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Abstract

Over the past 20 years, neuroimaging has become a predominant technique in systems neuroscience. One might
envisage that over the next 20 years the neuroimaging of distributed processing and connectivity will play a major
role in disclosing the brain’s functional architecture and operational principles. The inception of this journal has
been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling,
connectomics, and multivariate analyses of distributed patterns of brain responses. I accepted the invitation to
write this review with great pleasure and hope to celebrate and critique the achievements to date, while address-
ing the challenges ahead.
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Introduction

This review of functional and effective connectivity in
imaging neuroscience tries to reflect the increasing inter-

est and pace of development in this field. When discussing
the nature of this piece with Brain Connectivity’s editors, I
got the impression that Dr. Biswal anticipated a scholarly re-
view of the fundamental issues of connectivity in brain imag-
ing. On the other hand, Dr. Pawela wanted something
slightly more controversial and engaging, in the sense that
it would incite discussion among its readers. I reassured
Chris that if I wrote candidly about the background and cur-
rent issues in connectivity research, there would be more than
sufficient controversy to keep him happy. I have therefore ap-
plied myself earnestly to writing a polemic and self-referen-
tial commentary on the development and practice of
connectivity analyses in neuroimaging.

This review comprises three sections. The first represents
a brief history of functional integration in the brain, with a
special focus on the distinction between functional and ef-
fective connectivity. The second section addresses more
pragmatic issues. It pursues the difference between func-
tional and effective connectivity, and tries to clarify the re-
lationships among various analytic approaches in light of
their characterization. In the third section, we look at recent
advances in the modeling of both experimental and endog-
enous network activity. To illustrate the power of these ap-
proaches thematically, this section focuses on processing
hierarchies and the necessary distinction between forward
and backward connections. This section concludes by con-
sidering recent advances in network discovery and the

application of these advances in the setting of hierarchical
brain architectures.

The Fundaments of Connectivity

Here, we will establish the key dichotomies, or axes, that
frame the analysis of brain connectivity in both a practical
and a conceptual sense. The first distinction we consider is be-
tween functional segregation and integration. This distinction
has a deep history, which has guided much of brain mapping
over the past two decades. A great deal of brain mapping is
concerned with functional segregation and the localization
of function. However, last year the annual increase in publi-
cations on connectivity surpassed the yearly increase in pub-
lications on activations per se (see Fig. 1). This may reflect a
shift in emphasis from functional segregation to integration:
the analysis of distributed and connected processing appeals
to the notion of functional integration among segregated
brain areas and rests on the key distinction between func-
tional and effective connectivity. We will see that this distinc-
tion not only has procedural and statistical implications for
data analysis but also is partly responsible for a segregation
of the imaging neuroscience community interested in these is-
sues. The material in this section borrows from its original for-
mulation in Friston et al. (1993) and an early synthesis in
Friston (1995).

Functional segregation and integration

From a historical perspective, the distinction between func-
tional segregation and functional integration relates to the
dialectic between localizationism and connectionism that
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dominated ideas about brain function in the 19th century.
Since the formulation of phrenology by Gall, the identifica-
tion of a particular brain region with a specific function has
become a central theme in neuroscience. Somewhat ironically,
the notion that distinct brain functions could be localized was
strengthened by early attempts to refute phrenology. In 1808,
a scientific committee of the Athénée at Paris, chaired by Cuv-
ier, declared that phrenology was unscientific and invalid
(Staum, 1995). This conclusion may have been influenced
by Napoleon Bonaparte (after an unflattering examination
of his skull by Gall). During the following decades, lesion
and electrical stimulation paradigms were developed to test
whether functions could indeed be localized in animals. The
initial findings of experiments by Flourens on pigeons were
incompatible with phrenologist predictions, but later experi-
ments, including stimulation experiments in dogs and mon-
keys by Fritsch, Hitzig, and Ferrier, supported the idea that
there was a relation between distinct brain regions and spe-
cific functions. Further, clinicians like Broca and Wernicke
showed that patients with focal brain lesions showed specific
impairments. However, it was realized early on that it was
difficult to attribute a specific function to a cortical area,
given the dependence of cerebral activity on the anatomical
connections between distant brain regions. For example, a
meeting that took place on August 4, 1881, addressed the dif-
ficulties of attributing function to a cortical area given the de-
pendence of cerebral activity on underlying connections
(Phillips et al., 1984). This meeting was entitled Localization
of Function in the Cortex Cerebri. Goltz (1881), although
accepting the results of electrical stimulation in dog and mon-
key cortex, considered the excitation method inconclusive, in
that the movements elicited might have originated in related
pathways or current could have spread to distant centers. In
short, the excitation method could not be used to infer func-
tional localization because localizationism discounted inter-
actions or functional integration among different brain
areas. It was proposed that lesion studies could supplement
excitation experiments. Ironically, it was observations on pa-
tients with brain lesions several years later (see Absher and
Benson, 1993) that led to the concept of disconnection syn-

dromes and the refutation of localizationism as a complete
or sufficient account of cortical organization. Functional local-
ization implies that a function can be localized in a cortical
area, whereas segregation suggests that a cortical area is spe-
cialized for some aspects of perceptual or motor processing,
and that this specialization is anatomically segregated within
the cortex. The cortical infrastructure supporting a single
function may then involve many specialized areas whose
union is mediated by the functional integration among
them. In this view, functional segregation is only meaningful
in the context of functional integration and vice versa.

Functional and effective connectivity

Imaging neuroscience has firmly established functional
segregation as a principle of brain organization in humans.
The integration of segregated areas has proven more difficult
to assess. One approach to characterize integration is in terms
of functional connectivity, which is usually inferred on the
basis of correlations among measurements of neuronal activ-
ity. Functional connectivity is defined as statistical dependen-
cies among remote neurophysiological events. However,
correlations can arise in a variety of ways. For example, in mul-
tiunit electrode recordings, correlations can result from stimu-
lus-locked transients evoked by a common input or reflect
stimulus-induced oscillations mediated by synaptic connec-
tions (Gerstein and Perkel, 1969). Integration within a distrib-
uted system is usually better understood in terms of effective
connectivity: effective connectivity refers explicitly to the influ-
ence that one neural system exerts over another, either at a syn-
aptic or population level. Aertsen and Preißl (1991) proposed
that ‘‘effective connectivity should be understood as the exper-
iment and time-dependent, simplest possible circuit diagram
that would replicate the observed timing relationships be-
tween the recorded neurons.’’ This speaks to two important
points: effective connectivity is dynamic (activity-dependent),
and depends on a model of interactions or coupling.

The operational distinction between functional and effec-
tive connectivity is important because it determines the na-
ture of the inferences made about functional integration and

FIG. 1. Publication rates pertaining to functional segregation and integration. Publications per year searching for ‘‘Activa-
tion’’ or ‘‘Connectivity’’ and functional imaging. This reflects the proportion of studies looking at functional segregation (ac-
tivation) and those looking at integration (connectivity). Source: PubMed.gov. U.S. National Library of Medicine. The image
on the left is from the front cover of The American Phrenological Journal: Vol. 10, No. 3 (March) 1846.
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the sorts of questions that can be addressed. Although this
distinction has played an important role in imaging neurosci-
ence, its origins lie in single-unit electrophysiology (Gerstein
and Perkel, 1969). It emerged as an attempt to disambiguate
the effects of a (shared) stimulus-evoked response from those
induced by neuronal connections between two units. In neuro-
imaging, the confounding effects of stimulus-evoked responses
are replaced by the more general problem of common inputs
from other brain areas that are manifest as functional connectiv-
ity. In contrast, effective connectivity mediates the influence
that one neuronal system exerts on another and, therefore, dis-
counts other influences. We will return to this below.

Coupling and connectivity

Put succinctly, functional connectivity is an observable
phenomenon that can be quantified with measures of statisti-
cal dependencies, such as correlations, coherence, or transfer
entropy. Conversely, effective connectivity corresponds to
the parameter of a model that tries to explain observed de-
pendencies (functional connectivity). In this sense, effective
connectivity corresponds to the intuitive notion of coupling
or directed causal influence. It rests explicitly on a model
of that influence. This is crucial because it means that the anal-
ysis of effective connectivity can be reduced to model
comparison—for example, the comparison of a model with
and without a particular connection to infer its presence. In
this sense, the analysis of effective connectivity recapitulates
the scientific process because each model corresponds to an
alternative hypothesis about how observed data were caused.
In our context, these hypotheses pertain to causal models of
distributed brain responses. We will see below that the role
of model comparison becomes central when considering differ-
ent modeling strategies. The philosophy of causal modeling and
effective connectivity should be contrasted with the procedures
used to characterize functional connectivity. By definition, func-
tional connectivity does not rest on any model of statistical de-
pendencies among observed responses. This is because
functional connectivity is essentially an information theoretic
measure that is a function of, and only of, probability distribu-
tions over observed multivariate responses. This means that
there is no inference about the coupling between two brain re-
gions in functional connectivity analyses: the only model com-
parison is between statistical dependency and the null model
(hypothesis) of no dependency. This is usually assessed with
correlation coefficients (or coherence in the frequency domain).
This may sound odd to those who have been looking for differ-
ences in functional connectivity between different experimental
conditions or cohorts. However, as we will see later, this may
not be the best way of looking for differences in coupling.

Generative or predictive modeling?

It is worth noting that functional and effective connectivity
can be used in very different ways: Effective connectivity is
generally used to test hypotheses concerning coupling archi-
tectures that have been probed experimentally. Different
models of effective connectivity are compared in terms of
their (statistical) evidence, given empirical data. This is
just evidence-based scientific hypothesis testing. We will
see later that this does not necessarily imply a purely
hypothesis-led approach to effective connectivity; network
discovery can be cast in terms of searches over large model

spaces to find a model or network (graph) that has the great-
est evidence. Because model evidence is a function of both the
model and data, analysis of effective connectivity is both
model (hypothesis) and data led. The key aspect of effective
connectivity analysis is that it ultimately rests on model com-
parison or optimization. This contrasts with analysis of func-
tional connectivity, which is essentially descriptive in nature.
Functional connectivity analyses usually entail finding the
predominant pattern of correlations (e.g., with principal or in-
dependent component analysis [ICA]) or establishing that a
particular correlation between two areas is significant. This
is usually where such analyses end. However, there is an im-
portant application of functional connectivity that is becom-
ing increasingly evident in the literature. This is the use of
functional connectivity as an endophenotype to predict or
classify the group from which a particular subject was sam-
pled (e.g., Craddock et al., 2009).

Indeed, when talking to people about their enthusiasm for
resting-state (design-free) analyses of functional connectivity,
this predictive application is one that excites them. The ap-
peal of resting-state paradigms is obvious in this context:
there are no performance confounds when studying patients
who may have functional deficits. In this sense, functional
connectivity has a distinct role from effective connectivity.
Functional connectivity is being used as a (second-order)
data feature to classify subjects or predict some experimental
factor. It is important to realize, however, that the resulting
classification does not test any hypothesis about differences
in brain coupling. The reason for this is subtle but simple:
in classification problems, one is trying to establish a map-
ping from imaging data (physiological consequences) to a di-
agnostic class (categorical cause). This means that the model
comparison pertains to a mapping from consequences to
causes and not a generative model mapping from causes to
consequences (through hidden neurophysiological states).
Only analyses of effective connectivity compare (generative)
models of coupling among hidden brain states.

In short, one can associate the generative models of effec-
tive connectivity with hypotheses about how the brain
works, while analyses of functional connectivity address the
more pragmatic issue of how to classify or distinguish sub-
jects given some measurement of distributed brain activity.
In the latter setting, functional connectivity simply serves as
a useful summary of distributed activity, usually reduced to
covariances or correlations among different brain regions.
In a later section, we will return to this issue and consider
how differences in functional connectivity can arise and
how they relate to differences in effective connectivity.

It is interesting to reflect on the possibility that these two
distinct agendas (generative modeling and classification)
are manifest in the connectivity community. Those people in-
terested in functional brain architectures and effective con-
nectivity have been meeting at the Brain Connectivity
Workshop series every year (www.hirnforschung.net/bcw/).
This community pursues techniques like dynamic causal
modeling (DCM) and Granger causality, and focuses on
basic neuroscience. Conversely, recent advances in functional
connectivity studies appear to be more focused on clinical
and translational applications (e.g., ‘‘with a specific focus
on psychiatric and neurological diseases’’; www.canlab
.de/restingstate/). It will be interesting to see how these
two communities engage with each other in the future,
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especially as the agendas of both become broader and less
distinct. This may be particularly important for a mechanis-
tic understanding of disconnection syndromes and other
disturbances of distributed processing. Further, there is a
growing appreciation that classification models (mapping
from consequences to causes) may be usefully constrained
by generative models (mapping from causes to conse-
quences). For example, generative models can be used to
construct an interpretable and sparse feature-space for sub-
sequent classification. This ‘‘generative embedding’’ was in-
troduced by Brodersen and associates (2011a), who used
dynamic causal models of local field potential recordings
for single-trial decoding of cognitive states. This approach
may be particularly attractive for clinical applications,
such as classification of disease mechanisms in individual
patients (Brodersen et al., 2011b). Before turning to the tech-
nical and pragmatic implications of functional and effective
connectivity, we consider structural or anatomical connec-
tivity that has been referred to, appealingly, as the connec-
tome (Sporns et al., 2005).

Connectivity and the connectome

In the many reviews and summaries of the definitions used
in brain connectivity research (e.g., Guye et al., 2008; Sporns,
2007), researchers have often supplemented functional and
effective connectivity with structural connectivity. In recent
years, the fundamental importance of large-scale anatomical
infrastructures that support effective connections for cou-
pling has reemerged in the context of the connectome and at-
tendant graph theoretical treatments (Bassett and Bullmore,
2009; Bullmore and Sporns, 2009; Sporns et al., 2005). This
may, in part, reflect the availability of probabilistic tractogra-
phy measures of extrinsic (between area) connections from
diffusion tensor imaging (Behrens and Johansen-Berg,
2005). The status of structural connectivity and its relation-
ship to functional effective connectivity is interesting. I see
structural connectivity as furnishing constraints or prior be-
liefs about effective connectivity. In other words, effective
connectivity depends on structural connectivity, but struc-
tural connectivity per se is neither a sufficient nor a complete
description of connectivity.

I have heard it said that if we had complete access to the con-
nectome, we would understand how the brain works. I suspect
that most people would not concur with this; it presupposes
that brain connectivity possesses some invariant property
that can be captured anatomically. However, this is not the
case. Synaptic connections in the brain are in a state of constant
flux showing exquisite context-sensitivity and time- or activity-
dependent effects (e.g., Saneyoshi et al., 2010). These are man-
ifest over a vast range of timescales, from synaptic depression
over a few milliseconds (Abbott et al., 1997) to the maintenance
of long-term potentiation over weeks. In particular, there are
many biophysical mechanisms that underlie fast, nonlinear
‘‘gating’’ of synaptic inputs, such as voltage-dependent ion
channels and phosphorylation of glutamatergic receptors by
dopamine (Wolf et al., 2003). Even structural connectivity
changes over time, at microscopic (e.g., the cycling of postsyn-
aptic receptors between the cytosol and postsynaptic mem-
brane) and macroscopic (e.g., neurodevelopmental) scales.
Indeed, most analyses of effective connectivity focus specifi-
cally on context- or condition-specific changes in connectivity

that are mediated by changes in cognitive set or unfold over
time due to synaptic plasticity. These sorts of effects have mo-
tivated the development of nonlinear models of effective con-
nectivity that consider explicitly interactions among synaptic
inputs (e.g., Friston et al., 1995; Stephan et al., 2008). In short,
connectivity is as transient, adaptive, and context-sensitive as
brain activity per se. Therefore, it is unlikely that characteriza-
tions of connectivity that ignore this will furnish deep insights
into distributed processing. So what is the role of structural
connectivity?

Structural constraints on the generative models used for ef-
fective connectivity analysis are paramount when specifying
plausible models. Further (in principle) they enable more pre-
cise parameter estimates and more efficient model compari-
son. Having said this, there is remarkably little evidence
that quantitative structural information about connections
helps with inferences about effective connectivity. There
may be several reasons for this. First, effective connectivity
does not have to be mediated by monosynaptic connections.
Second, quantitative information about structural connec-
tions may not predict their efficacy. For example, the influ-
ence or effective connectivity of the (sparse and slender)
ascending neuromodulatory projections from areas like the
ventral tegmental area may far exceed the influence predicted
by their anatomical prevalence. The only formal work so far
that demonstrates the utility of tractography estimates is
reported in Stephan et al. (2009). This work compared dy-
namic causal models of effective connectivity (in a visual in-
terhemispheric integration task) that were and were not
informed by structural priors based on tractography. The au-
thors found that models with tractography priors had more
evidence than those without them (see Fig. 2 for details).
This provides definitive evidence that structural constraints
on effective connectivity furnish better models. Crucially,
the tractography priors were not on the strength of the con-
nections, but on the precision or uncertainty about their
strength. In other words, structural connectivity was shown
to play a permissive role as a prior belief about effective con-
nectivity. This is important because it means that the exis-
tence of a structural connection means (operationally) that
the underlying coupling may or may not be expressed.

A potentially exciting development in diffusion tensor im-
aging is the ability to invert generative models of axonal
structure to recover much more detailed information about
the nature of the underlying connections (Alexander, 2008).
A nice example here is that if we were able to estimate the di-
ameter of extrinsic axonal connections between two areas
(Zhang and Alexander, 2010), this might provide useful pri-
ors on their conduction velocity (or delays). Conduction de-
lays are a free parameter of generative models for
electrophysiological responses (see below). This raises the
possibility of establishing structure–function relationships in
connectivity research, at the microscopic level, using nonin-
vasive techniques. This is an exciting prospect that several
of my colleagues are currently pursuing.

Summary

This section has introduced the distinction between func-
tional segregation and integration in the brain and how the
differences between functional and effective connectivity
shape the way we characterize connections and the sorts of
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questions that are addressed. We have touched upon the role
of structural connectivity in providing constraints on the ex-
pression of effective connectivity or coupling among neuro-
nal systems. In the next section, we look at the relationship
between functional and effective connectivity and how the
former depends upon the latter.

Analyzing Connectivity

This section looks more formally at functional and effective
connectivity, starting with a generic (state-space) model of the
neuronal systems that we are trying to characterize. This nec-
essarily entails a generative model and, implicitly, frames the
problem in terms of effective connectivity. We will look at
ways of identifying the parameters of these models and com-
paring different models statistically. In particular, we will con-
sider successive approximations that lead to simpler models
and procedures commonly employed to analyze connectivity.
In doing this, we will hopefully see the relationships among the
different analyses and the assumptions on which they rest. To
make this section as clear as possible, it will use a toy example
to quantify the implications of various assumptions. This ex-
ample uses a plausible connectivity architecture and shows
how changes in coupling, under different experimental condi-
tions or cohorts, would be manifest as changes in effective or
functional connectivity. This section concludes with a heuristic

discussion of how to compare connectivity between conditions
or groups. The material here is a bit technical but uses a tutorial
style that tries to suppress unnecessary mathematical details
(with a slight loss of rigor and generality).

A generative model of coupled neuronal systems

We start with a generic description of distributed neuronal
and other physiological dynamics, in terms of differential
equations. These equations describe the motion or flow,
f(x, u, h), of hidden neuronal and physiological states, x(t),
such as synaptic activity and blood volume. These states
are hidden because they are not observed directly. This
means we also have to specify mapping, g(x, u, h), from
hidden states to observed responses, y(t):

_x¼ f (x, u, h)þx

y¼ g(x, u, h)þ v
(1)

Here, u(t) corresponds to exogenous inputs that might en-
code changes in experimental conditions or the context under
which the responses were observed. Random fluctuations
x(t) and v(t) on the motion of hidden states and observa-
tions render Equation (1) a random or stochastic differential
equation. One might wonder why we need both exogenous
(deterministic) and endogenous (random) inputs; whereas
the exogenous inputs are generally known and under experi-

FIG. 2. Structural con-
straints on functional connec-
tions. This schematic
illustrates the procedure
reported in Stephan et al.
(2009), providing evidence
that anatomical tractography
measures provide informa-
tive constraints on models
and effective connectivity.
Consider the problem of esti-
mating the effective connec-
tivity among some regions,
given quantitative (if proba-
bilistic) estimates of their an-
atomical connection strengths
(demoted by uij). This is il-
lustrated in the lower left
panel using bilateral areas in
the lingual and fusiform gyri.
The first step would be to
specify some mapping be-
tween the anatomical infor-
mation and prior beliefs
about the effective connec-
tions. This mapping is illus-
trated in the upper left panel,
by expressing the prior vari-
ance on effective connectivity
(model parameters h) as a
sigmoid function of anatomi-
cal connectivity, with un-

known hyperparameters a b � m, where m denotes a model. We can now optimize the model in terms of its hyperparameters
and select the model with the highest evidence p(yjm), as illustrated by model scoring on the upper right. When this was done
using empirical data, tractography priors were found to have a sensible and quantitatively important role. The inset on the
lower right shows the optimum relationship between tractography estimates and prior variance constraints on effective
connectivity. The four asterisks correspond to the four tractography measures shown on the lower left [see Stephan et al. (2009)
for further detail].
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mental control, endogenous inputs represent unknown influ-
ences (e.g., from areas not in the model or spontaneous fluctu-
ations). These can only be modeled probabilistically (usually
under Gaussian, and possibly Markovian, assumptions).

Clearly, the equations of motion (first equality) and observer
function (second equality) are, in reality, immensely compli-
cated equations of very large numbers of hidden states. In
practice, there are various theorems such as the center mani-
fold theorem* and slaving principle, which means one can re-
duce the effective number of hidden states substantially but
still retain the underlying dynamical structure of the system
(Ginzburg and Landau, 1950; Carr, 1981; Haken, 1983; Kopell
and Ermentrout, 1986). The parameters of these equations, h,
include effective connectivity and control how hidden states
in one part of the brain affect the motion of hidden states else-
where. Equation (1) can be regarded as a generative model of
observed data that is specified completely, given assumptions
about the random fluctuations and prior beliefs about the
states and parameters. Inverting or fitting this generative
model corresponds to estimating its unknown states and pa-
rameters (effective connectivity), given some observed data.
This is called dynamic causal modeling (DCM) and usually
employs Bayesian techniques.

However, the real power of DCM lies in the ability to com-
pare different models of the same data. This comparison rests
on the model evidence, which is simply the probability of the
observed data, under the model in question (and known ex-
ogenous inputs). The evidence is also called the marginal like-
lihood because one marginalizes or removes dependencies on
the unknown quantities (states and parameters).

p(yjm, u)¼
Z

p(y, x, hjm, u)dxdh (2)

Model comparison rests on the relative evidence for one
model compared to another [see Penny et al. (2004) for a
discussion in the context of functional magnetic resonance
imaging (fMRI). Likelihood-ratio tests of this sort are com-
monplace. Indeed, one can cast the t-statistic as a likelihood
ratio. Model comparison based on the likelihood of different
models will be a central theme in this review and provides the
quantitative basis for all evidence-based hypothesis testing.
In this section, we will see that all analyses of effective con-
nectivity can be reduced to model comparison. This means
the crucial differences among these analyses rest with the
models on which they are based.

Clearly, to search over all possible models (to find the one
with the most evidence) is generally impossible. One, there-
fore, appeals to simplified but plausible models. To illustrate
this simplification and to create an illustrative toy example,
we will use a local (bilinear) approximation to Equation (1)
of the sort used in DCM of fMRI time series (Friston et al.,
2003) and with a single exogenous input, u 2 f0, 1g:

_x¼ hxxþ uhxuxþ huuþx

hx¼ vf

vx
hxu¼ v2f

vxvu
hu¼ vf

vu

���
x¼ 0, u¼ 0

(3)

Here, superscripts indicate whether the parameters refer to
the strength of connections, hx, their context-dependent (bilin-
ear) modulation, hxu, or the effects of perturbations or exoge-
nous inputs, hu. To keep things very simple, we will further
pretend that we have direct access to hidden neuronal states
and that they are measured directly (as in invasive electro-
physiology). This means we can ignore hemodynamics and
the observer function (for now). Equation (3) parameterizes
connectivity in terms of partial derivatives of the state-
equation. For example, the network in Figure 3 can be de-
scribed with the following effective connectivity parameters:

hx¼
� :5 0:2 0

0:3 �:3 0

0:6 0 �:4

2
64

3
75 hxu¼

0 0:2 0

0 0 0

0 0 0

2
64

3
75 hu¼

0

0

0

2
64
3
75 (4)

Here, the input u 2 f0, 1g encodes a condition or cohort-spe-
cific effect that selectively increases the (backward) coupling
from the second to the first node or region (from now on
we will use effective connectivity and coupling synonymous-
ly). These values have been chosen as fairly typical for fMRI.
Note that the exogenous inputs do not exert a direct (activat-
ing) effect on hidden states, but act to increase a particular
connection and endow it with context-sensitivity. Note fur-
ther that we have assumed that hidden neuronal dynamics
can be captured with a single state for each area. We will
now consider the different ways in which one can try to esti-
mate these parameters.

Dynamic causal modeling

As noted above, DCM would first select the best model
using Bayesian model comparison. Usually, different models
are specified in terms of priors on the coupling parameters.
These are used to switch off parameters by assuming a priori
that they are zero (to create a new model). For example, if we
wanted to test for the presence of a backward connection

FIG. 3. Toy connectivity architecture. This schematic shows
the connections among three brain areas or nodes that will be
used to demonstrate the relationship between effective con-
nectivity and functional connectivity in the main text. To
highlight the role of changes in connectivity, the right graph
shows the connection that changes (over experimental condi-
tion or diagnostic cohort) as the thick black line. This is an ex-
ample of a directed cyclic graph. It is cyclic by virtue of the
reciprocal connections between A1 and A2.

*Strictly speaking, the center manifold theorem is used to reduce
the degrees of freedom only in the neighborhood of a bifurcation.
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from the second to the first area, hx
12, we would compare two

models with the following priors:

p(hx
12jm0)¼N (0, 0)

p(hx
12jm1)¼N (0, 8)

(5)

These Gaussian (shrinkage) priors force the effective con-
nectivity to be zero under the null model m0 and allow it to
take large values under m1. Given sufficient data, the Bayes-
ian model comparison would confirm that the evidence for
the alternative model was greater than the null model,
using the logarithm of the evidence ratio:

ln
p(yjm1)

p(yjm0)

� �
¼ ln p(yjm1)� ln p(yjm0)

� F(y, l1)� F(y, l0)

(6)

Notice that we have expressed the logarithm of the mar-
ginal likelihood ratio as a difference in log-evidences. This
is a preferred form because model comparison is not limited
to two models, but can cover a large number of models whose
quality can be usefully quantified in terms of their log-evi-
dences. (We will see an example of this in the last section.)
A relative log-evidence of three corresponds to a marginal
likelihood ratio (Bayes factor) of about 20 to 1, which is usu-
ally considered strong evidence in favor of one model over
another (Kass and Raftery, 1995). An important aspect of
model evidence is that it includes a complexity cost (which
is not only sensitive to the number of parameters but
also to their interdependence). This means that a model
with redundant parameters would have less evidence, even
though it provided a better fit to the data (see Penny et al.,
2004).

In most current implementations of DCM, the log-evidence
is approximated with a (variational) free-energy bound that
(by construction) is always less than the log-evidence. This
bound is a function of the data and (under Gaussian assump-
tions about the posterior density) some proposed values for
the states and parameters. When the free-energy is maxi-
mized (using gradient ascent) with respect to the proposed
values, they become the maximum posterior or conditional
estimates, l, and the free-energy, F(y, l)p ln p(yjm), ap-
proaches the log-evidence. We will return to the Bayesian
model comparison and inversion of dynamic causal models
in the next section. At the moment, we will consider some
alternative models. The first is a discrete-time linear approx-
imation to Equation 1, which is the basis of Granger causality.

Vector autoregression models and Granger causality

One can convert any dynamic causal model into a linear
state-space or vector autoregression model (Goebel et al.,
2003; Harrison et al., 2003; see Rogers et al., 2010 for review)
by solving (integrating) the Taylor approximation to Equa-
tion (3) over the intervals between data samples, D, using
the matrix exponential. For a single experimental context
(the first input level, u = 0), this gives:

xt¼Axt�Dþ et0x¼ ~xAT þ e

A¼ exp (Dhx)

et¼
ZD

0

exp (shx)x(t� s)ds

(7)

The second equality expresses this vector autoregression
model as a simple general linear model with explanatory var-
iables, ~x, that correspond to a time-lagged (time · region) ma-
trix of states and unknown parameters in the autoregression
matrix, A = exp(Dhx). Note that the random fluctuations or in-
novations, e(t), are now a mixture of past fluctuations in x(t)
that are remembered by the system.

We now have a new model whose parameters are autore-
gression coefficients that can be tested using classical likeli-
hood ratio tests. In other words, we can compare the
likelihood of models with and without a particular regression
coefficient, Aij, using classical model comparison based on the
extra sum of squares principle (e.g., the F-statistic). For n
states and e*N (0, r2 I), these tests are based on the sum of
squares and products of the residuals, Ri : i = 0,1, under the
maximum likelihood solutions of the alternative and null
models, respectively:

ln
p(yjm1)

p(yjm0)

� �
� ln p(yjl1, m1)� ln p(yjl0, m0)

¼ n

2r2
ln jR1j �

n

2r2
ln jR0j

(8)

This is Granger causality (Granger, 1969) and has been
used in the context of autoregressive models of fMRI data
(Roebroeck et al., 2005, 2009). Note that Equation (8) uses
likelihoods as opposed to marginal likelihoods to approxi-
mate the evidence. This (ubiquitous) form of model compar-
ison assumes that the posterior density over unknown
quantities can be approximated by a point mass over the
conditional mean. In the absence of priors, this is their
maximum likelihood value. In other words, we ignore
uncertainty about the parameters when estimating the evi-
dence for different models. This is a reasonable heuristic
but fails to account for differences in model complexity
(which means the approximation in Equation (8) is never
less than zero).

The likelihood model used in tests of Granger causality as-
sumes that the random terms in the vector autoregression
model are (serially) independent. This is slightly problematic
given that these terms acquire temporal correlations when
converting the continuous time formulation into the discrete
time formulation [see Equation (7)]. The independence (Mar-
kovian) assumption means that the network has forgotten
past fluctuations by the time it is next sampled (i.e., it is not
sampled very quickly). However, there is a more fundamen-
tal problem with Granger causality that rests on the fact that
the autoregression parameters of Equation (7) are not the cou-
pling parameters of Equation (3). In our toy example, with a
repetition time of D = 2.4 seconds, the true autoregression co-
efficients are

hx¼
� :5 0:2 0

0:3 � :3 0

0:6 0 � :4

2
64

3
750 A¼ exp (2:4 � hx)

¼
:365 :196 0

:295 :561 0

:521 :137 :383

2
64

3
75

(9)

This means, with sufficient data, area A2 Granger causes
A3 (with a regression coefficient of 0.137) and that any likeli-
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hood ratio test for models with and without this connection
will indicate its existence. The reason for this is that we
have implicitly reparameterized the model in terms of regres-
sion coefficients and have destroyed the original parameteri-
zation in terms of effective connectivity. Put simply, this
means the model comparison is making inferences about sta-
tistical dependencies over time as modeled with an autore-
gressive process, not about the causal coupling per se. In
this sense, Granger causality could be regarded as a measure
of lagged functional connectivity, as opposed to effective con-
nectivity. Interestingly, the divergence between Granger cau-
sality and true coupling increases with the sampling interval.
This is a particularly acute issue for fMRI given its long rep-
etition times (TR).

There are many other interesting debates about the use of
Granger causality in fMRI time series analysis [see Valdés-
Sosa et al. (2011) for a full discussion of these issues]. Many
relate to the effects of hemodynamic convolution, which is ig-
nored in most applications of Granger causality (see Chang
et al., 2008; David et al., 2008). A list of the assumptions
entailed by the use of a linear autoregression model for
fMRI includes

� The hemodynamic response function is identical in all re-
gions studied.
� The hemodynamic response is measured with no noise.
� Neuronal dynamics are linear with no changes in cou-

pling.
� Neuronal innovations (fluctuations) are stationary.
� Neuronal innovations (fluctuations) are Markovian.
� The sampling interval (TR) is smaller than the time con-

stants of neuronal dynamics.
� The sampling interval (TR) is greater than the time con-

stants of the innovations.

It is clear that these assumptions are violated in fMRI and
that Granger causality calls for some scrutiny. Indeed, a re-
cent study (Smith et al., 2010) used simulated fMRI time series
to compare Granger causality against a series of procedures
based on functional connectivity (partial correlations, mutual
information, coherence, generalized synchrony, and Bayesian
networks; e.g., Baccalá and Sameshima, 2001; Marrelec et al.,
2006; Patel et al., 2006). They found that Granger causality
(and its frequency domain variants, such as directed partial
coherence and directed transfer functions; e.g., Geweke,
1984) performed poorly and noted that

The spurious causality estimation that is still seen in the
absence of hemodynamic response function variability most
likely relates to the various problems described in the Granger
literature (Nalatore et al., 2007; Nolte et al., 2008; Tiao and Wei,
1976; Wei, 1978; Weiss, 1984); it is known that measurement
noise can reverse the estimation of causality direction, and
the temporal smoothing means that correlated time series
are estimated to [Granger] ‘‘cause’’ each other.

It should be noted that the deeper mathematical theory of
Granger causality (due to Wiener, Akaike, Granger, and
Schweder) transcends its application to a particular model
(e.g., the linear autoregression model above). Having said
this, each clever refinement and generalization of Granger
causality (e.g., Deshpande et al., 2010; Havlicek et al., 2010;

Marinazzo et al., 2010) brings it one step closer to DCM (at
least from my point of view). As noted above, autoregression
models assume the innovations are temporally uncorrelated.
In other words, random fluctuations are fast, in relation to
neuronal dynamics. We will now make the opposite assump-
tion, which leads to the models that underlie structural equa-
tion modeling.

Structural equation modeling

If we now use an adiabatic approximation{ and assume
that neuronal dynamics are very fast in relation to random
fluctuations, we can simplify the model above by removing
the dynamics. In other words, we can assume that neuronal
activity has reached steady-state by the time we observe it.
The key advantage of this is that we can reduce the generative
model so that it predicts, not the time series, but the observed
covariances among regional responses over time, Sy.

For simplicity, we will assume that g(x, y, h) = x and u = 0. If
the rate of change of hidden states is zero, Eqs. (1) and (3)
mean that

hxx¼ �x0y¼ v� (hx)� 1x

0

Sy¼Svþ (hx)� 1Sx(hx)� 1T

Sy¼ ÆyyTæ Sv¼ ÆvvTæ Sx¼ ÆxxTæ

(10)

Expressing the covariances in terms of the coupling param-
eters enables one to compare structural equation models
using likelihoods based on the observed sample covariances.

ln
p(yjm1)

p(yjm0)

� �
� ln p(Syjl1, m1)� ln p(Syjl0, m0) (11)

The requisite maximum likelihood estimates of the cou-
pling and covariance parameters, l, can now be estimated
in a relatively straightforward manner, using standard co-
variance component estimation techniques. Note that we do
not have to estimate hidden states because the generative
model explains observed covariances in terms of random
fluctuations and unknown coupling parameters [see Equa-
tion (10)]. The form of Equation (10) has been derived from
the generic generative model. In this form, it can be regarded
as a Gaussian process model, where the coupling parameters
become, effectively, parameters of the covariance among ob-
served signals due to hidden states. Although we have de-
rived this model from differential equations, structural
equation modeling is usually described as a regression anal-
ysis. We can recover the implicit regression model in Equa-
tion (10) by separating the intrinsic or self-connections
(which we will assume to be modeled by the identity matrix)
and the off-diagonal terms. This gives an instantaneous re-
gression model, hx = h � I 0 x = hx + x, whose maximum
likelihood parameters can be estimated in the usual way
(under appropriate constraints).

So, is this a useful way to characterize effective connectiv-
ity in an imaging time series? The answer to this question de-
pends on the adiabatic assumption that converts the dynamic
model into a static model. Effectively, one assumes that ran-

{In other words, we assume that neural dynamics are an adiabatic
process that adapts quickly to slowly fluctuating perturbations.
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dom fluctuations change very slowly in relation to underly-
ing physiology, such that it has time to reach steady state.
Clearly, this is not appropriate for electrophysiological and
fMRI time series, where the characteristic time constants of
neuronal dynamics (tens of milliseconds) and hemodynamics
(seconds) are generally much larger than the fluctuating or
exogenous inputs that drive them. This is especially true
when eliciting neuronal responses using event-related de-
signs. Having said this, structural equation modeling may
have a useful role in characterizing nontime-series data,
such as the gray matter segments analyzed in voxel-based
morphometry or images of cerebral metabolism acquired
with positron emission tomography. Indeed, it was in this
setting that structural equation modeling was introduced to
neuroimaging: The first application of structural equation
modeling used 2-deoxyglucose images of the rat auditory
system (McIntosh and Gonzalez-Lima, 1991), followed by a
series of applications to positron emission tomography data
(McIntosh et al., 1994; see also Protzner and McIntosh, 2006).

There is a further problem with using structural equation
modeling in the analysis of effective connectivity: it is difficult
to estimate reciprocal and cyclic connections efficiently. Intui-
tively, this is because fitting the sample covariance means that
we have thrown away a lot of information in the original time
series. Heuristically, the ensuing loss of degrees of freedom
means that conditional dependencies among the estimates
of effective connectivity are less easy to resolve. This means
that, typically, one restricts analyse to simple networks that
are nearly acyclic (or, in the special case of path analysis,
fully acyclic), with a limited number of loops that can be iden-
tified with a high degree of statistical precision. In machine
learning, structural equation modeling can be regarded as a
generalization of inference on linear Gaussian Bayesian net-
works that relaxes the acyclic constraint. As such, it is a gen-
eralization of structural causal modeling, which deals with
directed acyclic graphics. This generalization is important in
the neurosciences because of the ubiquitous reciprocal con-
nections in the brain that render its connectivity cyclic or re-
cursive. We will return to this point when we consider
structural causal modeling in the next section.

Functional connectivity and correlations

So far, we have considered procedures for identifying ef-
fective connectivity. So, what is the relationship between
functional connectivity and effective connectivity? Almost
universally in fMRI, functional connectivity is assessed with
the correlation coefficient. These correlations are related
mathematically to effective connectivity in the following
way (for simplicity, we will again assume that g(x, y, h) = x
and u = 0):

C¼ diag(Sy)�
1
2Sydiag(Sy)�

1
2

Sy¼Svþ
Z1

0

exp (shx)Sx exp (shx)Tds
(12)

These equations show that correlation is based on the co-
variances over regions, where these covariances are induced
by observation noise and random fluctuations. Crucially, be-
cause the system has memory, we have to consider the his-
tory of the fluctuations causing observed correlations. The
effect of past fluctuations is mediated by the kernels, exp(shx),

in Equation (12). The Fourier transforms of these kernels
(transfer functions) can be used to compute the coherence
among regions at any particular frequency. In our toy exam-
ple, the functional connections for the two experimental con-
texts are (for equal covariance among random fluctuations
and observation noise, Sx =Sv = 1):

Cu¼ 0¼
1 :407 :414
:407 1 :410
:414 :410 1

2
4

3
5Cu¼ 1¼

1 :777 :784
:777 1 :769
:784 :769 1

2
4

3
5

(13)

There are two key observations here. First, although there
is no coupling between the second and third area, they show
a profound functional connectivity as evidenced by the corre-
lations between them in both contexts (0.41 and 0.769, respec-
tively). This is an important point that illustrates the problem
of common input (from the first area) that the original distinc-
tion between functional and effective connectivity tried to ad-
dress (Gerstein and Perkel, 1969). Second, despite the fact that
the only difference between the two networks lies in one
(backward) connection (from the second to the first area),
this single change has produced large and distributed
changes in functional connectivity throughout the network.
We will return to this issue below when commenting on the
comparison of connection strengths. First, we consider briefly
the different ways in which distributed correlations can be
characterized.

Correlations, components, and modes

From the perspective of generative modeling, correlations
are data features that summarize statistical dependencies
among brain regions. As such, one would not consider
model comparison because the correlations are attributes of
the data, not the model. In this sense, functional connectivity
can be regarded as descriptive. In general, the simplest way to
summarize a pattern of correlations is to report their eigen-
vectors or principal components. Indeed, this is how voxel-
wise functional connectivity was introduced (Friston et al.,
1993). Eigenvectors correspond to spatial patterns or modes
that capture, in a step down fashion, the largest amount of ob-
served covariance. Principal component analysis is also
known as the Karhunen-Loève transform, proper orthogonal
decomposition, or the Hotelling transform. The principal
components of our simple example (for the first context) are
the following columns:

eig(Cu¼ 0)¼
:577 :518 :631
:575 � :807 :136
:579 :284 � :764

2
4

3
5 (14)

When applying the same analysis to resting-state correla-
tions, these columns would correspond to the weights that
define intrinsic brain networks (Van Dijk et al., 2010). In
general, the weights of a mode can be positive and nega-
tive, indicating those regions that go up and down together
over time. In Karhunen-Loève transforms of electrophysio-
logical time series, this presents no problem because posi-
tive and negative changes in voltage are treated on an
equal footing. However, in fMRI research, there appears
to have emerged a rather quirky separation of the positive
and negative parts of a spatial mode (e.g., Fox et al., 2009)
that are anticorrelated (i.e., have a negative correlation).
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This may reflect the fact that the physiological interpreta-
tion of activation and deactivation is not completely sym-
metrical in fMRI. Another explanation may be related to
the fact that spatial modes are often identified using spatial
independent component analysis (ICA).

Independent component analysis. ICA has very similar
objectives to principal component analysis (PCA), but as-
sumes the modes are driven by non-Gaussian random fluctu-
ations (Calhoun and Adali, 2006; Kiviniemi et al., 2003;
McKeown et al., 1998). If we reprieve the assumptions of
structural equation modeling [Equation (10)], we can regard
principal component analysis as based up the following gen-
erative model:

x¼ �Wx

W¼ (hx)� 1

x ~ N(0,Sx)

(15)

By simply replacing Gaussian assumptions about random
fluctuations with non-Gaussian (supra-Gaussian) assump-
tions, we can obtain the generative model on which ICA is
based. The aim of ICA is to identify the maximum likelihood
estimates of the mixing matrix, W = (hx)�1, given observed co-
variances. These correspond to the modes above. However,
when performing ICA over voxels in fMRI, there is one final
twist. For computational reasons, it is easier to analyze sample
correlations over voxels than to analyze the enormous (voxel ·
voxel) matrix of correlations over time. Analyzing the smaller
(time · time) matrix is known as spatial ICA (McKeown et al.,
1998). [See Friston (1998) for an early discussion of the relative
merits of spatial and temporal ICA.] In the present context, this
means that the modes are independent (and orthogonal) over
space and that the temporal expression of these independent
components may be correlated. Put plainly, this means that in-
dependent components obtained by spatial ICA may or may
not be functionally connected in time. I make this point be-
cause those from outside the fMRI community may be con-
fused by the assertion that two spatial modes (intrinsic brain
networks) are anticorrelated. This is because they might as-
sume temporal ICA (or PCA) was used to identify the
modes, which are (by definition) uncorrelated.

Changes in connectivity

So far, we have focused on comparing different models or
network architectures that best explain observed data. We
now look more closely at inferring quantitative changes in cou-
pling due to experimental manipulations. As noted above, there
is a profound difference between comparing effective connec-
tion strengths and functional connectivity. In effective connec-
tivity modeling, one usually makes inferences about coupling
changes by comparing models with and without an effect of ex-
perimental context or cohort. These effects correspond to the bi-
linear parameters hxu in Equation (3). If model comparison
supported the evidence for the model with a context or cohort
effect, one would then conclude the associated connection (or
connections) had changed. However, when comparing func-
tional connectivity, one cannot make any comment about
changes in coupling. Basically, showing that there is a differ-
ence in the correlation between two areas does not mean that
the coupling between these areas has changed; it only means

that there has been some change in the distributed activity ob-
served in one context and another and that this change is man-
ifest in the correlation [see Equation (13)]. Clearly, this is not a
problem if one is only interested in using correlations to predict
the cohort or condition from which data were sampled. How-
ever, it is important not to interpret a difference in correlation
as a change in coupling. The correlation coefficient reports
the evidence for a statistical dependency between two areas,
but changes in this dependency can arise without changes in
coupling. This is particularly important for Granger causality,
where it might be tempting to compare Granger causality, ei-
ther between two experimental situations or between directed
connections between two nodes. In short, a difference in evi-
dence (correlation, coherence, or Granger causality) should
not be taken as evidence for a difference in coupling. One can
illustrate this important point with three examples of how a
change in correlation could be observed in the absence of a
change in effective connectivity.

Changes in another connection. Because functional con-
nectivity can be expressed at a distance from changes in effec-
tive connectivity, any observed change in the correlation
between two areas can be easily caused by a coupling change
elsewhere. Using our example above, we can see immediately
that the correlation between A1 and A2 changes when we in-
crease the backward connection strength from A2 to A1.
Quantitatively, this is evident from Equation (13), where:

DC¼Cu¼ 1�Cu¼ 0¼
0 :369 :370
:369 0 :359
:370 :359 0

2
4

3
5 (16)

This is perfectly sensible and reflects the fact that statistical
dependencies among the nodes of a network are exquisitely
sensitive to changes in coupling anywhere. So, does this
mean a change in a correlation can be used to infer a change
in coupling somewhere in the system? No, because the corre-
lation can change without any change in coupling.

Changes in the level of observation noise. An important
fallacy of comparing correlation coefficients rests on the fact
that correlations depend on the level of observation noise.
This means that one can see a change in correlation by simply
changing the signal-to-noise ratio of the data. This can be par-
ticularly important when comparing correlations between
different groups of subjects. For example, obsessive compul-
sive patients may have a heart rate variability that differs
from normal subjects. This may change the noise in observed
hemodynamic responses, even in the absence of neuronal dif-
ferences or changes in effective connectivity. We can simulate
this effect, using Equation (12) above, where, using noise lev-
els of Sv = 1 and Sv = 1.252, we obtain the following difference
in correlations:

DC¼
0 � :061 � :060

� :061 0 � :048
� :060 � :048 0

2
4

3
5 (17)

These changes are just due to increasing the standard devi-
ation of observation noise by 25%. This reduces the correla-
tion because it changes with the noise level [see Equation
(12)]. The ensuing difficulties associated with comparing cor-
relations are well known in statistics and are related to the
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problem of dilution or attenuation in regression problems
(e.g., Spearman, 1904). If we ensured that the observation
noise was the same over different levels of an experimental
factor, could we then infer some change in the underlying
connectivity? Again, the answer is no because the correlation
also depends on the variance of hidden neuronal states, Sx,
that can only be estimated under a generative model.

Changes in neuronal fluctuations. One can produce the
same sort of difference in correlations by changing the ampli-
tude of neuronal fluctuations (designed or endogenous) with-
out changing the coupling. As a quantitative example, from
Equation (12) we obtain the following difference in correla-
tions when changing Sx = 1 to Sx = 1.252:

DC¼
0 :053 :052
:053 0 :038
:052 :038 0

2
4

3
5 (18)

The possible explanations for differences in neuronal
activity between different cohorts of subjects, or indeed
different conditions, are obviously innumerable. Yet, any
of these differences can produce a change in functional
connectivity.

These examples highlight the difficulties of interpreting
differences in functional connectivity in relation to changes
in the underlying coupling. Importantly, these arguments
pertain to any measures reporting the evidence for statistical
dependencies, including coherence, mutual information,
transfer entropy, and Granger causality. The fallacy of com-
paring statistics in this way can be seen intuitively in terms
of model comparison. Usually, one compares the evidence
for different models of the same data. When testing for a
change in coupling, this entails comparing models that do
and do not include a change in connectivity. This is not the
same as comparing the evidence for the same model of differ-
ent data. A change in evidence here simply means the data
have changed. In short, a change in model evidence is not ev-
idence for model of change.

As noted above, these interpretational issues may not be
relevant when simply trying to establish group differences
or classify subjects. However, if one wants to make some spe-
cific and mechanistic inference about the impact of an exper-
imental manipulation on the coupling between particular
brain regions, he or she has to use effective connectivity. Hap-
pily, there is a relatively straightforward way of doing this for
fMRI that is less complicated than comparing correlations.

Psychophysiological interactions

Assume that we wanted to test the hypothesis that fronto-
temporal coupling differed significantly between two groups
of subjects. Given the above arguments, we would compare
models of effective connectivity that did and did not allow
for a change. One of the most basic model comparisons that
can be implemented using standard linear convolution mod-
els for fMRI is the test for a psychophysiological interaction.
In this comparison, one tests for interactions between a phys-
iological variable and a psychological variable or experimen-
tal factor. This interaction is generally interpreted in terms of
an experimentally mediated change in (linear) effective con-
nectivity between the area expressing a significant interaction
and the seed or reference region from which the physiological

variable was harvested. At the between-subject or group
level, this reduces to a group difference between the regres-
sion coefficient that is obtained from regressing the activity
at any point in the brain on the activity of the seed region
[see Kasahara et al. (2010) for a nice application]. It is this re-
gression coefficient that can be associated with effective con-
nectivity (i.e., change in activity per unit change in the seed
region). To test the null hypothesis that there is no group dif-
ference in coupling, one simply performs a two sample t-test
on the regression coefficients. The results of this whole-brain
analysis can be treated in the usual way to identify those re-
gions whose effective connectivity with the reference region
differs significantly.

Note that this is very similar to a comparison of correla-
tions with a seed region. The crucial difference is that the
summary statistic (summarizing the connectivity) reports ef-
fective connectivity, not functional connectivity. This means
that it is not confounded by differences in signal or noise,
and (under the simple assumptions of a psychophysiological
interaction model) can be interpreted as a change in coupling.
It should be said that there are many qualifications to the
use of these simple linear models of effective connectivity
(because they belong to the class of structural equation or re-
gression models; Friston et al., 1997). However, psychophys-
iologic interactions are simple, intuitive, and (mildly)
principled. Further, because the fluctuations in the physiolog-
ical measure are typically slow in resting-state studies, the
usual caveats of hemodynamic convolution can be ignored.

FIG. 4. Citation rates pertaining to effective connectivity
analyses. Citations per year searching for Dynamic causal
mode[l]ling and fMRI, structural equation mode[l]ling
and fMRI and Granger causality and fMRI (under Topic =
Neurosciences). These profiles reflect the accelerating use
of modern time-series analyses to characterize effective
connectivity. DCM, dynamic causal modeling; SEM, struc-
tural equation modeling; GC, Granger causality; fMRI,
functional magnetic resonance imaging. Source: ISI Web
of Knowledge.
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Summary

This section has tried to place different analyses of connec-
tivity in relation to each other. The most prevalent approaches
to effective connectivity analysis are DCM, structural equation
modeling, and Granger causality. All have enjoyed a rapid up-
take over the past decade (see Fig. 4). This didactic (and polem-
ic) treatment has highlighted some of the implicit and
implausible assumptions made when applying structural
equation modeling and Granger causality to fMRI time series.
I personally find the recent upsurge of Granger causality in
fMRI worrisome, and it is difficult to know what to do when
asked to review these articles. In practice, I generally just ask
authors to qualify their conclusions by listing the assumptions
that underlie their analysis. On the one hand, it is important
that people are not discouraged from advancing and applying
classical time series analyses to fMRI. On the other hand, the
persistent use of models and procedures that are not fit for pur-
pose may confound scientific progress in the long term. Per-
haps, having written this, people will exclude me from
reviewing their articles on Granger causality and I will no lon-
ger have to worry about these things. On a more constructive
note, casting Granger causality as a time-finessed measure of
functional connectivity may highlight its potentially useful
role in identifying distributed networks for subsequent analy-
ses of effective connectivity.

In summary, we have considered some of the practical is-
sues that attend the analysis of functional and effective con-
nectivity and have exposed the assumptions on which
different approaches are based. We have seen that there is a
complicated relationship between functional connectivity
and the underlying effective connectivity. We have touched
on the difficulties of interpreting differences in correlations
and have described one simple solution. In the remainder
of this review, we will focus on generative models of distrib-
uted brain responses and consider some of the exciting devel-
opments in this field.

Modeling Distributed Neuronal Systems

This section considers the modeling of distributed dynam-
ics in more general terms. Biophysical models of neuronal dy-
namics are usually used for one of two things: either to
understand the emergent properties of neuronal systems or
as observation models for measured neuronal responses.
We discuss examples of both. In terms of emergent behaviors,
we will consider dynamics on structure (Bressler and Tognoli,
2006; Buice and Cowan, 2009; Coombes and Doole, 1996;
Freeman, 1994, 2005; Kriener et al., 2008; Robinson et al.,
1997; Rubinov et al., 2009; Tsuda, 2001) and how this behav-
ior has been applied to characterizing autonomous or endog-
enous fluctuations in fMRI (e.g., Deco et al., 2009, 2011; Ghosh
et al., 2008; Honey et al., 2007, 2009). We will then consider
causal models that are used to explain empirical observations.
This section concludes with recent advances in DCM of di-
rected neuronal interactions that support endogenous fluctu-
ations. The first half of this section is based on Friston and
Dolan (2010), to which readers are referred for more detail.

Modeling autonomous dynamics

There has been a recent upsurge in studies of fMRI signal
correlations observed while the brain is at rest (Biswal et al.,

1995). These patterns reflect anatomical connectivity (Greicius
et al., 2009; Pawela et al., 2008) and can be characterized in
terms of remarkably reproducible spatial modes (resting-
state or intrinsic networks). One of these modes recapitulates
the pattern of deactivations observed across a range of activa-
tion studies (the default mode; Raichle et al., 2001). These stud-
ies show that even at rest endogenous brain activity is self-
organizing and highly structured. There are many questions
about the genesis of autonomous dynamics and the structures
that support them. Some of the more interesting come from
computational anatomy and neuroscience. The emerging pic-
ture is that endogenous fluctuations are a consequence of dy-
namics on anatomical connectivity structures with particular
scale-invariant and small-world characteristics (Achard et al.,
2006; Bassett et al., 2006; Deco et al., 2009; Honey et al.,
2007). These are well-studied and universal characteristics of
complex systems and suggest that we may be able to under-
stand the brain in terms of universal phenomena (Sporns,
2010). For example, Buice and Cowan (2009) model neocortical
dynamics using field-theoretic methods (from nonequilibrium
statistical processes) to describe both neural fluctuations and
responses to stimuli. In their models, the density and extent
of lateral cortical interactions induce a region of state space,
in which the effects of fluctuations are negligible. However,
as the generation and decay of neuronal activity comes into
balance, there is a transition into a regime of critical fluctua-
tions. These models suggest that the scaling laws found in
many measurements of neocortical activity are consistent
with the existence of phase-transitions at a critical point.
They also speak to larger questions about how the brain main-
tains itself near phase-transitions (i.e., self-organized criticality
and gain control; Abbott et al., 1997; Kitzbichler et al., 2009).
This is an important issue because systems near phase-transi-
tions show universal phenomena ( Jirsa et al., 1994; Jirsa and
Haken, 1996; Jirsa and Kelso, 2000; Tognoli and Kelso, 2009;
Tschacher and Haken, 2007). Although many people argue
for criticality and power law effects in large-scale cortical activ-
ity (e.g., Freyer et al., 2009; Kitzbichler et al., 2009; Linkenkaer-
Hansen et al., 2001; Stam and de Bruin, 2004), other people do
not (Bedard et al., 2006; Miller et al., 2007; Touboul and Des-
texhe, 2009). It may be that slow (electrophysiological) frequen-
cies contain critical oscillations, whereas high-frequency
coherent oscillations may reflect other dynamical processes.
In summary, endogenous fluctuations may be one way in
which anatomy is expressed through dynamics. They also
pose interesting questions about how fluctuations shape
evoked responses (e.g., Hesselmann et al., 2008) and vice
versa (e.g., Bianciardi et al., 2009).

Dynamical approaches to understanding phenomena in
neuroimaging data focus on emergent behaviors and the con-
straints under which brain-like behaviors manifest (e.g.,
Breakspear and Stam, 2005; Alstott et al., 2009). In the remain-
der of this section, we turn to models that try to explain ob-
served neuronal activity directly. This rests on model fitting
or inversion. Model inversion is important. To date, most ef-
forts in computational neuroscience have focused on genera-
tive models of neuronal dynamics (which define a mapping
from causes to neuronal dynamics). The inversion of these
models (the mapping from neuronal dynamics to their
causes) now allows one to test different models against em-
pirical data. This is best exemplified by model selection as dis-
cussed in the previous section. In what follows, we will
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consider two key classes of probabilistic generative models—
namely, structural and dynamic causal models.

Structural causal modeling

As noted by Valdés-Sosa et al. (2011), ‘‘despite philosoph-
ical disagreements about the study of causality, there seems
to be a consensus that causal modeling is a legitimate statisti-
cal enterprise.’’ One can differentiate two streams of statistical
causal modeling: one based on Bayesian dependency graphs
or graphical models called structural causal modeling (White
and Lu, 2010), and the other based on causal influences over
time, which we will consider under DCM (see Fig. 5).

Graphical models and Bayesian networks. Structural
causal modeling originated with structural equation model-
ing (Wright, 1921) and uses graphical models (Bayesian de-
pendency graphs or Bayes nets) in which direct causal links
are encoded by directed edges (Lauritzen, 1996; Pearl, 2000;
Spirtes et al., 2000). Model comparison procedures are then
used to discover the best model (graph) given some data.
However, there may be many models with the same evi-
dence. In this case, the search produces an equivalence class
of models with the same explanatory power. This degeneracy
has been highlighted by Ramsey et al. (2010) in the setting of
effective connectivity analysis.

An essential part of network discovery in structural causal
modeling is the concept of intervention—namely, eliminating
connections in the graph and setting certain nodes to given
values. The causal calculus based on graphical models has
some important connections to the distinction between func-
tional and effective connectivity and provides an elegant
framework within which one can deal with interventions.
However, it is limited in two respects. First, it is restricted
to discovering conditional independencies in directed acyclic
graphs (DAG). This is problematic because the brain is a di-
rected cyclic graph. Every brain region is connected recipro-
cally (at least polysynaptically), and every computational
theory of brain function rests on some form of reciprocal or
reentrant message passing. Second, the calculus ignores

time. Pearl argues that a causal model should rest on func-
tional relationships between variables. However, these func-
tional relationships cannot deal with (cyclic) feedback loops
(as in Fig. 3). In fact, DCM was invented to address these lim-
itations. Pearl (2000) argues in favor of dynamic causal mod-
els when attempting to identify hysteresis effects, where
causal influences depend on the history of the system. Inter-
estingly, the DAG restriction can be finessed by considering
dynamics and temporal precedence within structural causal
modeling. This is because the arrow of time can be used to
convert a directed cyclic graph into an acyclic graph when
the nodes are deployed over successive time points. This
leads to structural equation modeling with time-lagged data
and related autoregression models, such as those employed
by Granger causality. As established in the previous section,
these can be regarded as discrete time formulations of dy-
namic causal models in continuous time.

Dynamic causal modeling

DCM refers to the (Bayesian) inversion and comparison of
dynamic models that cause observed data. These models can
be regarded as state-space models expressed as (ordinary,
stochastic, or random) differential equations that govern the
motion of hidden neurophysiological states. Usually, these
models are also equipped with an observer function that
maps from hidden states to observed signals [see Equation
(1)]. The basic idea behind DCM is to formulate one or
more models of how data are caused in terms of a network
of distributed sources. These sources talk to each other
through parameterized connections and influence the dy-
namics of hidden states that are intrinsic to each source.
Model inversion provides estimates of their parameters
(such as extrinsic connection strengths and intrinsic or synap-
tic parameters) and the model evidence.

DCM was originally introduced for fMRI using a simple
state-space model based on a bilinear approximation to the
underlying equations of motion that couple neuronal
states in different brain regions (Friston et al., 2003). Impor-
tantly, these DCMs are generalizations of the conventional

FIG. 5. Structural and
dynamic causal modeling.
Schematic highlighting the
distinctions between struc-
tural and dynamic causal
modeling; these are closely
related to the distinction
between functional effective
connectivity, in the sense that
structural equation modeling
is concerned principally with
conditional dependencies in-
duced by static nonlinear
mappings. Conversely, DCM
is based explicitly on differ-
ential equations that embody
causality in a control theory
or intuitive sense. DAG, di-
rected a cyclic graph; DCM,
dynamic causal model or di-
rected cyclic model.
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convolution model used to analyze fMRI data. The only dif-
ference is that one allows for hidden neuronal states in one
part of the brain to be influenced by neuronal states else-
where. In this sense, they are biophysically informed multi-
variate analyses of distributed brain responses.

Most DCMs consider point sources for fMRI,
magnetoencephalography (MEG) and electroencephalography
(EEG) data (c.f., equivalent current dipoles) and are formally
equivalent to the graphical models used in structural causal
modeling. However, in DCM, they are used as explicit gener-

ative models of observed responses. Inference on the coupling
within and between nodes (brain regions) is generally based on
perturbing the system and trying to explain the observed re-
sponses by inverting the model. This inversion furnishes poste-
rior or conditional probability distributions over unknown
parameters (e.g., effective connectivity) and the model evi-
dence for model comparison (Penny et al., 2004). The power
of Bayesian model comparison, in the context of DCM, has be-
come increasingly evident. This now represents one of the
most important applications of DCM and allows different

FIG. 6. DCM of electromagnetic responses. Neuronally plausible, generative, or forward models are essential for under-
standing how ERFs and ERPs are generated. DCMs for event-related responses measured with (magneto) electroencephalog-
raphy use biologically informed models to make inferences about the underlying neuronal networks generating responses. The
approach can be regarded as a neurobiologically constrained source reconstruction scheme, in which the parameters of the
reconstruction have an explicit neuronal interpretation. Specifically, these parameters encode, among other things, the cou-
pling among sources and how that coupling depends on stimulus attributes or experimental context. The basic idea is to sup-
plement conventional electromagnetic forward models of how sources are expressed in measurement space with a model of
how source activity is generated by neuronal dynamics. A single inversion of this extended forward model enables inference
about both the spatial deployment of sources and the underlying neuronal architecture generating them. Left panel: This sche-
matic shows a few (three) sources that are coupled with extrinsic connections. Each source is modeled with three subpopula-
tions (pyramidal, spiny-stellate, and inhibitory interneurons). These have been assigned to granular and agranular cortical
layers, which receive forward and backward connections, respectively. Right panel: Single-source model with a layered archi-
tecture comprising three neuronal subpopulations, each with hidden states describing voltage and conductances for each sub-
population. These neuronal state-equations are based on a Jansen and Rit (1995) model and can include random fluctuations on
the neuronal states. The effects of these fluctuations can then be modeled in terms of the dynamics of the ensuing probability
distribution over the states of a population; this is known as a mean-field model (Marreiros et al., 2009). ERFs, event-related
fields; ERPs, event-related potentials.
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hypotheses to be tested, where each DCM corresponds to a
specific hypothesis about functional brain architectures (e.g.,
Acs and Greenlee, 2008; Allen et al., 2008; Grol et al., 2007;
Heim et al., 2009; Smith et al., 2006; Stephan et al., 2007; Sum-
merfield and Koechlin, 2008). Although DCM is probably best
known through its application to fMRI, more recent applica-
tions have focused on neurobiologically plausible models of
electrophysiological dynamics. Further, different data features
(e.g., event-related potentials [ERPs] or induced responses)
can be modeled with the same DCM. Figures 6–8 illustrate
some key developments in DCM. I will briefly review these
developments and then showcase them thematically by focus-
ing on forward and backward connections among hierarchical
cortical areas.

Neural-mass models. More recent efforts have focused
on DCMs for electromagnetic (EEG and MEG) data (Chen
et al., 2008; Clearwater et al., 2008; David et al., 2006; Garrido
et al., 2007a,b, 2008; Kiebel et al., 2006, 2007), with related de-
velopments to cover local field potential recordings (Moran
et al., 2007, 2008). These models are more sophisticated than
the neuronal models for fMRI and are based on neural-
mass or mean-field models of interacting neuronal
populations (see Deco et al., 2008). Typically, each source of
electromagnetic activity is modeled as an equivalent current
dipole (or small cortical patch) whose activity reflects the de-
polarization of three populations (usually one inhibitory and
two excitatory). Importantly, one can embed any neural-
mass model into DCM. These can include models based on

FIG. 7. Forward and backward connections (a DCM study of evoked responses). Electrophysiological responses to stimuli
unfold over several hundred milliseconds. Early or exogenous components are thought to reflect a perturbation of neuronal
dynamics by (bottom-up) sensory inputs. Conversely, later endogenous components have been ascribed to (top-down) recur-
rent dynamics among hierarchical cortical levels. This example shows that late components of event-related responses are in-
deed mediated by backward connections. The evidence is furnished by DCM of auditory responses, elicited in an oddball
paradigm using electroencephalography. Left (model specification and data): The upper graph shows the ERP responses to
a deviant tone, from 0 to 400 ms of peristimulus time (averaged over subjects). Sources comprising the DCM were connected
with forward (solid) and backward (broken) connections as shown on the lower left. A1, primary auditory cortex; STG, supe-
rior temporal gyrus; IFG, inferior temporal gyrus. Two different models were tested, with and without backward connections
(FB and F, respectively). Bayesian model comparison indicated that the best model had forward and backward connections.
Sources (estimated posterior moments and locations of equivalent dipoles under the best model) are superimposed on an MRI
of a standard brain in MNI space (upper left). Right (hidden neuronal responses): Estimates of hidden states (depolarization in
A1 and STG) are shown in the right panels. Dotted lines show the responses of the (excitatory) input population (assigned to
the granular layer of cortex), and solid lines show the responses of the (excitatory) output population (assigned to pyramidal
cells) (see Fig. 6). One can see a clear difference in responses to standard (blue lines) and deviant (red lines) stimuli, particularly
at around 200–300 ms. The graphs on the left show the predicted responses under the full (FB) model, while the right graphs
show the equivalent responses after backward connections are removed (B).
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second-order linear differential equations ( Jansen and Rit,
1995; Lopes da Silva et al., 1974). Figure 6 shows the general
form for these models. As in fMRI, DCM for electromagnetic
responses is just a generalization of conventional (equivalent
current dipole) models that have been endowed with param-
eterized connections among and within sources (David et al.,
2006). These models fall into the class of spatiotemporal di-
pole models (Scherg and Von Cramon, 1985) and enable the
entire time-series over peristimulus time to inform parameter
estimates and model evidence. The construct validity of these
models calls on established electrophysiological phenomena
and metrics of coupling (e.g., David and Friston, 2003;
David et al., 2004). Their predictive validity has been estab-
lished using paradigms like the mismatch negativity (Näätä-
nen, 2003) as an exemplar sensory learning paradigm (e.g.,
Garrido et al., 2007b, 2008).

Developments in this area have been rapid and can be
summarized along two lines. First, people have explored
more realistic neural-mass models based on nonlinear differ-
ential equations whose states correspond to voltages and con-
ductances (Morris and Lecar, 1981). This allows one to
formulate DCMs in terms of well-characterized synaptic dy-
namics and to model different types of receptor-mediated cur-
rents explicitly. Further, conventional neural-mass modeling
(which considers only the average state of a neuronal ensem-
ble) has been extended to cover ensemble dynamics in terms of
population densities. This involves modeling not only the av-
erage but also the dispersion or covariance among the states of
different populations (Marreiros et al., 2009). The second line
of development pertains to the particular data features the
models try to explain. In conventional DCMs for ERPs, the
time course of signals at the sensors is modeled explicitly.

FIG. 8. Forward and backward connections (a DCM study of induced responses). This example provides evidence for func-
tional asymmetries between forward and backward connections that define hierarchical architectures in the brain. It exploits
the fact that modulatory or nonlinear influences of one neuronal system on another (i.e., effective connectivity) entail coupling
between different frequencies. Functional asymmetry is addressed here by comparing dynamic causal models of MEG re-
sponses induced by visual processing of faces. Bayesian model comparison indicated that the best model had nonlinear for-
ward and backward connections. Under this model, there is a striking asymmetry between these connections, in which high
(gamma) frequencies in lower cortical areas excite low (alpha) frequencies in higher areas, while the reciprocal effect is sup-
pressive. Left panel (upper): Log-evidences (pooled over subjects) for four DCMs with different combinations of linear and
nonlinear (N versus L) coupling in forward and backward (F versus B) connections. It can be seen that the best model is
FNBN, with nonlinear coupling in both forward and backward connections. Left panel (lower): Location of the four sources
(in MNI coordinates) and basic connectivity structure of the models. LV and RV; left and right occipital face area; LF and RF;
left and right fusiform face area. Right panel (upper): SPM of the t-statistic ( p > 0.05 uncorrected) testing for a greater suppres-
sive effect of backward connections, relative to forward connections (over subjects and hemisphere). Right panel (lower): Sub-
ject and hemisphere-specific estimates of the coupling strengths at the maximum of the SPM (red arrow). [See Chen et al. (2009)
for further details.]
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However, DCMs for spectral responses (Moran et al., 2007,
2008) can be applied to continuous recordings of arbitrary
length. This modeling initiative rests on a linear-systems ap-
proach to the underlying neural-mass model to give a pre-
dicted spectral response for unknown but parameterized
fluctuations. This means that given the spectral profile of elec-
trophysiological recordings one can estimate the coupling
among different sources and the spectral energy of neuronal
and observation noise generating observed spectra. This has
proved particularly useful for local field potentials and has
been validated using animal models and psychopharmacolog-
ical constructs (Moran et al., 2008, 2009). Finally, there are
DCMs for induced responses (Chen et al., 2008). Like steady-
state models, these predict the spectral density of responses,
but in a time-dependent fashion. The underlying neural
model here is based on the bilinear approximation above.
The key benefit of these models is that one can quantify the ev-
idence for between-frequency coupling among sources, rela-
tive to homologous models restricted to within-frequency
coupling. Coupling between frequencies corresponds to non-
linear coupling. Being able to detect nonlinear coupling is im-
portant because it speaks to the functional asymmetries
between forward and backward connections.

Forward and backward connections in the brain

To provide a concrete example of how these developments
have been used to build a picture of distributed processing in
the brain, we focus on the role of forward and backward mes-
sage-passing among hierarchically deployed cortical areas
(Felleman and Van Essen, 1991). Many current formulations
of perceptual inference and learning can be cast in terms of min-
imizing prediction error (e.g., Ballard et al., 1983; Dayan et al.,
1995; Mumford, 1992; Murray et al., 2002; Rao and Ballard,
1998) or, more generally, surprise (Friston et al., 2006). The pre-
dictive coding hypothesis{ suggests that prediction errors are
passed forward from lower levels of sensory hierarchies to
higher levels to optimize representations in the brain’s genera-
tive model of its world. Predictions based on these representa-
tions are then passed down backward connections to suppress
or explain away prediction errors. This message-passing
scheme rests on reciprocal or recurrent self-organized dynam-
ics that necessarily involve forward and backward connec-
tions. There are some key predictions that arise from this
scheme. First, top-down influences mediated by backward
connections should have a tangible influence on evoked re-
sponses that are modulated by prior expectations induced by
priming and attention. Second, the excitatory influences of for-
ward (glutamatergic) connections must be balanced by the
(polysynaptic) inhibitory influence of backward connections;
this completes the feedback loop suppressing prediction
error. Third, backward connections should involve nonlinear
or modulatory effects because it is these, and only these, that
model nonlinearities in the world that generate sensory input.

These functionally grounded attributes of forward and
backward connections, and their asymmetries, are the sorts
of things for which DCM was designed to test. A fairly com-

prehensive picture is now emerging from DCM studies using
several modalities and paradigms: Initial studies focused on
attentional modulation in visual processing. These studies
confirmed that the attentional modulation of visually evoked
responses throughout the visual hierarchy could be
accounted for by changes in the strength of connections medi-
ated by attentional set (Friston et al., 2003). In other words, no
extra input was required to explain attention-related re-
sponses; these were explained sufficiently by recurrent dy-
namics among reciprocally connected areas whose influence
on each other increased during attentive states.

More recently, the temporal anatomy of forward and back-
ward influences has been addressed using DCM for ERPs. Gar-
rido et al. (2007a) used Bayesian model comparison to show that
the evidence for backward connections was more pronounced
in later components of ERPs. Put another way, backward con-
nections are necessary to explain late or endogenous response
components in simple auditory ERPs. Garrido et al. (2008)
then went on to ask whether one could understand repetition
suppression in terms of changes in forward and backward con-
nection strengths that are entailed by predictive coding. DCM
showed that repetition suppression, of the sort that might un-
derlie the mismatch negativity (Näätänen, 2003), could be
explained purely in terms of a change in forward and backward
connections with repeated exposure to a particular stimulus.
Further, by using functional forms for the repetition-dependent
changes in coupling strength, Garrido et al. (2009) showed that
changes in extrinsic (cortico-cortical) coupling were formally
distinct from intrinsic (within area) coupling. This was consis-
tent with theoretical predictions about changes in postsynaptic
gain with surprise and distinct changes in synaptic efficacy as-
sociated with learning under predictive coding.

Figure 7 shows an exemplar analysis using the data
reported in Garrido et al. (2008). Data were acquired under
a mismatch negativity paradigm using standard and deviant
stimuli. ERPs for deviant stimuli are shown as an insert.
These data were modeled with a series of equivalent current
dipoles (upper left), with connectivity structures shown on
the lower left. The architecture with backward (reciprocal)
connections among auditory sources had the greatest evi-
dence. The ensuing estimates of hidden states (depolarization
in the auditory and superior temporal sources) are shown in
the right panels. Dotted lines show the responses of the (excit-
atory) input population (assigned to the granular layer of cor-
tex), and solid lines show the responses of the (excitatory)
output population (assigned to pyramidal cells). One can
see a clear difference in responses to standard (blue lines)
and deviant (red lines) stimuli, particularly at around 200–
300 ms. These differences were modeled in terms of
stimulus-specific changes in coupling that can be thought of
as mediating sensory learning. The key point illustrated by
this figure lies in the rightmost panels. Because analyses of
effective connectivity are based on an explicit generative
model, one can reconstitute or generate predictions of hidden
states (in this example, the activity of hidden dipolar sources
on the cortex). Further, one can perform simulated lesion ex-
periments to see what would happen if particular components
of the network were removed. This enables one to quantify the
contribution of specific connections to regional responses. In
Figure 7, we have removed all backward connections, while
leaving forward connections unchanged. The resulting re-
sponses are shown in the right panels. One obvious effect is

{Predictive coding refers to an estimation or inference scheme
(developed originally in engineering) that has become a popular
metaphor for neuronal inference and message-passing in the brain.
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that there is now no difference between the responses to stan-
dard and deviant stimuli in the primary auditory source. This
is because the effects of repetition were restricted to extrinsic
connections among sources, and (in the absence of backward
connections) these effects cannot be expressed in the sensory
source receiving auditory input. More importantly, in the su-
perior temporal source, the late deviant event-related compo-
nent has now disappeared. It is this component that is
usually associated with the mismatch negativity, which sug-
gests that the mismatch negativity per se rests, at least in
part, on backward extrinsic connections. This example is pre-
sented to illustrate the potential usefulness of biologically
grounded generative models to explain empirical data.

Finally, Chen et al. (2009) addressed functional asymme-
tries in forward and backward connections during face
perception, using DCM for induced responses. These asym-
metries were expressed in terms of nonlinear or cross-
frequency coupling, where high frequencies in a lower area
excited low frequencies in a higher area and the reciprocal in-
fluences where inhibitory (see Fig. 8). These results may be re-
lated to the differential expression of gamma activity in
superficial and deep pyramidal cells that are the origin of for-
ward and backward connections, respectively (see Chrobak
and Buzsaki, 1998; Fries, 2009; Roopun et al., 2008; Wang
et al., 2010). The emerging story here is that forward connec-
tions may employ predominantly fast (gamma) frequencies,
while backward influences may be meditated by slower
(beta) activity.

In conclusion, we have come some way in terms of under-
standing the functional anatomy of forward and backward
connections in the brain. Interestingly, some of the more com-
pelling insights have been obtained by using biophysical
models with simple paradigms (like the mismatch negativity)
and simple noninvasive techniques (like EEG). All of the ex-
amples so far have used evoked or induced responses to
make inferences about distributed processing. Can we
apply DCM to autonomous or endogenous activity and still
find evidence for structured hierarchical processing?

Network discovery

DCM is usually portrayed as a hypothesis-led approach to
understanding distributed neuronal architectures underlying
observed brain responses (Friston et al., 2003). In general,
competing hypotheses are framed in terms of different net-
works or graphs, and Bayesian model selection is used to
quantify the evidence for one network (hypothesis) over an-
other (Penny et al., 2004). However, in recent years, the num-
ber of models over which people search (the model-space) has
grown enormously—to the extent that DCM is now used to
discover the best model over very large model-spaces (e.g.,
Penny et al., 2010; Stephan et al., 2009). Using DCMs based
on random differential equations, it is now possible to take
this discovery theme one step further and disregard prior
knowledge about the experimental causes of observed re-
sponses to make DCM entirely data-led. This enables net-
work discovery using observed responses during both
activation studies and (task-free) studies of endogenous activ-
ity (Biswal et al., 1995).

This form of network discovery uses Bayesian model se-
lection to identify the sparsity structure (absence of edges
or connections) in a dependency graph that best explains

observed time-series (Friston et al., 2010). The implicit adja-
cency matrix specifies the form of the network (e.g., cyclic
or acyclic) and its graph-theoretical attributes (e.g., degree
distribution). Crucially, this approach can be applied to ex-
perimentally evoked responses (activation studies) or en-
dogenous activity in task-free (resting-state) fMRI studies.
Unlike structural causal modeling, DCM permits searches
over cyclic graphs. Further, it eschews (implausible) Mar-
kovian assumptions about the serial independence of ran-
dom fluctuations. The scheme furnishes a network
description of distributed activity in the brain that is opti-
mal in the sense of having the greatest conditional probabil-
ity (relative to other networks).

To illustrate this approach, Figure 9 shows an example of
network discovery following a search over all sparsity struc-
tures (combinations of connections), under the constraint that
all connections were reciprocal (albeit directional), among six
nodes or regions. This example used DCM for fMRI and an
attention-to-motion paradigm [see Friston et al. (2010) for de-
tails]. Six representative regions were defined as clusters of
contiguous voxels surviving an (omnibus) F-test for all effects
of interest at p < 0.001 (uncorrected) in a conventional statisti-
cal parametric mapping (SPM) analysis. These regions were
chosen to cover a distributed network (of largely association
cortex) in the right hemisphere, from visual cortex to frontal
eye fields. The activity of each region (node) was summarized
with its principal eigenvariate to ensure an optimum weight-
ing of contributions from each voxel within the region of in-
terest. Figure 9 summarizes the results of post hoc model
selection. The upper left panel shows the log-evidence profile
over the 32,768 models considered (reflecting all possible
combinations of bidirectional edges among the six nodes an-
alyzed). There is a reasonably clear optimum model. This is
evident if we plot the implicit log-posterior as a model poste-
rior (assuming flat priors over models), as shown in the upper
right panel. In this case, we can be over 80% certain that a spe-
cific network generated the observed fMRI data. Parameter
estimates of the connections under a model with full connec-
tivity (left) and the selected model (right) are shown in the
lower panels. One can see that three (bidirectional) connec-
tions have been ‘‘switched off.’’ It is these antiedges that de-
fine the architecture we seek. This is a surprisingly dense
network, in which all but 3 of the 15 reciprocal connections
appear to be necessary to explain observed responses. This
dense connectivity may reflect the fact that, in this example,
we deliberately chose regions that play an integrative (associ-
ational) role in cortical processing (c.f., hubs in graph theory;
Bullmore and Sporns, 2009).

Figure 10 shows the underlying graph in anatomical and
functional (spectral embedding) space. Note that these plots
refer to undirected graphs (we will look at directed connec-
tion strengths below). The upper panel shows how the six re-
gions are connected using the conditional means of the
coupling parameters (in Fig. 9), under the selected (optimal)
model. Arrow colors report the source of the strongest bidi-
rectional connection, while arrow width represents absolute
(positive or negative) strength. This provides a description
of the network in anatomical space. A more functionally intu-
itive depiction of this graph is provided in the lower panel.
Here, we have used spectral embedding to place the nodes
in a functional space where the distance between them re-
flects the strength of bidirectional coupling (this is similar to
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multidimensional scaling, but uses the graph Laplacian based
on the weighted adjacency matrix to define similarities). We
conclude by revisiting the issue of forward and backward
connections, but here using effective connectivity based on
fMRI.

Asymmetric connections and hierarchies. Network ana-
lyses using functional connectivity (correlations among ob-
served neuronal time series) or diffusion-weighted MRI
data cannot ask whether a connection is larger in one direc-
tion relative to another because they are restricted to the anal-
ysis of undirected (simple) graphs. However, here we have
the unique opportunity to exploit asymmetries in reciprocal
connections and revisit questions about hierarchical organi-
zation (e.g., Capalbo et al., 2008; Hilgetag et al., 2000; Lee
and Mumford, 2003; Reid et al., 2009). There are several
strands of empirical and theoretical evidence to suggest that
in comparison to bottom-up influences the net effects of
top-down connections on their targets are inhibitory (e.g.,
by recruitment of local lateral connections; c.f., Angelucci
et al., 2003; Crick and Koch, 1998). Theoretically, this is con-
sistent with predictive coding, where top-down predictions
suppress prediction errors in lower levels of a hierarchy
(see above). One might, therefore, ask which hierarchical or-
dering of the nodes maximizes the average strength of for-
ward connections relative to their backward homologue.
This can be addressed by finding the order of nodes that max-
imizes the difference between the average forward and back-

ward estimates of effective connectivity. The resulting order
was vis, sts, pfc, ppc, ag, and fef (see Fig. 10), which is not
dissimilar to the vertical deployment of the nodes in func-
tional embedding space (lower panel). The middle panel of
Figure 10 shows the asymmetry indices for each connection
based on the conditional estimates of the selected model.
This is a pleasing result because it places the visual cortex
at the bottom of the hierarchy and the frontal eye fields at
the top, which we would expect from their functional anat-
omy. Note that there was no bias in the model or its specifi-
cation toward this result. Further, we did not use any
experimental factors in specifying the model, and yet the
data tell us that a plausible hierarchy is the best explanation
for observed fluctuations in brain activity (c.f., Müller-
Linow et al., 2008).

Summary

In summary, DCM calls on biophysical models of neuronal
dynamics by treating them as generative models for empirical
time series. The ensuing inferences pertain to the models per
se and their parameters (e.g., effective connectivity) that gen-
erate observed responses. Using model comparison, one can
search over wide model-spaces to find optimal architectures
or networks. Having selected the best model (or subset of
models), one then has access to the posterior density on the
neuronal and coupling parameters defining the network.
Of key interest here are changes in coupling that are induced
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FIG. 9. Model selection and
network discovery. This figure
summarizes the results of model
selection using fMRI data. The
upper left panel shows the log-
evidence profile over all models
considered (encoding different
combinations of edges among six
nodes). The implicit model poste-
rior (assuming flat priors over
models) is shown on the upper
right and suggests we can be over
80% certain that a particular ar-
chitecture generated these data.
The parameter estimates of the
connections under a model with
full connectivity (left) and the
model selected (right) are shown
in the lower panels. We can see
that certain connections have been
switched off as the parameter es-
timates are reduced to their prior
value of zero. It is these antiedges
that define the architecture we are
seeking. This architecture is
shown graphically in Figure 10.
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experimentally with, for example, drugs, attentional set, or
time. These experimentally induced changes enable one to
characterize the context-sensitive reconfiguration of brain
networks and test hypotheses about the relative influence of
different connections. Recent advances in causal modeling
based on random differential equations (Friston et al., 2008)
can now accommodate hidden fluctuations in neuronal states
that enable the modeling of autonomous or endogenous brain
dynamics. Coupled with advances in post hoc model selection,
we can now search over vast model-spaces to discover the
most likely networks generating both evoked and spontane-
ous activity. Clearly, there are still many unresolved issues
in DCM.

In a discovery context, the specification of the model space
is a key issue. In other words, how many and which nodes
do we consider? In general, prior beliefs about plausible
and implausible architectures determine that space. Usually,
these beliefs are implicit in the models considered, which are

usually assumed to be a priori equally likely. It should be
noted that the posterior probability of a model depends not
just on its evidence but on its prior probability. This can be
specified quantitatively to moderate the evidence for unlikely
models. At present, most DCM considers a rather limited
number of nodes or sources (usually up to about eight). A fu-
ture challenge will be to scale up the size of the networks con-
sidered and possibly consider coupling not between regions
but between distributed patterns or modes (e.g., Daunizeau
et al., 2009).

Conclusion

This review has used a series of (nested) dichotomies to
help organize thinking about connectivity in the brain. It
started with the distinction between functional segregation
and integration. Within functional integration, we considered
the key distinction between functional and effective connec-
tivity and their relationship to underlying models of distrib-
uted processing. Within effective connectivity, we have
looked at structural and dynamic causal modeling, while fi-
nally highlighting the distinction between DCM of evoked
(induced) responses and autonomous (endogenous) activity.

Clearly, in stepping through these dichotomies, this review
has taken a particular path—from functional integration to
network discovery with DCM. This has necessarily precluded
a proper treatment of many exciting developments in brain
connectivity, particularly the use of functional connectivity
in resting-state studies to compare cohorts or psychopharma-
cological manipulations (e.g., Pawela et al., 2008). I am also
aware of omitting a full treatment of structure-
function relationships in the brain and the potential role of
tractography and other approaches to anatomical connectiv-
ity. I apologize for this; I have focused on the issues that I

FIG. 10. The selected graph (network) in anatomical space
and functional space. This figure shows the graph selected
(using the posterior probabilities in the previous figure) in an-
atomical and functional (spectral embedding) space. The
upper panel shows the six regions connected, using the con-
ditional means of the coupling parameters (see Fig. 9). The
color of the arrow reports the source of the strongest bidirec-
tional connection, while its width represents its absolute (pos-
itive or negative) strength. This provides a description of the
architecture or graph in anatomical space. A more function-
ally intuitive depiction of this graph is provided in the
lower panel. Here, we have used spectral embedding to
place the nodes in a functional space, where the distance be-
tween them reflects the strength of bidirectional coupling.
Spectral embedding uses the eigenvectors (principal compo-
nents) of the weighted graph Laplacian to define a small
number of dimensions that best captures the proximity or
conditional dependence between nodes. Here, we have
used the first three eigenvectors to define this functional
space. The weighted adjacency matrix was, in this case, sim-
ply the maximum (absolute) conditional estimate of the cou-
pling parameters. The middle panel shows the asymmetry in
strengths based on conditional estimates. This provides a fur-
ther way of characterizing the functional architecture in hier-
archical terms, based on (bidirectional) coupling. vis, visual
cortex; sts, superior temporal sulcus; pfc, prefrontal cortex;
ppc, posterior parietal cortex; ag, angular gyrus; fef, frontal
eye fields.
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am familiar with and believe hold the key to a mechanistic ap-
plication of connectivity analyses in systems neuroscience. I
also apologize if you have been pursuing Granger causality
or the comparison of correlations with gay abandon. I have
been deliberately contrived in framing some of the conceptual
issues to provoke a discussion. I may be wrong about these
issues, although I do not usually make mistakes. Having
said this, I did make a naive mistake in my first article on
functional connectivity (Friston et al., 1993), which no one
has subsequently pointed out (perhaps out of kindness). A
substantial part of Friston et al. (1993) was devoted to the
problem of identifying the eigenvectors of very large (voxel ·
voxel) matrices, using a recursive (self-calling) algorithm.
This was misguided and completely redundant because
these eigenvectors can be accessed easily using singular
value decomposition of the original (voxel · time) data ma-
trix. I am grateful to Fred Brookstein for pointing this out
after seeing me present the original idea. I tell this story to re-
mind myself that every journey of discovery has to begin
somewhere, and there is so much to learn (individually and
collectively). Given the trends in publications on brain con-
nectivity (Fig. 1), one might guess that we have now
embarked on a journey; a journey that I am sure is taking
us in the right direction. I would like to conclude by thanking
the editors of Brain Connectivity (Chris and Bharat) for asking
me to write this review and helping shape its content. On be-
half of their readers, I also wish them every success in their
editorial undertaking over the years to come.
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