories of the MMN) using single-subject analysis and a
more comprehensive search of model space in a subsequent paper
(Garrido et al., in preparation).

Discussion

We have complemented the original DCM (David et al., 2006)
by allowing changes in within-source or intrinsic connectivity.
These intrinsic changes can be used to test hypotheses which
postulate local neuronal adaptation as a mechanism for the
genesis of evoked responses. We have demonstrated the
usefulness of this extension using the grand mean of a multi-
subject mismatch ERP study. We anticipate that similar intrinsic
adaptation models will be useful in testing hypotheses about other
ERP/ERF phenomena.

Changes in intrinsic connectivity were modelled by a gain on
the parameter He of the kernel modelling postsynaptic responses to
excitatory pre-synaptic inputs (Eq. (2)). Although He is not a
connectivity parameter per se, it does act as one, because it
increases the influence the three sub-populations have on each
other (i.e., it encodes effective post-synaptic receptor density). We
have shown that changes in this parameter emulate an amplitude
modulation of a source’s response, which provides an intuitive
interpretation. We have shown, using model inversion and
simulated data, that one can disambiguate between competing
models, which explain differences between evoked responses
either by intrinsic or by extrinsic mechanisms. In the third
simulations, we generated synthetic data based on the posterior
estimates from real evoked responses: as an aside, we note that
DCM can be used to produce realistic evoked responses (over all
peri-stimulus times and channels) that may be useful for
developing and validating other spatiotemporal models for evoked
responses.

We found that models based solely on changes in extrinsic
connectivity are not the best. Rather, one should augment these
models by intrinsic modulations. Our results (Fig. 7) suggest that



Fig. 8. Mismatch data: These two graphs show the posterior means of gains with a conditional probability of greater than 95% of being present. Left: FBI model.
Right: adaptation model (A).
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only the first two auditory (A1) areas need additional intrinsic
modulation, but this will be examined more thoroughly, using
multiple subject analyses. We also found that a pure ‘local
adaptation’ model attained the highest model evidence. Although
our results were computed on grand mean data, this points to the
‘explanatory’ power of intrinsic mechanisms: The number of
parameters in these models is relatively low because it scales with
the number of sources. Conversely, the number of extrinsic
parameters increases quadratically with the number of sources. The
local adaptation model explains the data well, so models with more
(e.g., extrinsic) parameters must counter their increased complexity
with a better fit. In the case of the combined FBI model, the
increased complexity and accuracy were balanced so that there was
no real difference between the simple adaptation (A) and the more
complicated (FBI) model.

The interesting difference between intrinsic and extrinsic
mechanisms seems to lie in the modulation of backward
connectivity. A modulation of backward connectivity can explain
a change in the time-course of a lower area, late in peri-stimulus
time. For example, in our second simulations, there is a late
change in the dynamics of the first area, but nearly no change in
the dynamics of the second area. This effect is unique to a
modulation of backward connectivity and cannot be explained by
intrinsic mechanisms. We are currently pursuing this by looking at
the log-evidences of models for early and late ERP components.
Conclusion

We have shown that the modulation of intrinsic connectivity is
a useful extension of DCM for evoked responses. Mechanistic
theories that invoke local adaptation of neuronal populations can
be explicitly tested and compared with competing hypotheses.
Software note

All procedures described in this note have been implemented as
Matlab (MathWorks) code. The source code is freely available as
the ‘DCM for evoked responses’ toolbox of the Statistical
Parametric Mapping package (SPM5) under http://www.fil.ion.
ucl.ac.uk/spm/.
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