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Abstract9

Self-supervised models of how the brain represents and categorises the causes of its sensory input can be divided into two classes: those
that minimise the mutual information (i.e. redundancy) among evoked responses and those that minimise the prediction error. Although
these models have similar goals, the way they are attained, and the functional architectures employed, can be fundamentally different. This
review describes the two classes of models and their implications for the functional anatomy of sensory cortical hierarchies in the brain.
We then consider how empirical evidence can be used to disambiguate between architectures that are sufficient for perceptual learning and
synthesis.
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Most models of representational learning require prior assumptions about the distribution of sensory causes. Using the notion of empirical
Bayes, we show that these assumptions are not necessary and that priors can be learned in a hierarchical context. Furthermore, we try to
show that learning can be implemented in a biologically plausible way. The main point made in this review is that backward connections,
mediating internal or generative models of how sensory inputs are caused, are essential if the process generating inputs cannot be inverted.
Because these processes are dynamical in nature, sensory inputs correspond to a non-invertible nonlinear convolution of causes. This
enforces an explicit parameterisation of generative models (i.e. backward connections) to enable approximate recognition and suggests
that feedforward architectures, on their own, are not sufficient. Moreover, nonlinearities in generative models, that induce a dependence
on backward connections, require these connections to be modulatory; so that estimated causes in higher cortical levels can interact to
predict responses in lower levels. This is important in relation to functional asymmetries in forward and backward connections that have
been demonstrated empirically.
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To ascertain whether backward influences are expressed functionally requires measurements of functional integration among brain
systems. This review summarises approaches to integration in terms of effective connectivity and proceeds to address the question posed
by the theoretical considerations above. In short, it will be shown that functional neuroimaging can be used to test for interactions between
bottom–up and top–down inputs to an area. The conclusion of these studies points toward the prevalence of top–down influences and the
plausibility of generative models of sensory brain function.
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1. Introduction29

In concert with the growing interest in contextual and30

extra-classical receptive field effects in electrophysiology31

(i.e. how the receptive fields of sensory neurons change ac-32

cording to the context a stimulus is presented in), a sim-33

ilar paradigm shift is emerging in imaging neuroscience.34

Namely, the appreciation that functional specialisation ex-35

hibits similar extra-classical phenomena in which a cortical36

area may be specialised for one thing in one context but37

something else in another. These extra-classical phenom-38

ena have implications for theoretical ideas about how the39

brain might work. This review uses the relationship among40

theoretical models of representational learning as a vehicle41

to illustrate how imaging can be used to address important42

questions about functional brain architectures.43

We start by reviewing two fundamental principles of44

brain organisation, namelyfunctional specialisationand45

functional integrationand how they rest upon the anatomy46

and physiology of cortico-cortical connections in the brain.47

Section 2deals with the nature and learning of representa-48

tions from a theoretical or computational perspective. This49

section reviewssupervised(e.g. connectionist) approaches,50

information theoreticapproaches and those predicated on51

predictive codingand reprises their heuristics and mo-52

tivation using the framework ofgenerative models. The53

key focus of this section is on the functional architectures54

implied by each model of representational learning. Infor-55

mation theory can, in principle, proceed using only forward56

connections. However, it turns out that this is only possible57

when processes generating sensory inputs are invertible and58

independent. Invertibility is precluded when the cause of a59

percept and the context in which it is engendered interact.60

These interactions create a problem of contextual invariance61

that can only be solved using internal or generative models.62

Contextual invariance is necessary for categorisation of sen-63

sory input (e.g. category-specific responses) and represents64

a fundamental problem in perceptual synthesis. Generative65

models based on predictive coding solve this problem with66

hierarchies of backward and lateral projections that prevail67

in the real brain. In short, generative models of representa-68

tional learning are a natural choice for understanding real69

functional architectures and, critically, confer a necessary70

role on backward connections. 71

Empirical evidence, from electrophysiological studies72

of animals and functional neuroimaging studies of human73

subjects, is presented inSections 3 and 4to illustrate the 74

context-sensitive nature of functional specialisation and75

how its expression depends upon integration among remote76

cortical areas.Section 3 looks at extra-classical effects77

in electrophysiology, in terms of the predictions afforded78

by generative models of brain function. The theme of79
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context-sensitive evoked responses is generalised to a cor-80

tical level and human functional neuroimaging studies in81

the subsequent section. The critical focus of this section is82

evidence for the interaction of bottom–up and top–down83

influences in determining regional brain responses. These84

interactions can be considered signatures of backward con-85

nections. The final section reviews some of the implications86

of the forging sections for lesion studies and neuropsychol-87

ogy. ‘Dynamic diaschisis’, is described, in which aberrant88

neuronal responses can be observed as a consequence of89

damage to distal brain areas providing enabling or mod-90

ulatory afferents. This section uses neuroimaging in neu-91

ropsychological patients and discusses the implications for92

constructs based on the lesion-deficit model.93

2. Functional specialisation and integration94

2.1. Background95

The brain appears to adhere to two fundamental princi-96

ples of functional organisation, functional integration and97

functional specialisation, where the integration within and98

among specialised areas is mediated by effective connectiv-99

ity. The distinction relates to that between ‘localisationism’100

and ‘(dis)connectionism’ that dominated thinking about101

cortical function in the nineteenth century. Since the early102

anatomic theories of Gall, the identification of a particular103

brain region with a specific function has become a central104

theme in neuroscience. However, functional localisation per105

se was not easy to demonstrate: for example, a meeting that106

took place on 4 August 1881, addressed the difficulties of107

attributing function to a cortical area, given the dependence108

of cerebral activity on underlying connections (Phillips109

et al., 1984). This meeting was entitled “Localisation of110

function in the cortex cerebri”. Goltz, although accepting111

the results of electrical stimulation in dog and monkey112

cortex, considered that the excitation method was inconclu-113

sive, in that the behaviours elicited might have originated114

in related pathways, or current could have spread to dis-115

tant centres. In short, the excitation method could not be116

used to infer functional localisation because localisationism117

discounted interactions, or functional integration among118

different brain areas. It was proposed that lesion studies119

could supplement excitation experiments. Ironically, it was120

observations on patients with brain lesions some years later121

(seeAbsher and Benson, 1993) that led to the concept of122

‘disconnection syndromes’ and the refutation of localisa-123

tionism as a complete or sufficient explanation of cortical124

organisation. Functional localisation implies that a function125

can be localised in a cortical area, whereas specialisation126

suggests that a cortical area is specialised for some aspects127

of perceptual or motor processing where thisspecialisation128

can be anatomicallysegregatedwithin the cortex. The cor-129

tical infrastructure supporting a single function may then130

involve many specialised areas whose union is mediated by131

the functional integration among them. Functional special-132

isation and integration are not exclusive, they are comple-133

mentary. Functional specialisation is only meaningful in the134

context of functional integration and vice versa. 135

2.2. Functional specialisation and segregation 136

The functional role, played by any component (e.g. cor-137

tical area, sub-area, neuronal population or neuron) of the138

brain, is defined largely by its connections. Certain pat-139

terns of cortical projections are so common that they could140

amount to rules of cortical connectivity. “These rules re-141

volve around one, apparently, overriding strategy that the142

cerebral cortex uses—that of functional segregation” (Zeki, 143

1990). Functional segregation demands that cells with com-144

mon functional properties be grouped together. This archi-145

tectural constraint in turn necessitates both convergence and146

divergence of cortical connections. Extrinsic connections,147

between cortical regions, are not continuous but occur in148

patches or clusters. This patchiness has, in some instances,149

a clear relationship to functional segregation. For example,150

the secondary visual area V2 has a distinctive cytochrome151

oxidase architecture, consisting of thick stripes, thin stripes152

and inter-stripes. When recordings are made in V2, direc-153

tionally selective (but not wavelength or colour selective)154

cells are found exclusively in the thick stripes. Retrograde155

(i.e. backward) labelling of cells in V5 is limited to these156

thick stripes. All the available physiological evidence sug-157

gests that V5 is a functionally homogeneous area that is spe-158

cialised for visual motion. Evidence of this nature supports159

the notion that patchy connectivity is the anatomical infras-160

tructure that underpins functional segregation and speciali-161

sation. If it is the case that neurons in a given cortical area162

share a common responsiveness (by virtue of their extrinsic163

connectivity) to some sensorimotor or cognitive attribute,164

then this functional segregation is also an anatomical one.165

Challenging a subject with the appropriate sensorimotor at-166

tribute or cognitive process should lead to activity changes167

in, and only in, the areas of interest. This is the model upon168

which the search for regionally specific effects with func-169

tional neuroimaging is based. 170

2.3. The anatomy and physiology of cortico-cortical 171

connections 172

If specialisation rests upon connectivity then important173

organisational principles should be embodied in the neu-174

roanatomy and physiology of extrinsic connections. Extrin-175

sic connections couple different cortical areas whereas in-176

trinsic connections are confined to the cortical sheet. There177

are certain features of cortico-cortical connections that pro-178

vide strong clues about their functional role. In brief, there179

appears to be a hierarchical organisation that rests upon the180

distinction betweenforwardandbackwardconnections. The181

designation of a connection as forward or backward depends182

primarily on its cortical layers of origin and termination.183
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Table 1
Some key characteristics of extrinsic cortico-cortical connections in the brain

Hierarchical organisation
The organisation of the visual cortices can be considered as a hierarchy (Felleman and Van Essen, 1991)
The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections
This distinction rests upon different laminar specificity (Rockland and Pandya, 1979; Salin and Bullier, 1995)
Backward connections are more numerous and transcend more levels
Backward connections are more divergent than forward connections (Zeki and Shipp, 1988)

Forwards connections Backwards connections
Sparse axonal bifurcations Abundant axonal bifurcation
Topographically organised Diffuse topography
Originate in supragranular layers Originate in bilaminar/infragranular layers
Terminate largely in layer VI Terminate predominantly in supragranular layers
Postsynaptic effects through fast AMPA (1.3–2.4 ms decay)

and GABAA (6 ms decay) receptors
Modulatory afferents activate slow (50 ms decay)
voltage-sensitive NMDA receptors

Some characteristics of cortico-cortical connections are pre-184

sented below and are summarised inTable 1. The list is not185

exhaustive, nor properly qualified, but serves to introduce186

some important principles that have emerged from empirical187

studies of visual cortex.188

• Hierarchical organisation189

The organisation of the visual cortices can be consid-190

ered as a hierarchy of cortical levels with reciprocal ex-191

trinsic cortico-cortical connections among the constituent192

cortical areas (Felleman and Van Essen, 1991). The no-193

tion of a hierarchy depends upon a distinction between194

forward and backward extrinsic connections.195

• Forwards and backwards connections—laminar speci-196

ficity197

Forwards connections (from a low to a high level)198

have sparse axonal bifurcations and are topographically199

organised; originating in supragranular layers and termi-200

nating largely in layer VI. Backward connections, on the201

other hand, show abundant axonal bifurcation and a dif-202

fuse topography. Their origins are bilaminar/infragranular203

and they terminate predominantly in supragranular layers204

(Rockland and Pandya, 1979; Salin and Bullier, 1995).205

• Forward connections are driving and backward connec-206

tions are modulatory207

Reversible inactivation (e.g.Sandell and Schiller, 1982;208

Girard and Bullier, 1989) and functional neuroimaging209

(e.g.Büchel and Friston, 1997) studies suggest that for-210

ward connections are driving, whereas backward connec-211

tions can be modulatory. The notion that forward connec-212

tions are concerned with the promulgation and segregation213

of sensory information is consistent with: (i) their sparse214

axonal bifurcation; (ii) patchy axonal terminations; and215

(iii) topographic projections. In contradistinction, back-216

ward connections are generally considered to have a role217

in mediating contextual effects and in the co-ordination218

of processing channels. This is consistent with: (i) their219

frequent bifurcation; (ii) diffuse axonal terminations; and220

(iii) non-topographic projections (Salin and Bullier, 1995;221

Crick and Koch, 1998).222

• Modulatory connections have slow time constants 223

Forward connections meditate their post-synaptic ef-224

fects through fast AMPA (1.3–2.4 ms decay) and GABAA 225

(6 ms decay) receptors. Modulatory afferents activate226

NMDA receptors. NMDA receptors are voltage-sensitive,227

showing nonlinear and slow dynamics (50 ms decay).228

They are found predominantly in supragranular layers229

where backward connections terminate (Salin and Bullier, 230

1995). These slow time-constants again point to a role in231

mediating contextual effects that are more enduring than232

phasic sensory-evoked responses. 233

• Backwards connections are more divergent than forward234

connections 235

Extrinsic connections show an orderly convergence and236

divergence of connections from one cortical level to the237

next. At a macroscopic level, one point in a given cortical238

area will connect to a region 5–8 mm in diameter in an-239

other. An important distinction between forward and back-240

ward connections is that backward connections are more241

divergent. For example, the divergence region of a point242

in V5 (i.e. the region receiving backward afferents from243

V5) may include thick and inter-stripes in V2, whereas244

its convergence region (i.e. the region providing forward245

afferents to V5) is limited to the thick stripes (Zeki and 246

Shipp, 1988). Reciprocal interactions between two levels,247

in conjunction with the divergence of backward connec-248

tions, renders any area sensitive to the vicarious influence249

of other regions at the same hierarchical level even in the250

absence of direct lateral connections. 251

• Backward connections are more numerous and transcend252

more levels 253

Backward connections are more abundant then forward254

connections. For example, the ratio of forward efferent255

connections to backward afferents in the lateral genic-256

ulate is about 1:10/20. Another important distinction is257

that backward connections will traverse a number of hi-258

erarchical levels, whereas forward connections are more259

restricted. For example, there are backward connections260

from TE and TEO to V1 but no monosynaptic connec-261

tions from V1 to TE or TEO (Salin and Bullier, 1995). 262
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In summary, the anatomy and physiology of cortico-263

cortical connections suggest that forward connections are264

driving and commit cells to a pre-specified response given265

the appropriate pattern of inputs. Backward connections, on266

the other hand, are less topographic and are in a position267

to modulate the responses of lower areas to driving inputs268

from either higher or lower areas (seeTable 1). Backwards269

connections are abundant in the brain and are in a position270

to exert powerful effects on evoked responses, in lower271

levels, that define the specialisation of any area or neuronal272

population. The idea pursued below is that specialisa-273

tion depends upon backwards connections and, due to the274

greater divergence of the latter, can embody contextual ef-275

fects. Appreciating this is important for understanding how276

functional integration can dynamically reconfigure the spe-277

cialisation of brain areas that mediate perceptual synthesis.278

2.4. Functional integration and effective connectivity279

Electrophysiology and imaging neuroscience have firmly280

established functional specialisation as a principle of brain281

organisation in man. The functional integration of spe-282

cialised areas has proven more difficult to assess. Functional283

integration refers to the interactions among specialised neu-284

ronal populations and how these interactions depend upon285

the sensorimotor or cognitive context. Functional integration286

is usually assessed by examining the correlations among287

activity in different brain areas, or trying to explain the288

activity in one area in relation to activities elsewhere.Func-289

tional connectivityis defined as correlations between remote290

neurophysiological events. However, correlations can arise291

in a variety of ways. For example, in multi-unit electrode292

recordings they can result from stimulus-locked transients293

evoked by a common input or reflect stimulus-induced294

oscillations mediated by synaptic connections (Gerstein295

and Perkel, 1969). Integration within a distributed system296

is usually better understood in terms ofeffective connec-297

tivity. Effective connectivity refers explicitly to the influ-298

ence that one neuronal system exerts over another, either299

at a synaptic (i.e. synaptic efficacy) or population level.300

It has been proposed that “the (electrophysiological) no-301

tion of effective connectivity should be understood as the302

experiment- and time-dependent, simplest possible circuit303

diagram that would replicate the observed timing relation-304

ships between the recorded neurons” (Aertsen and Preißl,305

1991). This speaks to two important points: (i) effective306

connectivity is dynamic, i.e. activity- and time-dependent;307

and (ii) it depends upon a model of the interactions. An308

important distinction, among models employed in func-309

tional neuroimaging, is whether these models are linear or310

nonlinear. Recent characterisations of effective connectivity311

have focussed on nonlinear models that accommodate the312

modulatory or nonlinear effects mentioned above. A more313

detailed discussion of these models is provided inSection314

5.2, after the motivation for their application is established315

in the next section. In this review the terms modulatory and316

nonlinear are used almost synonymously. Modulatory ef-317

fects imply the post-synaptic response evoked by one input318

is modulated, or interacts, with another. By definition this319

interaction must depend on nonlinear synaptic mechanisms.320

In summary, the brain can be considered as an ensemble321

of functionally specialised areas that are coupled in a nonlin-322

ear fashion by effective connections. Empirically, it appears323

that connections from lower to higher areas are predomi-324

nantly driving whereas backwards connections, that medi-325

ate top–down influences, are more diffuse and are capable326

of exerting modulatory influences. In the next section we327

describe a theoretical perspective, provided by ‘generative328

models’, that highlights the functional importance of back-329

wards connections and nonlinear interactions. 330

3. Representational learning 331

This section compares and contrasts the heuristics behind332

three prevalent computational approaches to representational333

learning and perceptual synthesis,supervised learning, and 334

two forms ofself-supervised learningbased on information335

theory and predictive coding. These approaches will then336

be reconciled within the framework ofgenerative models. 337

This article restricts itself to sensory processing in cortical338

hierarchies. This precludes a discussion of other important339

ideas (e.g. reinforcement learning (Sutton and Barto, 1990;340

Friston et al., 1994), neuronal selection (Edelman, 1993) and 341

dynamical systems theory (Freeman and Barrie, 1994)). 342

The relationship between model and real neuronal archi-343

tectures is central to cognitive neuroscience. We address this344

relationship, in terms ofrepresentations, starting with an 345

overview of representations in which the distinctions among346

various approaches can be seen clearly. An important focus347

of this section is the interaction among ‘causes’ of sensory348

input. These interactions posit the problem ofcontextual 349

invariance. In brief, it will be shown that the problem of350

contextual invariance points to the adoption of generative351

models where interactions among causes of a percept are352

modelled explicitly. Within the class of self-supervised353

models, we will compare classical information theoretic354

approaches and predictive coding. These two schemes use355

different heuristics which imply distinct architectures that356

are sufficient for their implementation. The distinction rests357

on whether an explicit model, of the way sensory inputs are358

generated, is necessary for representational learning. If this359

model is instantiated in backwards connections, then theo-360

retical distinctions may shed light on the functional role of361

backward and lateral connections that are so prevalent in362

the brain. 363

3.1. The nature of representations 364

What is a representation? Here a representation is taken365

to be a neuronal event that represents some ‘cause’ in the366

sensorium. Causes are simply the states of the process gen-367
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erating sensory data. It is not easy to ascribe meaning to368

these states without appealing to the way that we categorise369

things, perceptually or conceptually. High-level conceptual370

causes may be categorical in nature, such as the identity of a371

face in the visual field or the semantic category a perceived372

object belongs to. In a hierarchical setting, high-level causes373

may induce priors on lower-level causes that are more para-374

metric in nature. For example, the perceptual cause “mov-375

ing quickly” may show a one-to-many relationship with376

over-complete representations of different velocities in V5377

(MT) units. An essential aspect of causes is their relation-378

ship to each other (e.g. ‘is part of’) and, in particular, their379

hierarchical structure. This ontology is often attended by380

ambiguous many-to-one and one-to-many mappings (e.g. a381

table has legs but so do horses; a wristwatch is a watch irre-382

spective of the orientation of its hands). This ambiguity can383

render the problem of inferring causes from sensory infor-384

mation ill-posed (as we will see further).385

Even though causes may be difficult to describe, they386

are easy to define operationally. Causes are the variables or387

states that are necessary to specify the products of a process388

(or model of that process) generating sensory information.389

In very general terms, let us frame the problem of repre-390

senting real world causess(t) in terms of the system of391

deterministic equations392

ẋ = f(x, s)

u = g(x)
(1)

393

wheres is a vector of underlying causes in the environment394

(e.g. the velocity of a particular object, direction of radiant395

light, etc.) andu represents sensory inputs.ẋ means the rate396

of change ofx, which here denotes some unobserved states397

of the world that form our sensory impression of it. The398

functionsf andg can be highly nonlinear and allow for both399

the current state of the world and the causes of changes in400

those states to interact, when evoking responses in sensory401

units. Sensory input can be shown to be a function of, and402

only of, the causesand their recent history.403404

u = G(s) =
∞∑
i=1

∫ t

0
. . .

∫ t

0

∂iu(t)

∂s(t − σ1) · · · ∂s(t − σi)405

× s(t − σ1) · · · s(t − σi)dσ1 · · · dσi (2)406

G(s) is a functional (function of a function) that generates407

inputs from the causes.Eq. (2)is simply a functional Taylor408

expansion covering dynamical systems of the sort implied409

by Eq. (1). This expansion is called a Volterra series and can410

be thought of as a nonlinear convolution of the causes to411

give the inputs (see Box 1). Convolution is like smoothing,412

in this instance over time. A key aspect of this expansion413

is that it does not refer to the many hidden states of the414

world, only the causes of changes in states, that we want to415

represent. Furthermore,Eq. (1) does not contain any noise416

or error. This is becauseEqs. (1) and (2)describe a real417

world process. There is no distinction between determinis-418

tic and stochastic behaviour until that process is observed.419

At the point the process is modelled, this distinction is in-420

voked through notions of deterministic or observation noise.421

This section deals with how the brain might construct such422

models. 423

The importance of this formulation is that it highlights: (i)424

the dynamicalaspects of sensory input; and (ii) the role of425

interactionsamong the causes of the sensory input. Dynamic426

aspects imply that the current state of the world, registered427

through our sensory receptors, depends not only on the ex-428

tant causes but also on their history. Interactions among these429

causes, at any time in the past, can influence what is currently430

sensed. The second-order terms withi = 2 in Eq. (2)repre- 431

sent pairwise interactions among the causes. These interac-432

tions are formally identical to interaction terms in conven-433

tional statistical models of observed data and can be viewed434

as contextual effects, where the expression of a particular435

cause depends on the context induced by another. For exam-436

ple, the extraction of motion from the visual field depends437

upon there being sufficient luminance or wavelength con-438

trast to define the surface moving. Another ubiquitous ex-439

ample, from early visual processing, is the occlusion of one440

object by another. In the absence of interactions, we would441

see a linear superposition of both objects, but the visual in-442

put caused by the nonlinear mixing of these two causes ren-443

der one occluded by the other. At a more cognitive level, the444

cause associated with the word ‘HAMMER’ will depend on445

the semantic context (that determines whether the word is a446

verb or a noun). These contextual effects are profound and447

must be discounted before the representations of the under-448

lying causes can be considered veridical. 449

The problem the brain has to contend with is to find a450

function of the inputu(t) that recognises or represents the451

underlying causes. To do this, the brain must effectively452

undo the convolution and interactions to expose contextu-453

ally invariant causes. In other words, the brain must perform454

some form of nonlinear unmixing of ‘causes’ and ‘context’455

without knowing either. The key point here is that this non-456

linear mixing may not be invertible and that the estimation457

of causes from input may be fundamentally ill posed. For458

example, no amount of unmixing can discern the parts of459

an object that are occluded by another. The mappingu = s2 460

provides a trivial example of this non-invertibility. Knowing461

u does not uniquely determines. 462

Nonlinearities are not the only source of non-invertibility.463

Because sensory inputs are convolutions of causes, there is464

a potential loss of information during the convolution or465

smoothing that may have been critical for a unique deter-466

mination of the causes. The convolution implied byEq. (2) 467

means the brain has to de-convolve the inputs to obtain these468

causes. In estimation theory this problem is sometimes called469

‘blind de-convolution’ because the estimation is blind to the470

underlying causes that are convolved to give the observed471

variables. To simplify the presentation of the ideas below we472

will assume that the vectors of causess, and their estimates473

v, include a sufficient history to accommodate the dynamics474

implied byEq. (1). 475
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Box 1 Dynamical systems and Volterra kernels.

Input-state–output systems and Volterra series
Neuronal systems are inherently nonlinear and lend themselves to modelling by nonlinear dynamical systems. How-

ever, due to the complexity of biological systems it is difficult to find analytic equations that describe them adequately.
Even if these equations were known the state variables are often not observable. An alternative approach to identifica-
tion is to adopt a very general model (Wray and Green, 1994) and focus on the inputs and outputs. Consider the single
input–single output (SISO) system

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t))

The Fliess fundamental formula (Fliess et al., 1983) describes the causal relationship between the outputs and the recent
history of the inputs. This relationship can be expressed as a Volterra series, in which the outputy(t) conforms to a
nonlinear convolution of the inputsu(t), critically without reference to the state variablesx(t). This series is simply a
functional Taylor expansion ofy(t).

y(t) = ∑∞
i=1

∫ t

0 · · · ∫ t

0κi(σ1, · · · σi)u(t − σ1) · · · u(t − σi)dσ1 · · · dσi

κi(σ1, · · · , σi) = ∂iy(t)

∂u(t − σ1) · · · ∂u(t − σi)

whereκi(σ1, . . . , σi) is the ith-order kernel. Volterra series have been described as a ‘power series with memory’ and
are generally thought of as a high-order or ‘nonlinear convolution’ of the inputs to provide an output. SeeBendat (1990)
for a fuller discussion. This expansion is used in a number of places in the main text. When the inputs and outputs are
measured neuronal activity the Volterra kernels have a special interpretation.

Volterra kernels and effective connectivity
Volterra kernels are useful for characterising the effective connectivity or influences that one neuronal system exerts

over another because they represent the causal characteristics of the system in question. Neurobiologically they have a
simple and compelling interpretation—they are synonymous with effective connectivity.

κ1(σ1) = ∂y(t)

∂u(t − σ1)
, κ2(σ1, σ2) = ∂2y(t)

∂u(t − σ1)∂u(t − σ2)
, . . .

It is evident that the first-order kernel embodies the response evoked by a change in input att −σ1. In other words it
is a time-dependant measure ofdriving efficacy. Similarly the second-order kernel reflects themodulatoryinfluence of
the input att −σ1 on the response evoked att −σ2. And so on for higher orders.

All the schemas considered below can be construed as476

trying to effect a blind de-convolution of sensory inputs to477

estimate the causes with a recognition function.478

v = R(u, φ, θ) (3)479

Herev represents an estimate of the causes and could corre-480

spond to the activity of neuronal units (i.e. neurons or popu-481

lations of neurons) in the brain. The parametersφ andθ de-482

termine the transformations that sensory input is subject to483

and can be regarded as specifying the connection strengths484

and architecture of a neuronal network model or effective485

connectivity (see Box 1). For reasons that will become ap-486

parent later, we make a distinction between parameters for487

forward connectionsφ and backward connectionsθ.488

The problem of recognising causes reduces to finding489

the right parameters such that the activity of the represen-490

tational unitsv have some clearly defined relationship to491

the causess. More formally, one wants to find the parame-492

ters that maximise the mutual information or statistical de-493

pendence between the dynamics of the representations and494

their causes. Models of neuronal computation try to solve495

this problem in the hope that the ensuing parameters can be496

interpreted in relation to real neuronal infrastructures. The497

greater the biological validity of the constraints under which498

these solutions are obtained, the more plausible this relation-499

ship becomes. In what follows, we will consider three mod-500

elling approaches: (i) supervised models; (ii) models based501

on information theory; and (iii) those based on predictive502

coding. The focus will be on the sometimes hidden con-503

straints imposed on the parameters and the ensuing implica-504

tions for connectivity architectures and the representational505

properties of the units. In particular, we will ask whether506

backward connections, corresponding to the parametersθ, 507

are necessary. And if so what is their role? The three ap-508

proaches are reprised at the end of this section by treating509

them as special cases of generative models. Each subsection510

below provides the background and heuristics for each ap-511

proach and describes its implementation using the formal-512
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Fig. 1. Schematic illustrating the architectures implied by supervised, information theory-based approaches and predictive coding. The circles represent
nodes in a network and the arrows represent a few of the connections. See the main text for an explanation of the equations and designation of the
variables each set of nodes represents. The light grey boxes encompass connections and nodes within the model. Connection strengths are determined by
the free parameters of the modelφ (forward connections) andθ (backward connections). Nonlinear effects are implied when one arrow connects with
another. Nonlinearities can be construed as the modulation of responsiveness to one input by another (see Box 1 for a more formal account). The broken
arrow in the lower panel denotes connections that convey an error signal to the higher level from the input level.

ism above.Fig. 1provides a graphical overview of the three513

schemes.514

3.2. Supervised models515

Connectionism is an approach that has proved very use-516

ful in relating putative cognitive architectures to neuronal517

ones and, in particular, modelling the impact of brain lesions518

on cognitive performance. Connectionism is used here as519

a well-known example of supervised learning in cognitive520

neuroscience. We start by reviewing the role played by con-521

nectionist models in the characterisation of brain systems522

underlying cognitive functions. 523

3.2.1. Category specificity and connectionism 524

Semantic memory impairments can result from a vari-525

ety of pathophysiological insults, including Alzheimer’s dis-526

ease, encephalitis and cerebrovascular accidents (e.g.Nebes, 527

1989; Warrington and Shallice, 1984). The concept of cate-528

gory specificity stems from the work of Warrington and col-529
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leagues (Warrington and McCarthy, 1983; Warrington and530

Shallice, 1984) and is based on the observation that pa-531

tients with focal brain lesions have difficulties in recognis-532

ing or naming specific categories of objects. Patients can ex-533

hibit double dissociations in terms of their residual seman-534

tic capacity. For example, some patients can name artifacts535

but have difficulty with animals, whereas others can name536

animals with more competence than artifacts. These find-537

ings have engendered a large number of studies, all point-538

ing to impairments in perceptual synthesis, phonological or539

lexico-semantic analysis that is specific for certain categories540

of stimuli. There are several theories that have been posited541

to account for category specificity. Connectionist models542

have been used to adjudicate among some of them.543

Connectionist (e.g. parallel distributed processing or PDP)544

techniques use model neuronal architectures that can be le-545

sioned to emulate neuropsychological deficits. This involves546

modelling semantic networks using connected units or nodes547

and suitable learning algorithms to determine a set of con-548

nection strengths (Rumelhart and McClelland, 1986). Se-549

mantic memory impairments are then simulated by lesioning550

the model to establish the nature of the interaction between551

neuropathology and cognitive deficit (e.g.Hinton and Shal-552

lice, 1991; Plaut and Shallice, 1993). A compelling example553

of this sort of approach is the connectionist model ofFarah554

and McClelland (1991): patterns of category-specific deficits555

led Warrington and McCarthy (1987)to suggest that an ani-556

mate/inanimate distinction could be understood in terms of a557

differential dependence on functional and structural (percep-558

tual) features for recognition. For example, tools have asso-559

ciated motor acts whereas animals do not, or tools are easier560

to discriminate based upon their structural descriptions than561

four-legged animals.Farah and McClelland (1991)incorpo-562

rated this difference in terms of the proportion of the two563

types of semantic featural representations encoding a partic-564

ular object, with perceptual features dominating for animate565

objects and both represented equally for artifacts. Damage to566

visual features led to impairment for natural kinds and con-567

versely damage to functional features impaired the output568

for artifacts. Critically the model exhibited category-specific569

deficits in the absence of any category-specific organisa-570

tion. The implication here is that an anatomical segrega-571

tion of structural and functional representations is sufficient572

to produce category-specific deficits following focal brain573

damage. This example serves to illustrate how the connec-574

tionist paradigm can be used to relate neuronal and cogni-575

tive domains. In this example, connectionist models were576

able to posit a plausible anatomical infrastructure wherein577

the specificity of deficits, induced by lesions, is mediated578

by differential dependence on either the functional or struc-579

tural attributes of an object and not by any (less plausible)580

category-specific anatomical organisation per se.581

3.2.2. Implementation582

In connectionist models causes or ‘concepts’ like583

“TABLE” are induced by patterns of activation over units584

encoding semantic primitives (e.g. structural—“has four585

legs” or functional—“can put things on it”). These primi-586

tives are simple localist representations “that are assumed587

to be encoded by larger pools of neurons in the brain”588

(Devlin et al., 1998). Irrespective of their theoretical bias,589

connectionist models assume the existence of fixed repre-590

sentations (i.e. units that represent a structural, phonological591

or lexico-semantic primitive) that are activated by some592

input. These representational attributions are immutable593

where each unit has its ‘label’. The representation of a con-594

cept, object or ‘cause’ in the sensorium is defined in terms595

of which primitives are active. 596

Connectionist models employ some form ofsupervised 597

learningwhere the model parameters (connection strengths598

or biases) change to minimise the difference between the ob-599

served and required output. This output is framed in terms600

of a distributed profile or pattern of activity over the (output)601

units v = R(u, φ) which arises from sensory inputu cor- 602

responding to activity in (input) primitives associated with603

the stimulus being simulated. There are often hidden units604

interposed between the input and output units. The initial605

input (sometimes held constant or ‘clamped’ for a while) is606

determined by a generative function of theith stimulus or 607

causeui = G(si). Connectionist models try to find the free608

parametersφ that minimise some function or potentialV of 609

the error or difference between the output obtained and that610

desired 611

φ = minφV(ε, φ)
εi = R(ui, φ) − si

(4)
612

The potential is usually the (expected) sum of squared differ-613

ences. Although the connectionist paradigm has been very614

useful in relating cognitive science and neuropsychology, it615

has a few limitations in the context of understanding how616

the brain learns to represent things: 617

• First, one has to know the underlying causesi and the 618

generative function, whereas the brain does not. This is619

the conventional criticism of supervised algorithms as a620

model of neuronal computation. Neural networks, of the621

sort used in connectionism, are well known to be flexi-622

ble nonlinear function approximators. In this sense they623

can be used to approximate the inverse of any genera-624

tive functionui = G(si) to give model architectures that625

can lesioned. However, representational learning in the626

brain has to proceed without any information about the627

processes generating inputs and the ensuing architectures628

cannot be ascribed to connectionist mechanisms. 629

• Secondly, the generative mappingui = G(si) precludes 630

nonlinear interactions among stimuli or causes, dynamic631

or static. This is a fundamental issue because one of the632

main objectives of neuronal modelling is to see how rep-633

resentations emerge with the nonlinear mixing and con-634

textual effects prevalent in real sensory input. Omitting in-635

teractions among the causes circumvents one of the most636

important questions that could have been asked; namely637
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how does the brain unmix sensory inputs to discount con-638

textual effects and other aspects of nonlinear mixing? In639

short, the same inputs are activated by a given cause, irre-640

spective of the context. This compromises the plausibility641

of connectionist models when addressing the emergence642

of representations.643

In summary, connectionist models specify distributed pro-644

files of activity over (semantic) primitives that are induced645

by (conceptual) causes and try to find connectivity parame-646

ters that emulate the inverse of these mappings. They have647

been used to understand how the performance (storage and648

generalisation) of a network responds to simulated damage,649

after learning is complete. However, connectionism has a650

limited role in understanding representational learning per651

se. In the next subsection we will look at self-supervised652

approaches that do not require the causes for learning.653

3.3. Information theoretic approaches654

There have been many compelling developments in theo-655

retical neurobiology that have used information theory (e.g.656

Barlow, 1961; Optican and Richmond, 1987; Linsker, 1988;657

Oja, 1989; Foldiak, 1990; Tovee et al., 1993; Tononi et al.,658

1994). Many appeal to the principle of maximum informa-659

tion transfer (e.g.Linsker, 1988; Atick and Redlich, 1990;660

Bell and Sejnowski, 1995). This principle has proven ex-661

tremely powerful in predicting some of the basic receptive662

field properties of cells involved in early visual processing663

(e.g.Atick and Redlich, 1990; Olshausen and Field, 1996).664

This principle represents a formal statement of the com-665

mon sense notion that neuronal dynamics in sensory systems666

should reflect, efficiently, what is going on in the environ-667

ment (Barlow, 1961). In the present context, the principle668

of maximum information transfer (infomax;Linsker, 1988)669

suggests that a model’s parameters should maximise the mu-670

tual information between the sensory inputu and the evoked671

responses or outputsv = R(u, φ). This maximisation is usu-672

ally considered in the light of some sensible constraints, e.g.673

the presence of noise in sensory input (Atick and Redlich,674

1990) or dimension reduction (Oja, 1989) given the smaller675

number of divergent outputs from a neuronal population than676

convergent inputs (Friston et al., 1992).677

Intuitively, mutual information is like the covariance or678

correlation between two variables but extended to cover679

multivariate observations. It is a measure of statistical de-680

pendence. In a similar way, entropy can be regarded as the681

uncertainty or variability of an observation (cf. variance of682

a univariate observation). The mutual information between683

inputs and outputs underφ is given by684685

I(u, v;φ) = H(u) + H(v;φ) − H(u, v;φ)686

= H(v;φ) − H(v|u) (5)687

whereH(v|u) is the conditional entropy or uncertainty in688

the output, given the input. For a deterministic system there689

is no such uncertainty and this term can be discounted (see690

Bell and Sejnowski, 1995). More generally 691

∂

∂φ
I(u, v;φ) = ∂

∂φ
H(v;φ) (6)

692

It follows that maximising the mutual information is the693

same as maximising the entropy of the responses. The in-694

fomax principle (maximum information transfer) is closely695

related to the idea of efficient coding. Generally speaking,696

redundancy minimisation and efficient coding are all varia-697

tions on the same theme and can be considered as the info-698

max principle operating under some appropriate constraints699

or bounds. Clearly it would be trivial to conform to the in-700

fomax principle by simply multiplying the inputs by a very701

large number. What we would like to do is to capture the702

information in the inputs using a small number of output703

channels operating in some bounded way. The key thing704

that distinguishes among the various information theoretic705

schemas is the nature of the constraints under which entropy706

is maximised. These constraints render infomax a viable ap-707

proach to recovering the original causes of data, if one can708

enforce the outputs to conform to the same distribution of709

the causes (seeSection 3.3.1). One useful way of looking at710

constraints is in terms of efficiency. 711

3.3.1. Efficiency, redundancy and information 712

The efficiency of a system can be considered as the com-713

plement of redundancy (Barlow, 1961), the less redundant,714

the more efficient a system will be. Redundancy is reflected715

in the dependencies or mutual information among the out-716

puts. (cf.Gawne and Richmond, 1993). 717

I(v;φ) =
∑

H(vi;φ) − H(v;φ) (7) 718

HereH(vi;φ) is the entropy of theith output.Eq. (7)implies 719

that redundancy is the difference between the joint entropy720

and the sum of the entropies of the individual units (com-721

ponent entropies). Intuitively this expression makes sense if722

one considers that the variability in activity of any single unit723

corresponds to its entropy. Therefore, an efficient neuronal724

system represents its inputs with the minimal excursions725

from baseline firing rates. Another way of thinking about726

Eq. (7)is to note that maximising efficiency is equivalent to727

minimising the mutual information among the outputs. This728

is the basis of approaches that seek to de-correlate or orthog-729

onalise the outputs. To minimise redundancy one can either730

minimise the entropy of the output units or maximise their731

joint entropy, while ensuring the other is bounded in some732

way. Olshausen and Field (1996)present a very nice analy-733

sis based on sparse coding. Sparse coding minimises redun-734

dancy using single units with low entropy. Sparse coding735

implies coding by units that fire very sparsely and will, gen-736

erally, not be firing. Therefore, one can be relatively certain737

about their (quiescent) state, conferring low entropy on them.738

Approaches that seek to maximise the joint entropy of the739

units include principal component analysis (PCA) learning740

algorithms (that sample the subspace of the inputs that have741
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the highest entropy) (e.g.Foldiak, 1990) and independent742

component analysis (ICA). In PCA the component entropies743

are bounded by scaling the connection strengths of a simple744

recognition modelv = R(u, φ) = φu so that the sum of the745

variances ofvi is constant. ICA finds nonlinear functions of746

the inputs that maximise the joint entropy (Common, 1994;747

Bell and Sejnowski, 1995). The component entropies are748

constrained by the passing the outputs through a sigmoid749

squashing functionv = R(u, φ) = σ(φu) so that the outputs750

lie in a bounded interval (hypercube). SeeSection 3.6.1for751

a different perspective on ICA in which the outputs are not752

bounded but forced to have cumulative density functions that753

conform to the squashing function.754

An important aspect of the infomax principle is that it755

goes a long way to explaining functional segregation in the756

cortex. One perspective on functional segregation is that757

each cortical area is segregating its inputs into relatively758

independent functional outputs. This is exactly what infomax759

predicts. See Friston et al. (2001 and references therein)760

for an example of how infomax can be used to predict the761

segregation of processing streams from V2 to specialised762

motion, colour and form areas in extrastriate cortex.763

3.3.2. Implementation764

In terms of the above formulation, information theoretic765

approaches can be construed as finding the parameters of766

a forward recognition function that maximise the efficiency767

or minimise the redundancy768

φ = minφ I(v;φ)
v = R(u, φ)

(8)
769

But when are the outputs of an infomax model veridical770

estimates of the causes of its inputs? This is assured when:771

(i) the generating process is invertible; and (ii) the real world772

causes are independent such thatH(s) = ∑
H(si). This can773

be seen by noting774775

I(v;φ) =
∑

H(vi;φ) − H(v;φ)776

=
∑

H(Ri(G(s), φ)) −
∑

H(si)777

−
〈
ln

∣∣∣∣∂R(G(s), φ)∂v

∣∣∣∣
〉

≥ 0 (9)
778

with equality whenv = R(u, φ) = G−1(u) = s. Compared779

to the connectionist scheme this has the fundamental advan-780

tage that the algorithm is unsupervised by virtue of the fact781

that the causes and generating process are not needed by782

Eq. (8). Note that the architectures inFig. 1, depicting con-783

nectionist and infomax schemes, are identical apart from the784

nodes representing desired output (unfilled circles in the up-785

per panel). However, there are some outstanding problems:786

• First, infomax recovers causes only when the generating787

process is invertible. However, as we have seen above the788

nonlinear convolution of causes generating inputs may not789

be invertible. This means that the recognition enacted by790

forward connections may not be defined in relation to the791

generation of inputs. 792

• Second, we have to assume that the causes are indepen-793

dent. While this may be sensible for simple systems it794

is certainly not appropriate for more realistic hierarchical795

processes that generate sensory inputs (seeSection 3.5.1). 796

This is because correlations among causes at any level797

are induced by, possibly independent, casual changes at798

supraordinate levels. 799

Finally, the dynamical nature of evoked neuronal tran-800

sients is lost in many information theoretic formulations801

which treat the inputs as a stationary stochastic process,802

not as the products of a dynamical system. This is because803

the mutual information and entropy measures, that govern804

learning, pertain to probability distributions. These densities805

do not embody information about the temporal evolution806

of states, if they simply describe the probability the system807

will be found in a particular state when sampled over time.808

Indeed, in many instances, the connection strengths are809

identifiable given just the densities of the inputs, without810

any reference to the fact that they were generated dynam-811

ically or constituted a time-series (cf. principal component812

learning algorithms that need only the covariances of the in-813

puts). Discounting dynamics is not a fundament of infomax814

schemas. For example, my own work using ICA referred815

to above (Friston et al., 2000) expanded inputs using tem-816

poral basis functions to model the functional segregation of817

motion, colour and form in V2. This segregation emerged818

as a consequence of maximising the information trans-819

fer between spatio-temporal patterns of visual inputs and820

V2 outputs. 821

In summary ICA and like-minded approaches, that try to822

find some deterministic function of the inputs that maximises823

information transfer, impose some simplistic and strong con-824

straints on the generating process that must be met before825

veridical representations emerge. In the final approach, con-826

sidered here, we discuss predictive coding models that do827

not require invertibility or independence and, consequently,828

suggest a more natural form for representational learning.829

3.4. Predictive coding and the inverse problem 830

Over the past years predictive coding and generative831

models have supervened over other modelling approaches832

to brain function and represent one of the most promis-833

ing avenues, offered by computational neuroscience, to834

understanding neuronal dynamics in relation to perceptual835

categorisation. In predictive coding the dynamics of units in836

a network are trying to predict the inputs. As with infomax837

schemas, the representational aspects of any unit emerge838

spontaneously as the capacity to predict improves with839

learning. There is no a priori ‘labelling’ of the units or any840

supervision in terms of what a correct response should be841

(cf. connectionist approaches). The only correct response is842

one in which the implicit internal model of the causes and843
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their nonlinear mixing is sufficient to predict the input with844

minimal error.845

Conceptually, predictive coding and generative models846

(see further) are related to ‘analysis-by-synthesis’ (Neisser,847

1967). This approach to perception, from cognitive psychol-848

ogy, involves adapting an internal model of the world to849

match sensory input and was suggested byMumford (1992)850

as a way of understanding hierarchical neuronal process-851

ing. The idea is reminiscent of Mackay’s epistemological852

automata (MacKay, 1956) which perceive by comparing ex-853

pected and actual sensory input (Rao, 1999). These mod-854

els emphasise the role of backward connections in medi-855

ating the prediction, at lower or input levels, based on the856

activity of units in higher levels. The connection strengths857

of the model are changed so as to minimise the error be-858

tween the predicted and observed inputs at any level. This859

is in direct contrast to connectionist approaches were con-860

nection strengths change to minimise the error between the861

observed anddesiredoutput. In predictive coding there is no862

‘output’ because the representational meaning of the units863

is not pre-specified but emerges during learning.864

Predictive coding schemes can also be regarded as aris-865

ing from the distinction between forward and inverse mod-866

els adopted in machine vision (Ballard et al., 1983; Kawato867

et al., 1993). Forward models generate inputs from causes,868

whereas inverse models approximate the reverse transfor-869

mation of inputs to causes. This distinction embraces the870

non-invertibility of generating processes and the ill-posed871

nature of inverse problems. As with all underdetermined in-872

verse problems the role of constraints becomes central. In873

the inverse literature a priori constraints usually enter in874

terms of regularised solutions. For example; “Descriptions875

of physical properties of visible surfaces, such as their dis-876

tance and the presence of edges, must be recovered from877

the primary image data. Computational vision aims to un-878

derstand how such descriptions can be obtained from inher-879

ently ambiguous and noisy data. A recent development in880

this field sees early vision as a set of ill-posed problems,881

which can be solved by the use of regularisation methods”882

(Poggio et al., 1985). The architectures that emerge from883

these schemes suggest that “feedforward connections from884

the lower visual cortical area to the higher visual cortical885

area provides an approximated inverse model of the imaging886

process (optics), while the backprojection connection from887

the higher area to the lower area provides a forward model888

of the optics” (Kawato et al., 1993).889

3.4.1. Implementation890

Predictive, or more generally, generative, models turn the891

inverse problem on its head. Instead of trying to find func-892

tions of the inputs that predict the causes they find functions893

of causal estimates that predict the inputs. As in approaches894

based on information theory, the causes do not enter into the895

learning rules, which are therefore unsupervised. Further-896

more, they do not require the convolution of causes, engen-897

dering the inputs, to be invertible. This is because generative898

or forward model is instantiated explicitly. Here the forward899

model is the nonlinear mixing of causes that, by definition900

must exist. The estimation of the causes still rests upon con-901

straints, but these are now framed in terms of the forward902

model and have a much more direct relationship to casual903

processes in the real world. The ensuing mirror symmetry904

between the real generative process and its forward model905

is illustrated in the architecture inFig. 1. Notice that the 906

connections within the model are now going backwards. In907

the predictive coding scheme these backward connections,908

parameterised byθ form predictions from some estimate of909

the causesv to provide a prediction error. The parameters910

now change to minimise some function of the prediction er-911

ror cf. Eq. (4). 912

θ = min θV(ε, θ)

ε = u − G(v, θ)
(10)

913

The differences betweenEqs. (10) and (4)are that the er- 914

rors are at the input level, as opposed to the output level915

and the parameters now pertain to a forward model instan-916

tiated in backward connections. This minimisation scheme917

eschews the real causess but where do their estimates come918

from? These casual estimates or representations change in919

the same way as the other free parameters of the model.920

They change to minimise prediction error subject to some a921

priori constraint, modelled by a regularisation termλ(v, θ), 922

usually through gradient ascent.1 923

v̇ = −∂V(ε, θ)

∂v
+ ∂λ(v, θ)

∂v
(11) 924

The error is conveyed from the input layer to the output layer925

by forward connections that are rendered as a broken line in926

the lower panel ofFig. 1. This component of the predictive927

coding scheme has a principled (Bayesian) motivation that is928

described in the next subsection. For the moment, consider929

what would transpire after training and prediction error is930

largely eliminated. This implies the brain’s nonlinear con-931

volution of the estimated causes recapitulates the real con-932

volution of the real causes. In short, there is a veridical (or933

at least sufficient) representation of both the causes and the934

dynamical structure of their mixing through the backward935

connectionsθ. 936

The dynamics of representational units or populations937

implied by Eq. (11)represents the essential difference be-938

tween this class of approaches and those considered above.939

Only in predictive coding are the dynamics changing to940

minimise the same objective function as the parameters. In941

both the connectionist and infomax schemes the represen-942

tations of a given cause can only be changed vicariously943

through the connection parameters. Predictive coding is a944

strategy that has some compelling (Bayesian) underpinnings945

(see further) and is not simply using a connectionist archi-946

tecture in auto-associative mode or using error minimisation947

1 For simplicity, time constants have been omitted from expressions
describing the ascent of states or parameters on objective functions.
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to maximise information transfer. It is a real time, dynam-948

ical scheme that embeds two concurrent processes. (i) The949

parameters of the generative or forward model change to950

emulate the real world mixing of causes, using the current951

estimates; and (ii) these estimates change to best explain the952

observed inputs, using the current forward model. Both the953

parameters and the states change in an identical fashion to954

minimise prediction error. The predictive coding scheme es-955

chews the problems associated with earlier schemes. It can956

easily accommodate nonlinear mixing of causes in the real957

world. It does not require this mixing to be invertible and958

needs only the sensory inputs. However, there is an outstand-959

ing problem:960

• To finesse the inverse problem, posed by non-invertible961

generative models, regularisation constraints are required.962

These resolve the problem of non-invertibility that con-963

founds simple infomax schemes but introduce a new prob-964

lem. Namely one needs to know the prior distribution of965

the causes. This is because, as shown next, the regulari-966

sation constraints are based on these priors.967

In summary, predictive coding treats representational968

learning as an ill-posed inverse problem and uses an explicit969

parameterisation of a forward model to generate predictions970

of the observed input. The ensuing error is then used to re-971

fine the forward model. This component of representational972

learning is dealt with below (Section 3.6). The predictions973

are based on estimated causes that also minimise predic-974

tive error, under some constraints that resolve the generally975

ill-posed estimation problem. We now consider these con-976

straints from a Bayesian point of view.977

3.4.2. Predictive coding and Bayesian inference978

One important aspect of predictive coding and generative979

models (see further) is that they portray the brain as an infer-980

ential machine (Dayan et al., 1995). From this perspective,981

functional architectures exist, not to filter the input to obtain982

the causes, but to estimate causes and test the predictions983

against the observed input. A compelling aspect of predic-984

tive coding schemas is that they lend themselves to Bayesian985

treatment. This is important because it can be extended using986

empirical Bayes and hierarchical models. In what follows987

we shall first describe the Bayesian view of regularisation988

in terms of priors on the causes. We then consider hierar-989

chical models in which priors can be derived empirically.990

The key implication, for neuronal implementations of pre-991

dictive coding, is that empirical priors eschew assumptions992

about the independence of causes (cf. infomax schemes) or993

the form of constraints in regularised inverse solutions.994

Suppose we knew the a priori distribution of the causes995

p(v), but wanted the best estimate given the input. This max-996

imum a posteriori (MAP) estimate maximises the posterior997

p(v|u). The two probabilities are related through Bayes rule998

which states that the probability of the cause and input oc-999

curring together is the probability of the cause given the in-1000

put times the probability of the input. This, in turn, is the1001

same as the probability of the input given the causes times1002

the prior probability of the causes. 1003

p(u, v) = p(v|u)p(u) = p(u|v)p(v) (12) 1004

The MAP estimator of the causes is the most likely given1005

the data. 1006

vm = max
v

lnp(v|u) = max
v

[lnp(u|v) + lnp(v)] (13) 1007

The first term on the right is known as the log likelihood or1008

likelihood potential and the second is the prior potential. A1009

gradient ascent to findvm would take the form 1010

v̇ = ∂�

∂v
�(u) = lnp(u|v; θ) + lnp(v; θ)

(14)
1011

where the dependence of the likelihood and priors on the1012

model parameters has been made explicit. The likelihood1013

is defined by the forward modelu = G(v, θ) + ε where 1014

p(u|v; θ) ∝ exp(−V(ε, θ)). V now plays the role of a Gibb’s1015

potential that specifies ones distributional assumptions about1016

the prediction error. Now we have 1017

v̇ = −∂V(ε, θ)

∂v
+ ∂ lnp(v; θ)

∂v
(15) 1018

This is formally identical to the predictive coding scheme1019

Eq. (11), in which the regularisation termλ(v, θ) = 1020

lnp(v; θ) becomes a log prior that renders the ensuing esti-1021

mation Bayesian. In this formulation the state of the brain1022

changes, not to minimise error per se, but to attain an es-1023

timate of the causes that maximises both the likelihood of1024

the input given that estimate and the prior probability of1025

the estimate being true. The implicit Bayesian estimation1026

can be formalised from a number of different perspectives.1027

Rao and Ballard (1998)give a very nice example using1028

the Kalman filter that goes some way to dealing with the1029

dynamical aspect of real sensory inputs. 1030

3.5. Cortical hierarchies and empirical Bayes 1031

The problem withEq. (15)is that the brain cannot con-1032

struct priors de novo. They have to be learned along with the1033

forward model. In Bayesian estimation priors are estimated1034

from data usingempiricalBayes. Empirical Bayes harnesses1035

the hierarchical structure of a forward model, treating the1036

estimates of causes at one level as prior expectations for the1037

subordinate level (Efron and Morris, 1973). This provides a1038

natural framework within which to treat cortical hierarchies1039

in the brain, each providing constraints on the level below.1040

Fig. 2depicts a hierarchical architecture that is described in1041

more detail below. This extension models the world as a hi-1042

erarchy of (dynamical) systems where supraordinate causes1043

induce, and moderate, changes in subordinate causes. For1044

example, the presence of a particular object in the visual field1045

changes the incident light falling on a particular part of the1046

retina. A more abstract example, that illustrates the brain’s1047

inferential capacities, is presented inFig. 3. On reading the1048
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Fig. 2. Schematic depicting a hierarchical extension to the predictive coding architecture, using the same format asFig. 1. Here hierarchical arrangements
within the model serve to provide predictions or priors to representations in the level below. The open circles are the error units and the filled circles are
the representations of causes in the environment. These representations change to minimise both the discrepancy between their predicted value and the
mismatch incurred by their own prediction of the representations in the level below. These two constraints correspond to prior and likelihood potentials,
respectively (see main text).

first sentence ‘Jack and Jill went up the hill’ we perceive the1049

word ‘event’ as ‘went’. In the absence of any hierarchical1050

inference the best explanation for the pattern of visual stimu-1051

lation incurred by the text is ‘event’. This would correspond1052

to the maximum likelihood estimate of the word and would1053

be the most appropriate in the absence of prior information1054

about which is the most likely word. However, within hier-1055

archical inference the semantic context provides top–down1056

Fig. 3. Schematic illustrating the role of priors in biasing towards one
representation of an input or another.Left: The word ‘event’ is selected
as the most likely cause of the visual input.Right: The word ‘went’ is
selected as the most likely word that is: (i) a reasonable explanation for
the sensory input; and (ii) conforms to prior expectations induced by
semantic context.

predictions to which the posterior estimate is accountable.1057

When this prior biases in favour of ‘went’ we tolerate a1058

small error as a lower level of visual analysis to minimise1059

the overall prediction error at the visual and lexical level.1060

This illustrates the role of higher level estimates in provid-1061

ing predictions or priors for subordinate levels. These priors1062

offer contextual guidance towards the most likely cause of1063

the input. Note that predictions at higher levels are subject1064

to the same constraints, only the highest level, if there is1065

one in the brain, is free to be directed solely by bottom–up1066

influences (although there are always implicit priors). If the1067

brain has evolved to recapitulate the casual structure of its1068

environment, in terms of its sensory infrastructures, it is in-1069

teresting to reflect on the possibility that our visual cortices1070

reflect the hierarchical casual structure of our environment.1071

The hierarchical structure of the real world is literally re-1072

flected by the hierarchical architectures trying to minimise1073

prediction error, not just at the level of sensory input but at1074

all levels of the hierarchy (notice the deliberate mirror sym-1075

metry inFig. 2). The nice thing about this architecture is that1076

the dynamics of casual representations at theith levelvi re- 1077

quire only the error for the current level and the immediately1078

preceding level. This follows from the Markov property of1079

hierarchical systems where one only needs to know the im-1080

mediately supraordinate causes to determine the density of1081

causes at any level in question, i.e.p(vi|vi+1, . . . , vn) = 1082

p(vi|vi+1). The fact that only error from the current and1083

lower level is required to drive the dynamics ofvi is impor- 1084

tant because it permits a biologically plausible implementa-1085

tion, where the connections driving the error minimisation1086
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have only to run forward from one level to the next (see1087

Section 3.5.1andFig. 2).1088

3.5.1. Empirical Bayes in the brain1089

The biological plausibility of the scheme depicted inFig. 21090

can be established fairly simply. To do this a hierarchical1091

predictive scheme is described in some detail. A more thor-1092

ough account of this scheme, including simulations of var-1093

ious neurobiological and psychophysical phenomena, will1094

appear in future publications. For the moment, we will re-1095

view neuronal implementation at a purely theoretical level,1096

using the framework developed above.1097

Consider any leveli in a cortical hierarchy containing1098

units (neurons or neuronal populations) whose activityvi1099

is predicted by corresponding units in the level abovevi+1.1100

The hierarchical form of the implicit generative model is1101

u = G1(v2, θ1) + ε1

v2 = G2(v3, θ2) + ε2

v3 = · · ·
(16)

1102

with v1 = u. Technically, these models fall into the class1103

of conditionally independent hierarchical models when the1104

error terms are independent at each level (Kass and Steffey,1105

1989). These models are also calledparametric empirical1106

Bayes(PEB) models because the obvious interpretation of1107

the higher-level densities as priors led to the development1108

of PEB methodology (Efron and Morris, 1973). We require1109

units in all levels to jointly maximise the posterior probabili-1110

ties ofvi+1 givenvi. We will assume the errors are Gaussian1111

with covariance
∑

i = ∑
(λi). Therefore,θi andλi param-1112

eterise the means and covariances of the likelihood at each1113

level.1114

p(vi |vi+1 ) = N(vi : G(vi+1, θi),
∑

i )

∝ ∣∣∑
i

∣∣−1/2 exp
(
−1

2ε
T
i

∑−1
i εi

) (17)
1115

This is also the prior density for the level below. Although1116

θi andλi are both parameters of the forward modelλi are1117

sometimes referred to as hyperparameters and in classical1118

statistics correspond to variance components. We will pre-1119

serve the distinction between parameters and hyperparam-1120

eters because minimising the prediction error with respect1121

to the estimated causes and parameters is sufficient to max-1122

imise the likelihood of neuronal states at all levels. This is1123

the essence of predictive coding. For the hyperparameters1124

there is an additional term that depends on the hyperparam-1125

eters themselves (see further).1126

In this hierarchical setting, the objective function com-1127

prises a series of log likelihoods1128

�(u) = lnp(u|v1) + ln(v1|v2) + · · · + �(u) = −1
2ξ

T
1 ξ1 − 1

2ξ
T
2 ξ2 − · · · − 1

2ln
∣∣∑

1

∣∣ − 1
2ln

∣∣∑
2

∣∣ − · · ·
ξi = vi − Gi(vi+1, θ) − λiξi = (1 + λi)

−1εi
(18)

1129

Here
∑

(λi)
1/2 = 1+λi. The likelihood at each level corre-1130

sponds top(vi|vi+1)which also plays the role of a prior onvi1131

that is jointly maximised with the likelihood of the level be-1132

low p(vi−1|vi). In a neuronal setting the (whitened) predic-1133

tion error is encoded by the activities of units denoted byξi. 1134

These error units receive a prediction from units in the level1135

above2 and connections from the principal unitsvi being pre-1136

dicted. Horizontal interactions among the error units serve to1137

de-correlate them (cf.Foldiak, 1990), where the symmetric1138

lateral connection strengthsλi hyper-parameterise the co-1139

variances of the errors
∑

i which are the prior covariances1140

for level i − 1. 1141

The estimatorsvi+1 and the connection strength parame-1142

ters perform a gradient ascent on the compound log proba-1143

bility. 1144

v̇i+1 = ∂�

∂vi+1
= − ∂ξTi

∂vi+1
ξi −

∂ξTi+1

∂vi+1
ξi+1

θ̇i = ∂�

∂θi
= −∂ξTi

∂θi
ξ

λ̇i = ∂�

∂λi
= −∂ξTi

∂λi
ξ − (1 + λi)

−1

(19)

1145

WhenGi(vi+1, θ) models dynamical processes (i.e. is effec-1146

tively a convolution operator) this gradient ascent is more1147

complicated. In a subsequent paper we will show that, with1148

dynamical models, it is necessary to maximise both� and 1149

its temporal derivatives (e.g.�̇). An alternative is to assume1150

a simple hidden Markov model for the dynamics and use1151

Kalman filtering (cf.Rao and Ballard, 1998). For the mo-1152

ment, we will assume the inputs change sufficiently slowly1153

for gradient ascent not to be confounded. 1154

Despite the complicated nature of the hierarchical model1155

and the abstract theorising, three simple and biologically1156

plausible things emerge: 1157

• Reciprocal connections 1158

The dynamics of representational unitsvi+1 are subject1159

to two, locally available, influences. A likelihood term1160

mediated by forward afferents from the error units in the1161

level below and an empirical prior term conveyed by er-1162

ror units in the same level. This follows from the condi-1163

tional independence conferred by the hierarchical struc-1164

ture of the model. Critically, the influences of the error1165

units in both levels are meditated by linear connections1166

with a strength that is exactly the same as the (negative)1167

effective connectivity of the reciprocal connection from1168

vi+1 to ξi andξi+1 (see Box 1 for definition of effective1169

connectivity). In short, the lateral, forwards and backward1170

connections are all reciprocal, consistent with anatomi-1171

cal observations. Lateral connections, within each level1172

2 Clearly, the backward connections are not inhibitory but, after media-
tion by inhibitory interneurons, their effective influence could be rendered
inhibitory.
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decorrelate the error units allowing competition between1173

prior expectations with different precisions (precision is1174

the inverse of variance).1175

• Functionally asymmetric forward and backward connec-1176

tions1177

The forward connections are the reciprocal (nega-1178

tive transpose) of the backward effective connectivity1179

∂ξi/∂vi+1 from the higher level to the lower level, extant1180

at that time. However, the functional attributes of the1181

forward and backward influences are different. The influ-1182

ences of units on error units in the lower level mediate1183

the forward modelξi = −Gi(vi+1, θ) + . . . . These can1184

be nonlinear, where each unit in the higher levelmay1185

modulate or interact with the influence of others(accord-1186

ing to the nonlinearities inG). In contradistinction,the1187

influences of units in lower levels do not interactwhen1188

producing changes in the higher level because their ef-1189

fects are linearly separablėvi+1 = −∂ξi/∂vi+1ξi − · · · .1190

This is a key observation because the empirical evidence,1191

reviewed in the previous section, suggests that backward1192

connections are in a position to interact (e.g. though1193

NMDA receptors expressed predominantly in the supra-1194

granular layers receiving backward connections) whereas1195

forward connections are not. It should be noted that,1196

although the implied forward connections∂ξi/∂vi+1 me-1197

diate linearly separable effects ofξi on vi+1, these con-1198

nections might be activity- and time-dependent because1199

of their dependence onvi+1.1200

• Associative plasticity1201

Changes in the parameters correspond to plasticity1202

in the sense that the parameters control the strength of1203

backward and lateral connections. The backward connec-1204

tions parameterise the prior expectations of the forward1205

model and the lateral connections hyper-parameterise the1206

prior covariances. Together they parameterise the Gaus-1207

sian densities that constitute the priors (and likelihoods)1208

of the model. The motivation for these parameters max-1209

imising the same objective function� as the neuronal1210

states is discussed in the next subsection. For the mo-1211

ment, we are concerned with the biological plausibility1212

of these changes. The plasticity implied is seen more1213

clearly with an explicit parameterisation of the connec-1214

tions. For example, letGi(vi+1, θi) = θivi+1. In this1215

instance1216

θ̇i = (1 + λi)
−1ξiv

T
i+1

λ̇i = (1 + λi)
−1(ξiξ

T
i − 1)

(20)
1217

This is just Hebbian or associative plasticity where the1218

connection strengths change in proportion to the product of1219

pre and post-synaptic activity. An intuition aboutEq. (20)1220

obtains by considering the conditions under which the ex-1221

pected change in parameters is zero (i.e. after learning). For1222

the backward connections this implies there is no compo-1223

nent of prediction error that can be explained by casual es-1224

timates at the higher level〈ξivTi+1〉 = 0. The lateral con-1225

nections stop changing when the prediction error has been1226

whitened〈ξiξTi 〉 = 1. 1227

Non-diagonal forms forλi complicate the biological in-1228

terpretation because changes at any one connection depend1229

on changes elsewhere. The problem can be finessed slightly1230

by rewriting the equations as 1231

θ̇i = ξiv
T
i+1 − λiθ̇i

λ̇i = ξiξ
T
i − λiλ̇i − 1

(21)
1232

where the decay terms are mediated by integration at the cell1233

body in a fashion similar to that described inFriston et al.1234

(1993). 1235

The overall scheme implied byEq. (19)sits comfortably1236

the hypothesis (Mumford, 1992). “On the role of the recip-1237

rocal, topographic pathways between two cortical areas, one1238

often a ‘higher’ area dealing with more abstract information1239

about the world, the other ‘lower’, dealing with more con-1240

crete data. The higher area attempts to fit its abstractions1241

to the data it receives from lower areas by sending back to1242

them from its deep pyramidal cells a template reconstruction1243

best fitting the lower level view. The lower area attempts to1244

reconcile the reconstruction of its view that it receives from1245

higher areas with what it knows, sending back from its su-1246

perficial pyramidal cells the features in its data which are1247

not predicted by the higher area. The whole calculation is1248

done with all areas working simultaneously, but with order1249

imposed by synchronous activity in the various top–down,1250

bottom–up loops”. 1251

In summary, the predictive coding approach lends itself1252

naturally to a hierarchical treatment, which considers the1253

brain as an empirical Bayesian device. The dynamics of the1254

units or populations are driven to minimise error at all levels1255

of the cortical hierarchy and implicitly render themselves1256

posterior estimates of the causes given the data. In con-1257

tradistinction to connectionist schemas, hierarchical predic-1258

tion does not require any desired output. Indeed predictions1259

of intermediate outputs at each hierarchical level emerge1260

spontaneously. Unlike information theoretic approaches they1261

do not assume independent causes and invertible generative1262

processes. In contrast to regularised inverse solutions (e.g. in1263

machine vision) they do not depend on a priori constraints.1264

These emerge spontaneously as empirical priors from higher1265

levels. The Bayesian considerations above pertain largely to1266

the estimates of the causes. In the final subsection we con-1267

sider the estimation of model parameters using the frame-1268

work provided by density learning with generative models.1269

3.6. Generative models and representational learning 1270

In this section we bring together the various schemes con-1271

sidered above using the framework provided by density es-1272

timation as a way of fitting generative models. This sec-1273

tion follows Dayan and Abbott (2001) to which the reader1274

is referred for a fuller discussion. Generative models repre-1275

sent a generic formulation of representational leaning in a1276
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self-supervised context. There are many forms of generative1277

models that range from conventional statistical models (e.g.1278

factor and cluster analysis) and those motivated by Bayesian1279

inference and learning (e.g.Dayan et al., 1995; Hinton et al.,1280

1995). Indeed many of the algorithms discussed under the1281

heading of information theory can be formulated as genera-1282

tive models. The goal of generative models is “to learn rep-1283

resentations that are economical to describe but allow the1284

input to be reconstructed accurately” (Hinton et al., 1995).1285

In current treatments, representational learning is framed in1286

terms of estimating probability densities of the inputs and1287

outputs. Although density learning is formulated at a level of1288

abstraction that eschews many issues of neuronal implemen-1289

tation (e.g. the dynamics of real-time learning), it does pro-1290

vide a unifying framework that connects the various schemes1291

considered so far.1292

The goal of generative models is to make the density of1293

the inputs, implied by the generative modelp(u; θ), as close1294

as possible to those observedp(u). The generative model is1295

specified in terms of the prior distribution over the causes1296

p(u; θ) and the conditionalgenerativedistribution of the1297

inputs given the causesp(u|v; θ) which together define the1298

marginal distribution that has to be matched to the input1299

distribution1300

p(u; θ) =
∫

p(u|v; θ)p(v; θ)dv (22)
1301

Once the parameters of the generative model have been es-1302

timated, through this matching, the posterior density of the1303

causes, given the inputs are given by the recognition model1304

defined in terms of therecognitiondistribution1305

p(v|u; θ) = p(u|v; θ)p(v; θ)
p(u; θ) (23)

1306

However, as considered in depth above, the generative model1307

may not be invertible and it may not be possible to compute1308

the recognition distribution fromEq. (23). In this instance, an1309

approximate recognition distribution can be usedq(v; u, φ)1310

that we try to approximate to the true one. The distribution1311

has some parametersφ that need to be learned, for example,1312

the strength of forward connections. The question addressed1313

in this review is whether forward connections are sufficient1314

for representational leaning. For a moment, consider deter-1315

ministic models that discount probabilistic or stochastic as-1316

pects. We have been asking whether we can find the param-1317

eters of a deterministic recognition model that renders it the1318

inverse of a generating process1319

v(u, φ) = G−1(u, θ) (24)1320

The problem is thatG(v, θ) is a nonlinear convolution and1321

is generally not invertible. The generative model approach1322

posits that it is sufficient to find the parameters of an (ap-1323

proximate) recognition modelφ and the generative modelθ1324

that predict the inputs1325

G(v(u, φ), θ) = u (25)1326

under the constraint that the recognition model is (approxi-1327

mately) the inverse of the generative model.Eq. (25)is the 1328

same asEq. (24)after applyingG to both sides. The impli-1329

cation is that one needs an explicit parameterisation of the1330

(approximate) recognition (inverse) model and generative1331

(forward) models that induces the need for both forward and1332

backward influences. Separate recognition and generative1333

models resolve the problem caused by the non-invertibility1334

of generating processes. The corresponding motivation, in1335

probabilistic learning, rests on finessing the combinatorial1336

explosion of ways in which stochastic generative models1337

can generate input patterns (Dayan et al., 1995). The com- 1338

binatorial explosion represents another perspective on the1339

uninvertible ‘many to one’ relationship between causes and1340

inputs. 1341

In the general density learning framework, representa-1342

tional learning has two components that can be seen in terms1343

of expectation maximisation (EM,Dempster et al., 1977). In 1344

theE-Step the approximate recognition distribution is mod-1345

ified to match the density implied by the generative model1346

parameters, so thatq(v; u, φ) ≈ p(v|u; θ) and in theM-Step 1347

these parameters are changed to renderp(u; θ) ≈ p(u). In 1348

other words, theE-Step ensures the recognition model ap-1349

proximates the generative model and theM-Step ensures that1350

the generative model can predict the observed inputs. If the1351

model is invertible theE-Step reduces to settingq(v; u, φ) = 1352

p(v|u; θ) usingEq. (23). Probabilistic recognition proceeds1353

by usingq(v; u, φ) to determine the probability thatv caused1354

the observed sensory inputs. This recognition becomes de-1355

terministic whenq(v; u, φ) is a Dirac δ-function over the1356

MAP estimator of the causesvm. The distinction between1357

probabilistic and deterministic recognition is important be-1358

cause we have restricted ourselves to deterministic models1359

thus far but these are special cases of density estimation in1360

generative modelling. 1361

3.6.1. Density estimation and EM 1362

EM provides a useful procedure for density estimation1363

that helps relate many different models within a framework1364

that has direct connections with statistical mechanics. Both1365

steps of the EM algorithm involve maximising a function of1366

the densities that corresponds to the negative free energy in1367

physics. 13681369

F(φ, θ) =
〈∫

q(v; u, φ) ln
p(v, u; θ)
q(v; u, φ) dv

〉
u

1370

= 〈lnp(u; θ)〉u−〈KL(q(v; u, φ), p(v|u; θ)〉u (26) 1371

This objective function comprises two terms. The first is the1372

expected log likelihood of the inputs, under the generative1373

model, over the observed inputs. Maximising this term im-1374

plicitly minimises the Kullback–Leibler (KL) divergence3 1375

between the actual input density and that implied by the gen-1376

erative model. This is equivalent to maximising the log like-1377

3 A measure of the discrepancy between two densities.
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lihood of the inputs. The second term is the KL divergence1378

between the approximating and true recognition densities. In1379

short, maximisingF encompasses two components of rep-1380

resentational learning: (i) it increases the likelihood that the1381

generative model could have produced the inputs; and (ii)1382

minimises the discrepancy between the approximate recog-1383

nition model and that implied by the generative model. The1384

E-Step increasesF with respect to the recognition parame-1385

tersφ through minimising the KL term, ensuring a veridical1386

approximation to the recognition distribution implied byθ.1387

TheM-Step increasesF by changingθ, enabling the gener-1388

ative model to reproduce the inputs.1389

E : φ = minφ F(φ, θ)

M : θ = minθ F(φ, θ)
(27)

1390

This formulation of representational leaning is critical for the1391

thesis of this review because it shows that backward connec-1392

tions, parameterising a generative model, are essential when1393

the model is not invertible. If the generative model is invert-1394

ible then the KL term can be discounted and learning reduces1395

to theM-Step (i.e. maximising the likelihood). In principle,1396

this could be done using a feedforward architecture corre-1397

sponding to the inverse of the generative model. However,1398

when processes generating inputs are non-invertible (due to1399

nonlinear interactions among, and temporal convolutions of,1400

the causes) a parameterisation of the generative model (back-1401

ward connections) and approximate recognition model (for-1402

ward connections) is required that can be updated inM- and1403

E-Steps, respectively. In short, non-invertibility enforces an1404

explicit parameterisation of the generative model in repre-1405

sentational learning. In the brain this parameterisation may1406

be embodied in backward and lateral connections.1407

The EM scheme enables exact and approximate maxi-1408

mum likelihood density estimation for a whole variety of1409

generative models that can be specified in terms of priors1410

and generative distributions. Dayan and Abbott (2001) work1411

though a series of didactic examples from cluster analy-1412

sis to independent component analyses, within this unifying1413

framework. For example, factor analysis corresponds to the1414

generative model1415

p(v; θ) = N(v : 0,1)

p(u |v ; θ) = N(u : θv,
∑

)
(28)

1416

Namely, the underlying causes of inputs are independent1417

normal variates that are mixed linearly and added to Gaus-1418

sian noise to form inputs. In the limiting case of
∑ → 01419

the generative and recognition models become deterministic1420

and the ensuing model conforms to PCA. By simply assum-1421

ing non-Gaussian priors one can specify generative models1422

for sparse coding of the sort proposed byOlshausen and1423

Field (1996).1424

p(v; θ) = ∏
p(vi, θ)

p(u |v ; θ) = N(u : θv,
∑

)
(29)

1425

where p(viθ) are chosen to be suitably sparse (i.e.1426

heavy-tailed) with a cumulative density function that cor-1427

responds to the squashing function inSection 3.3.1. The 1428

deterministic equivalent of sparse coding is ICA that obtains1429

when
∑ → 0. The relationships among different models1430

are rendered apparent under the perspective of generative1431

models. It is useful to revisit the schemes above to examine1432

their implicit generative and recognition models. 1433

3.6.2. Supervised representational learning 1434

In supervised schemes the generative model is already1435

known and only the recognition model needs to be esti-1436

mated. The generative model is known in the sense that the1437

desired output determines the input either deterministically1438

or stochastically (e.g. the input primitives are completely1439

specified by their cause, which is the desired output). In this1440

case only theE-Step is required in which the parameters1441

φ that specifyq(v; u, φ) change to maximiseF. The only 1442

term in Eq. (26)that depends onφ is the divergence term,1443

such that learning reduces to minimising the expected differ-1444

ence between the approximate recognition density and that1445

required by the generative model. This can proceed proba-1446

bilistically (e.g. Contrastive Hebbian learning in stochastic1447

networks (Abbott and Dayan, 2001, p. 322)) or determinis-1448

tically. In the deterministic modeq(v; u, φ) corresponds to a1449

δ-function over the point estimatorvm = R(u, φ). The con- 1450

nection strengthsφ are changed, typically using the delta1451

rule, such that the distance between the modes of the approx-1452

imate and desired recognition distributions are minimised1453

over all inputs. This is equivalent to nonlinear function ap-1454

proximation; a perspective that can be adopted on all super-1455

vised learning of deterministic mappings with neural nets.1456

Note, again, that any scheme, based on supervised learn-1457

ing, requires the processes generating inputs to be known a1458

priori and as such cannot be used by the brain. 1459

3.6.3. Information theory 1460

In section on information theory we had considered1461

whether infomax principles were sufficient to specify deter-1462

ministic recognition architectures, in the absence of back-1463

ward connections. They were introduced in terms of finding1464

some function of the inputs that produces an output den-1465

sity with maximum entropy. Maximisation ofF attains the1466

same thing through minimising the discrepancy between the1467

observed input distributionp(u) and that implied by a gen-1468

erative model with maximum entropy priors. Although the1469

infomax and density learning approaches have the same ob-1470

jective their heuristics are complementary. Infomax is moti-1471

vated by maximising the mutual information betweenu and 1472

v under some constraints. The generative model approach1473

takes its heuristics from the assumption that the causes of1474

inputs are independent and possibly non-Gaussian. This re-1475

sults in a prior with maximum entropyp(v; θ) = ∏
p(vi; θ). 1476

The reason for adopting non-Gaussian priors (e.g. sparse1477

coding and ICA) is that the central limit theorem implies1478

mixtures of causes will have Gaussian distributions and1479

therefore something that is not Gaussian is unlikely to be a1480

mixture. 1481
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For invertible deterministic modelsv = R(u, φ) =1482

G−1(u, θ) the KL component ofF disappears leaving only1483

the likelihood term.14841485

F = 〈lnp(u; θ)〉u = 〈lnp(v; θ)〉u + 〈lnp(u|v; θ)〉u1486

=
〈
ln

∏
p(vi; θ)

〉
u

+
〈
ln

∣∣∣∣∂R(u, φ)∂u

∣∣∣∣
〉
u

1487

= −
∑

H(vi; θ) + H(v;φ) − H(u) (30)1488

This has exactly the same dependence on the parameters1489

as the objective function employed by infomax inEq. (7).1490

In this context, the free energy and the information differ1491

only by the entropy of the inputs−F = I + H(u). This1492

equivalence rests on uses maximum entropy priors of the1493

sort assumed for sparse coding.1494

Notice again that, in the context of invertible deterministic1495

generative models, the parameters of the recognition model1496

specify the generative model and only the recognition model1497

(i.e. forward connections meditatingv = R(u, φ)) needs to1498

be instantiated. If the generative modal cannot be inverted1499

the recognition model is not defined and the scheme above1500

is precluded. In this instance one has to parameterise both an1501

approximate recognition and generative model as required1502

by EM. This enables the use of nonlinear generative models,1503

such as nonlinear PCA (e.g.Kramer, 1991; Karhunen and1504

Joutsensalo, 1994; Dong and McAvoy, 1996; Taleb and Jut-1505

ten, 1997). These schemes typically employ a ‘bottleneck’1506

architecture that forces the inputs through a small number of1507

nodes. The output from these nodes then diverges to produce1508

the predicted inputs. The approximate recognition model is1509

implemented, deterministically in connections to the bottle-1510

neck nodes and the generative model by connection from1511

these nodes to the outputs. Nonlinear transformations, from1512

the bottleneck nodes to the output layer, recapitulate the non-1513

linear mixing of the real causes of the inputs. After learning,1514

the activity of the bottleneck nodes can be treated as esti-1515

mates of the causes. These representations obtain by projec-1516

tion of the input onto a low-dimensional curvilinear mani-1517

fold (encompassing the activity of the bottleneck nodes) by1518

an approximate recognition model.1519

3.6.4. Predictive coding1520

In the forgoing, density learning is based on the expecta-1521

tions of probability distributions over the inputs. Clearly the1522

brain does not have direct access to these expectations but1523

sees only one input at any instant. In this instance represen-1524

tational learning has to proceed on-line, by sampling inputs1525

over time.1526

For deterministic recognition models,q(v; u, φ) is param-1527

eterised by its input-specific modev(u), whereq(v(u); u) =1528

1 and15291530

�(u) = ∫
q(v; u, φ)lnp(v, u; θ)

q(v; u, φ) dv = lnp(v(u), u; θ)
= lnp(u|v(u); θ) + lnp(v(u); θ)

F = 〈�(u)〉u

(31)

1531

�(u) is simply the log of the joint probability, under the1532

generative model, of the observed inputs and their cause,1533

implied by approximate recognition. This log probability1534

can be decomposed into a log likelihood and log prior and1535

is exactly the same objective function used to find the MAP1536

estimator in predictive coding cf.Eq. (14). 1537

On-line representational learning can be thought of as1538

comprising two components, corresponding to theE and 1539

M-Steps. The expectation (E) component updates the recog-1540

nition density, whose mode is encoded by the neuronal ac-1541

tivity v, by maximising�(u). Maximising�(u) is sufficient 1542

to maximise its expectationF over inputs because it is max-1543

imised for each input separately. The maximisation (M) 1544

component corresponds to an ascent of these parameters,1545

encoded by the connection strengths, on the same log prob-1546

ability 1547

E : φ̇ = v̇ = ∂�

∂v

M : θ̇ = ∂�

∂θ

(32)

1548

such that the expected change approximates4 an ascent on1549

F; 〈θ̇〉 ≈ 〈∂�/∂θ〉u = ∂F/∂θ. Eq. (32) is formally identi- 1550

cal to Eq. (19), the hierarchical prediction scheme, where1551

the hyperparameters have been absorbed into the param-1552

eters. In short, predictive coding can be regarded as an1553

on-line or dynamic form of density estimation using a de-1554

terministic recognition model and a stochastic generative1555

model. Conjoint changes in neuronal states and connection1556

strengths map to the expectation maximisation of the ap-1557

proximate recognition and generative models, respectively.1558

Note that there is no explicit parameterisation of the recog-1559

nition model; the recognition density is simply represented1560

by its mode for the inputu at a particular time. This affords1561

a very unconstrained recognition model that can, in princi-1562

ple, approximate the inverse of highly nonlinear generative1563

models. 1564

3.7. Summary 1565

In summary, the formulation of representational learn-1566

ing in terms of generative models embodies a number of1567

key distinctions: (i) the distinction between invertible versus1568

non-invertible models; (ii) deterministic versus probabilistic1569

representations; and (iii) dynamic versus density learning.1570

Non-invertible generative models require their explicit pa-1571

rameterisation and suggest an important role for backward1572

connections in the brain. Invertible models can, in princi-1573

ple be implemented using only forward connections because1574

the recognition model completely specifies the generative1575

model and vice versa. However, nonlinear and dynamic as-1576

pects of the sensorium render invertibility highly unlikely.1577

4 This approximation can be finessed by using traces, to approximate
the expectation explicitly, and changing the connections in proportion
with the trace.
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This section has focused on the conditions under which for-1578

ward connections are sufficient to parameterise a generative1579

model. In short, these conditions rest on invertibility and1580

speak to the need for backward connections in the context1581

of nonlinear and noninvertible generative models.1582

Most of the examples in this section have focussed on1583

deterministic recognition models where neuronal dynamics1584

encode the most likely causes of the current sensory input.1585

This is largely because we have been concerned with how the1586

brain represents things. The distinction between determinis-1587

tic and probabilistic representation addresses a deeper ques-1588

tion about whether neuronal dynamics represent the state of1589

the world or the probability densities of those states. From1590

the point of view of hierarchical models the state of the neu-1591

ronal units encodes the mode of the posterior density at any1592

given level. This can be considered a point recognition den-1593

sity. However, the states of units at any level also induce a1594

prior density in the level below. This is because the prior1595

mode is specified by dynamic top–down influences and the1596

prior covariance by the strength of lateral connections. These1597

covariances render the generative model a probabilistic one.1598

By encoding densities in terms of their modes, using neu-1599

ronal activity, the posterior and prior densities can change1600

quickly with sensory inputs. However, this does entail uni-1601

modal densities. From the point of view of a statistician this1602

may be an impoverished representation of the world that1603

compromises any proper inference, especially when the pos-1604

terior distribution is multimodal. However, it is exactly this1605

approximate nature of recognition that pre-occupies psy-1606

chophysicists and psychologists; The emergence of unitary,1607

deterministic perceptual representations in the brain is com-1608

monplace and is of special interest when the causes are am-1609

biguous (e.g. illusions and perceptual transitions induced by1610

binocular rivalry and ambiguous figures).1611

The brain is a dynamical system that samples inputs dy-1612

namically over time. It does not have instantaneous access to1613

the statistics of its inputs that are required for distinctE- and1614

M-Steps. Representational learning therefore has to proceed1615

under this constraint. In this review, hierarchical predictive1616

coding has been portrayed as a variant of density leaning1617

that conforms to these constraints.1618

We have seen that supervised, infomax and generative1619

models require prior assumptions about the distribution of1620

causes. This section introduced empirical Bayes to show that1621

these assumptions are not necessary and that priors can be1622

learned in a hierarchical context. Furthermore, we have tried1623

to show that hierarchical prediction can be implemented in1624

brain-like architectures using mechanisms that are biologi-1625

cally plausible.1626

4. Generative models and the brain1627

The arguments in the preceding section clearly favour1628

predictive coding, over supervised or information theoretic1629

frameworks, as a more plausible account of functional brain1630

architectures. However, it should be noted that the differ-1631

ences among them have been deliberately emphasised. For1632

example, predictive coding and the implicit error minimi-1633

sation results in the maximisation of information transfer.1634

In other words, predictive coding conforms to the princi-1635

ple of maximum information transfer, but in a distinct way.1636

Predictive coding is entirely consistent with the principle of1637

maximum information. The infomax principle is a principle,1638

whereas predictive coding represents a particular scheme1639

that serves that principle. There are examples of infomax1640

that do not employ predictive coding (e.g. transformations1641

of stimulus energy in early visual processing;Atick and 1642

Redlich, 1990) that may be specified genetically or epigenet-1643

ically. However, predictive coding is likely to play a much1644

more prominent role at higher levels of processing for the1645

reasons detailed in the previous section. 1646

In a similar way predictive coding, especially in its hi-1647

erarchical formulation, conforms to the same PDP princi-1648

ples that underpin connectionist schemes. The representa-1649

tion of any cause depends upon the internally consistent1650

representations of subordinate and supraordinate causes in1651

lower and higher levels. These representations mutually in-1652

duce and maintain themselves, across and within all levels1653

of the sensory hierarchy, through dynamic and reentrant in-1654

teractions (Edelman, 1993). The same PDP phenomena (e.g.1655

lateral interactions leading to competition among represen-1656

tations) can be observed. For example, the lateral connection1657

strengths embody what has been learnt empirically about the1658

prior covariances among causes. A prior that transpires to be1659

very precise (i.e. low variance) will receive correspondingly1660

low strength inhibitory connections from its competing er-1661

ror units (recall
∑
(λi)

1/2 = 1 + λi). It will therefore su- 1662

pervene over other error units and have a greater corrective1663

impact on the estimate causing the prediction error. Con-1664

versely, top–down expectations that are less informative will1665

induce errors that are more easily suppressed and have less1666

effect on the representations. In predictive coding, these dy-1667

namics are driven explicitly by error minimisation, whereas1668

in connectionist simulations the activity is determined solely1669

by the connection strengths established during training.1670

In addition to the theoretical bias toward generative mod-1671

els and predictive coding, the clear emphasis on backward1672

and reentrant (Edelman, 1993) dynamics make it a more nat-1673

ural framework for understanding neuronal infrastructures.1674

Fig. 1 shows the fundamental difference between infomax1675

and generative schemes. In the infomax schemes the con-1676

nections are universally forward. In the predictive coding1677

scheme the forward connections (broken line) drive the pre-1678

diction so as to minimise error whereas backwards connec-1679

tions (solid lines) use these representations of causes to emu-1680

late mixing enacted by the real world. The nonlinear aspects1681

of this mixing imply that only backward influences inter-1682

act in the predictive coding scheme whereas the nonlinear1683

unmixing, in classical infomax schemas, is mediated by for-1684

ward connections.Section 2assembled some of the anatom-1685

ical and physiological evidence suggesting that backward1686
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connections are prevalent in the real brain and could support1687

nonlinear mixing through their modulatory characteristics.1688

It is pleasing that purely theoretical considerations and neu-1689

robiological empiricism converge on the same architecture.1690

Before turning to electrophysiological and functional neu-1691

roimaging evidence for backward connections we consider1692

the implications for classical views of receptive fields and1693

the representational capacity of neuronal units.1694

4.1. Context, causes and representations1695

The Bayesian perspective suggests something quite pro-1696

found for the classical view of receptive fields. If neuronal1697

responses encompass a bottom–up likelihood term and1698

top–down priors, then responses evoked by bottom–up in-1699

put should change with the context established by prior1700

expectations from higher levels of processing. Consider the1701

example inFig. 3 again. Here a unit encoding the visual1702

form of ‘went’ responds when we read the first sentence at1703

the top of this figure. When we read the second sentence1704

‘The last event was cancelled’ it would not. If we recorded1705

from this unit we might infer that our ‘went’ unit was, in1706

some circumstances, selective for the word ‘event’. Without1707

an understanding of hierarchical inference and the semantic1708

context the stimulus was presented in this might be difficult1709

to explain. In short, under a predictive coding scheme, the1710

receptive fields of neurons should be context-sensitive. The1711

remainder of this section deals with empirical evidence for1712

these extra-classical receptive field effects.1713

Generative models suggest that the role of backward con-1714

nections is to provide contextual guidance to lower lev-1715

els through a prediction of the lower level’s inputs. When1716

this prediction is incomplete or incompatible with the lower1717

area’s input, an error is generated that engenders changes in1718

the area above until reconciliation. When, and only when, the1719

bottom–up driving inputs are in harmony with top–down pre-1720

diction, error is suppressed and a consensus between the pre-1721

diction and the actual input is established. Given this concep-1722

tual model a stimulus-related response or ‘activation’ corre-1723

sponds to some transient error signal that induces the appro-1724

priate change in higher areas until a veridical higher-level1725

representation emerges and the error is ‘cancelled’ by back-1726

wards connections. Clearly the prediction error will depend1727

on the context and consequently the backward connections1728

confer context-sensitivity on the functional specificity of the1729

lower area. In short, the activation does not just depend on1730

bottom–up input but on the difference between bottom–up1731

input and top–down predictions.1732

The prevalence of nonlinear or modulatory top–down ef-1733

fects can be inferred from the fact that context interacts with1734

the content of representations. Here context is established1735

simply through the expression of causes other than the one1736

in question. Backward connections from one higher area1737

can be considered as providing contextual modulation of the1738

prediction from another. Because the effect of context will1739

only be expressed when the thing being predicted is present1740

these contextual afferents will not elicit a response by them-1741

selves. Effects of this sort, which change the responsiveness1742

of units but do not elicit a response, are a hallmark of mod-1743

ulatory projections. In summary, hierarchical models offer a1744

scheme that allows for contextual effects; firstly through bi-1745

asing responses towards their prior expectation and secondly1746

by conferring a context-sensitivity on these priors through1747

modulatory backward projections. Next we consider the na-1748

ture of real neuronal responses and whether they are consis-1749

tent with this perspective. 1750

4.2. Neuronal responses and representations 1751

Classical models (e.g. classical receptive fields) assume1752

that evoked responses will be expressed invariably in the1753

same units or neuronal populations irrespective of the con-1754

text. However, real neuronal responses are not invariant but1755

depend upon the context in which they are evoked. For exam-1756

ple, visual cortical units have dynamic receptive fields that1757

can change from moment to moment (cf. the non-classical1758

receptive field effects modelled in (Rao and Ballard, 1998)). 1759

Another example is attentional modulation of evoked re-1760

sponses that can change the sensitivity of neurons to different1761

perceptual attributes (e.g.Treue and Maunsell, 1996). The 1762

evidence for contextual responses comes from neuroanatom-1763

ical and electrophysiological studies. There are numerous1764

examples of context-sensitive neuronal responses. Perhaps1765

the simplest is short-term plasticity. Short-term plasticity1766

refers to changes in connection strength, either potentia-1767

tion or depression, following pre-synaptic inputs (e.g.Abbot 1768

et al., 1997). In brief, the underlying connection strengths,1769

that define what a unit represents, are a strong function of1770

the immediately preceding neuronal transient (i.e. preced-1771

ing representation). A second, and possibly richer, example1772

is that of attentional modulation. It has been shown, both1773

in single unit recordings in primates (Treue and Maunsell,1774

1996) and human functional fMRI studies (Büchel and Fris-1775

ton, 1997), that attention to specific visual attributes can pro-1776

foundly alter the receptive fields or event-related responses1777

to the same stimuli. 1778

These sorts of effects are commonplace in the brain and1779

are generally understood in terms of the dynamic modula-1780

tion of receptive field properties by backward and lateral1781

afferents. There is clear evidence that lateral connections in1782

visual cortex are modulatory in nature (Hirsch and Gilbert,1783

1991), speaking to an interaction between the functional seg-1784

regation implicit in the columnar architecture of V1 and the1785

neuronal dynamics in distal populations. These observations,1786

suggests that lateral and backwards interactions may convey1787

contextual information that shapes the responses of any neu-1788

ron to its inputs (e.g.Kay and Phillips, 1996; Phillips and1789

Singer, 1997) to confer on the brain the ability to make con-1790

ditional inferences about sensory input. See alsoMcIntosh 1791

(2000)who develops the idea from a cognitive neuroscience1792

perspective “that a particular region in isolation may not1793

act as a reliable index for a particular cognitive function.1794
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Instead, theneural contextin which an area is active may1795

define the cognitive function.” His argument is predicated1796

on careful characterisations of effective connectivity using1797

neuroimaging.1798

4.2.1. Examples from electrophysiology1799

In the next section we will illustrate the context-sensitive1800

nature of cortical activations, and implicit specialisation, in1801

the inferior temporal lobe using neuroimaging. Here we con-1802

sider the evidence for contextual representations in terms of1803

single cell responses, to visual stimuli, in the temporal cor-1804

tex of awake behaving monkeys. If the representation of a1805

stimulus depends on establishing representations of subor-1806

dinate and supraordinate causes at all levels of the visual1807

hierarchy, then information about the high-order attributes1808

of a stimulus, must be conferred by top–down influences.1809

Consequently, one might expect to see the emergence of se-1810

lectivity, for high-level attributes,after the initial visually1811

evoked response (it typically takes about 10 ms for volleys1812

of spikes to be propagated from one cortical area to another1813

and about a 100 ms to reach prefrontal areas). This is be-1814

cause the representations at higher levels must emerge be-1815

fore backward afferents can reshape the response profile of1816

neurons in lower areas. This temporal delay, in the emer-1817

gence of selectivity, is precisely what one sees empirically:1818

Sugase et al. (1999)recorded neurons in macaque temporal1819

cortex during the presentation of faces and objects. The faces1820

were either human or monkey faces and were categorised in1821

terms of identity (whose face it was) and expression (happy,1822

angry, etc.). “Single neurones conveyed two different scales1823

of facial information in their firing patterns, starting at dif-1824

ferent latencies. Global information, categorising stimuli as1825

monkey faces, human faces or shapes, was conveyed in the1826

earliest part of the responses. Fine information about iden-1827

tity or expression was conveyed later”, starting on average1828

about 50 ms after face-selective responses. These observa-1829

tions demonstrate representations for facial identity or ex-1830

pression that emerge dynamically in a way that might rely1831

on backward connections. These influences imbue neurons1832

with a selectivity that is not intrinsic to the area but depends1833

on interactions across levels of a processing hierarchy.1834

A similar late emergence of selectivity is seen in motion1835

processing. A critical aspect of visual processing is the inte-1836

gration of local motion signals generated by moving objects.1837

This process is complicated by the fact that local velocity1838

measurements can differ depending on contour orientation1839

and spatial position. Specifically, any local motion detector1840

can measure only the component of motion perpendicular1841

to a contour that extends beyond its field of view (Pack and1842

Born, 2001). This “aperture problem” is particularly relevant1843

to direction-selective neurons early in the visual pathways,1844

where small receptive fields permit only a limited view of1845

a moving object.Pack and Born (2001)have shown “that1846

neurons in the middle temporal visual area (known as MT1847

or V5) of the macaque brain reveal a dynamic solution to1848

the aperture problem. MT neurons initially respond primar-1849

ily to the component of motion perpendicular to a contour’s1850

orientation, but over a period of approximately 60 ms the re-1851

sponses gradually shift to encode the true stimulus direction,1852

regardless of orientation”. 1853

The preceding examples were taken from electrophys-1854

iology. Similar predictions can be made, albeit at a less1855

refined level, about population responses elicited in func-1856

tional neuroimaging where functional specialisation (cf.1857

selectivity in unit recordings) is established by showing1858

regionally-specific responses to some sensorimotor attribute1859

or cognitive component. At the level of cortical responses1860

in neuroimaging the dynamic and contextual nature of1861

evoked responses means that regionally-specific responses1862

to a particular cognitive component may be expressed in1863

one context but not another. In the next section we look at1864

some empirical evidence from functional neuroimaging that1865

confirms the idea that functional specialisation is conferred1866

in a context-sensitive fashion by backwards connections1867

from higher brain areas. 1868

5. Functional architectures assessed with 1869

brain imaging 1870

Information theory and predictive coding schemas sug-1871

gest alternative architectures that are sufficient for represen-1872

tational learning. Forward connections are sufficient for the1873

former, whereas the latter posits that most of the brain’s in-1874

frastructure is used to predict sensory input through a hierar-1875

chy of top–down projections. Clearly to adjudicate between1876

these alternatives the existence of backward influences must1877

be established. This is a slightly deeper problem for func-1878

tional neuroimaging than might be envisaged. This is be-1879

cause making causal inferences about effective connectivity1880

is not straightforward (seePearl, 2000). It might be thought1881

that showing regional activity was partially predicted by ac-1882

tivity in a higher level would be sufficient to confirm the ex-1883

istence of backward influences, at least at a population level.1884

The problem is that this statistical dependency does not per-1885

mit any causal inference. Statistical dependencies could eas-1886

ily arise in a purely forward architecture because the higher1887

level activity is predicated on activity in the lower level. One1888

resolution of this problem is to perturb the higher level di-1889

rectly using transmagnetic stimulation or pathological dis-1890

ruptions (seeSection 6). However, discounting these inter-1891

ventions, one is left with the difficult problem of inferring1892

backward influences, based on measures that could be cor-1893

related because of forward connections. Although there are1894

causal modelling techniques that can address this problem1895

we will take a simpler approach and note that interactions1896

between bottom–up and top–down influences cannot be ex-1897

plained by a purely feedforward architecture. This is because1898

the top–down influences have no access to the bottom–up1899

inputs. An interaction, in this context, can be construed as an1900

effect of backward connections on the driving efficacy of for-1901

ward connections. In other words, the response evoked by the1902
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same driving bottom–up inputs depends upon the context es-1903

tablished by top–down inputs. This interaction is used below1904

simply as evidence for the existence of backward influences.1905

However, there are some instances of predictive coding that1906

emphasises this phenomenon. For example, the “Kalman fil-1907

ter model demonstrates how certain forms of attention can be1908

viewed as an emergent property of the interaction between1909

top–down expectations and bottom–up signals” (Rao, 1999).1910

The remainder of this article focuses on the evidence1911

for these interactions. From the point of view of func-1912

tionally specialised responses these interactions manifest1913

as context-sensitive or contextual specialisation, where1914

modality-, category- or exemplar-specific responses, driven1915

by bottom up inputs are modulated by top–down influences1916

induced by perceptual set. The first half of this section1917

adopts this perceptive. The second part of this section uses1918

measurements of effective connectivity to establish inter-1919

actions between bottom–up and top–down influences. All1920

the examples presented below rely on attempts to establish1921

interactions by trying to change sensory-evoked neuronal1922

responses through putative manipulations of top–down in-1923

fluences. These include inducing independent changes in1924

perceptual set, cognitive (attentional) set and, in the last1925

section through the study of patients with brain lesions.1926

5.1. Context-sensitive specialisation1927

If functional specialisation is context-dependent then one1928

should be able to find evidence for functionally-specific re-1929

sponses, using neuroimaging, that are expressed in one con-1930

text and not in another. The first part of this section pro-1931

vides an empirical example. If the contextual nature of spe-1932

cialisation is mediated by backwards modulatory afferents1933

then it should be possible to find cortical regions in which1934

functionally-specific responses, elicited by the same stim-1935

uli, are modulated by activity in higher areas. The second1936

example shows that this is indeed possible. Both of these ex-1937

amples depend on multifactorial experimental designs that1938

have largely replaced subtraction and categorical designs in1939

human brain mapping.1940

5.1.1. Categorical designs1941

Categorical designs, such as cognitive subtraction, have1942

been the mainstay of functional neuroimaging over the past1943

decade. Cognitive subtraction involves elaborating two tasks1944

that differ in a separable component. Ensuing differences1945

in brain activity are then attributed to this component. The1946

tenet of cognitive subtraction is that the difference between1947

two tasks can be formulated as a separable cognitive or sen-1948

sorimotor component and that the regionally specific differ-1949

ences in hemodynamic responses identify the corresponding1950

functionally specialised area. Early applications of subtrac-1951

tion range from the functional anatomy of word processing1952

(Petersen et al., 1989) to functional specialisation in extras-1953

triate cortex (Lueck et al., 1989). The latter studies involved1954

presenting visual stimuli with and without some sensory at-1955

tribute (e.g. colour, motion etc.). The areas highlighted by1956

subtraction were identified with homologous areas in mon-1957

keys that showed selective electrophysiological responses to1958

equivalent visual stimuli. 1959

Consider a specific example; namely the difference be-1960

tween simply saying “yes” when a recognisable object is1961

seen, and saying “yes” when an unrecognisable non-object1962

is seen. Regionally specific differences in brain activity that1963

distinguish between these two tasks could be implicated in1964

implicit object recognition. Although its simplicity is appeal-1965

ing this approach embodies some strong assumptions about1966

the way that the brain implements cognitive processes. A1967

key assumption is ‘pure insertion’. Pure insertion asserts that1968

one can insert a new component into a task without effect-1969

ing the implementation of pre-existing components (for ex-1970

ample, how do we know that object recognition is not itself1971

affected by saying “yes”?). The fallibility of this assumption1972

has been acknowledged for decades, perhaps most explic-1973

itly by Sternberg’s revision of Donder’s subtractive method.1974

The problem for subtraction is as follows: if one develops a1975

task by adding a component then the new task comprises not1976

only the previous components and the new component but1977

the integration of the new and old components (for example,1978

the integration of phonology and object recognition). This1979

integration orinteractioncan itself be considered as a new1980

component. The difference between two tasks therefore in-1981

cludes the new component and the interactions between the1982

new component and those of the original task. Pure inser-1983

tion requires that all these interaction terms are negligible.1984

Clearly in many instances they are not. We next consider fac-1985

torial designs that eschew the assumption of pure insertion.1986

5.1.2. Multifactorial designs 1987

Factorial designs combine two or more factors within a1988

task or tasks. Factorial designs can be construed as per-1989

forming subtraction experiments in two or more different1990

contexts. The differences in activations, attributable to the1991

effects of context, are simply the interaction. Consider re-1992

peating the above implicit object recognition experiment in1993

another context, for example naming (of the object’s name1994

or the non-object’s colour). The factors in this example are1995

implicit object recognition with two levels (objects versus1996

non-objects) and phonological retrieval (naming versus say-1997

ing “yes”). The idea here is to look at the interaction be-1998

tween these factors, or the effect that one factor has on the1999

responses elicited by changes in the other. Generally, in-2000

teractions can be thought of as a difference in activations2001

brought about by another processing demand. Dual task in-2002

terference paradigms are a clear example of this approach2003

(e.g.Fletcher et al., 1995). 2004

Consider the above object recognition experiment again.2005

Noting that object-specific responses are elicited (by ask-2006

ing subjects to view objects relative to meaningless shapes),2007

with and without phonological retrieval, reveals the factorial2008

nature of this experiment. This ‘two by two’ design allows2009

one to look specifically at the interaction between phono-2010
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Fig. 4. This example of regionally specific interactions comes from an experiment where subjects were asked to view coloured non-object shapes or
coloured objects and say “yes”, or to name either the coloured object or the colour of the shape.Left: A regionally specific interaction in the left
infero-temporal cortex. The SPM threshold isP < 0.05 (uncorrected) (Friston et al., 1995b). Right: The corresponding activities in the maxima of this
region are portrayed in terms of object recognition-dependent responses with and without naming. It is seen that this region shows object recognition
responses when, and only when, there is phonological retrieval. The ‘extra’ activation with naming corresponds to the interaction. These data were
acquired from 6 subjects scanned 12 times using PET.

logical retrieval and object recognition. This analysis iden-2011

tifies not regionally specific activations but regionally spe-2012

cific interactions. When we actually performed this exper-2013

iment these interactions were evident in the left posterior,2014

inferior temporal region and can be associated with the in-2015

tegration of phonology and object recognition (seeFig. 42016

andFriston et al., 1996for details). Alternatively this region2017

can be thought of as expressing recognition-dependent re-2018

sponses that are realised in, and only in, the context of having2019

to name the object seen. These results can be construed as2020

evidence of contextual specialisation for object-recognition2021

that depends upon modulatory afferents (possibly from tem-2022

poral and parietal regions) that are implicated in naming a2023

visually perceived object. There is no empirical evidence in2024

these results to suggest that the temporal or parietal regions2025

are the source of this top–down influence but in the next ex-2026

ample the source of modulation is addressed explicitly using2027

psychophysiological interactions.2028

5.1.3. Psychophysiological interactions2029

Psychophysiological interactions speak directly to the2030

interactions between bottom–up and top–down influences,2031

where one is modelled as an experimental factor and the2032

other constitutes a measured brain response. In an analysis2033

of psychophysiological interactions one is trying to explain2034

a regionally specific response in terms of an interaction be-2035

tween the presence of a sensorimotor or cognitive process2036

and activity in another part of the brain (Friston et al., 1997).2037

The supposition here is that the remote region is the source2038

of backward modulatory afferents that confer functional2039

specificity on the target region. For example, by combining2040

information about activity in the posterior parietal cortex,2041

mediating attentional or perceptual set pertaining to a partic-2042

ular stimulus attribute, can we identify regions that respond2043

to that stimulus when, and only when, activity in the parietal2044

source is high? If such an interaction exists, then one might2045

infer that the parietal area is modulating responses to the2046

stimulus attribute for which the area is selective. This has2047

clear ramifications in terms of the top–down modulation of2048

specialised cortical areas by higher brain regions. 2049

The statistical model employed in testing for psychophysi-2050

ological interactions is a simple regression model of effective2051

connectivity that embodies nonlinear (second-order or mod-2052

ulatory effects). As such, this class of model speaks directly2053

to functional specialisation of a nonlinear and contextual2054

sort. Fig. 5 illustrates a specific example (seeDolan et al.,2055

1997 for details). Subjects were asked to view (degraded)2056

faces and non-face (object) controls. The interaction between2057

activity in the parietal region and the presence of faces was2058

expressed most significantly in the right infero-temporal re-2059

gion not far from the homologous left infero-temporal re-2060

gion implicated in the object naming experiment above.2061

Changes in parietal activity were induced experimentally by2062

pre-exposure of the (un-degraded) stimuli before some scans2063

but not others to prime them. The data in the right panel2064

of Fig. 5 suggests that the infero-temporal region shows2065

face-specific responses, relative to non-face objects, when,2066

and only when, parietal activity is high. These results can be2067

interpreted as a priming-dependent face-specific response,2068

in infero-temporal regions that are mediated by interactions2069

with medial parietal cortex. This is a clear example of con-2070

textual specialisation that depends on top–down effects.2071

5.2. Effective connectivity 2072

The previous examples demonstrating contextual special-2073

isation are consistent with functional architectures implied2074

by predictive coding. However, they do not provide defini-2075
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Fig. 5. Top: Examples of the stimuli presented to subjects. During the measurement of brain responses only degraded stimuli where shown (e.g. the right
hand picture). In half the scans the subject was given the underlying cause of these stimuli, through presentation of the original picture (e.g. left)before
scanning. This priming induced a profound difference in perceptual set for the primed, relative to non-primed, stimuli,Right: Activity observed in a
right infero-temporal region, as a function of (mean corrected) PPC activity. This region showed the most significant interaction between the presence
of faces in visually presented stimuli and activity in a reference location in the posterior medial parietal cortex (PPC). This analysis can be thought of
as finding those areas that are subject to top–down modulation of face-specific responses by medial parietal activity. The crosses correspond to activity
whilst viewing non-face stimuli and the circles to faces. The essence of this effect can be seen by noting that this region differentiates between faces
and non-faces when, and only when, medial parietal activity is high. The lines correspond to the best second-order polynomial fit. These data were
acquired from six subjects using PET.Left: Schematic depicting the underlying conceptual model in which driving afferents from ventral form areas
(here designated as V4) excite infero-temporal (IT) responses, subject to permissive modulation by PPC projections.

tive evidence for an interaction between top–down and2076

bottom–up influences. In this subsection we look for direct2077

evidence of these interactions using functional imaging.2078

This rests upon being able to measure effective connectivity2079

in a way that is sensitive to interactions among inputs. This2080

requires a plausible model of coupling among brain regions2081

that accommodates nonlinear and dynamical effects. We2082

have used a model that is based on the Volterra expansion2083

introduced inSection 3. Before turning to empirical evi-2084

dence for interactions between bottom–up and top–down2085

inputs the motivation for this particular model of effective2086

connectivity is presented briefly.2087

5.2.1. Effective connectivity and Volterra kernels2088

The problem faced, when trying to measure effective con-2089

nectivity, is that measurements of brain responses are usu-2090

ally very limited, either in terms of their resolution (in space2091

or time) or in terms of the neurophysiological or biophysi-2092

cal variable that is measured. Given the complicated nature2093

of neuronal interactions, involving a huge number of micro-2094

scopic variables, it may seem an impossible task to make2095

meaningful measurements of coupling among brain systems,2096

especially with measurements afforded by techniques like2097

fMRI. However, the problem is not as intractable as one2098

might think. 2099

Suppose that the variablesx represented a complete and2100

self-consistent description of the state variables of a brain2101

region. In other words, everything needed to determine the2102

evolution of that region’s state, at a particular place and2103

time, was embodied in these measurements. If such a set of2104

variables existed they would satisfy some immensely com-2105

plicated nonlinear equations (cf.Eq. (1)) 2106

ẋ = f(s, u)

y = g(x)
(33)

2107

u represents a set of inputs conveyed by projections from2108

other regions andx is a large vector of state variables which2109

range from depolarisation at every point in the dendritic tree2110
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to the phosphorylation status of every relevant enzyme; from2111

the biochemical status of every glial cell compartment to2112

every aspect of gene expression. The vast majority of these2113

variables are hidden and not measurable directly. However,2114

there are measurementsy that can be made, that, as we have2115

seen inSection 3, are simply a nonlinear convolution of the2116

inputs with some Volterra kernels. These measures usually2117

reflect the activity of whole cells or populations and are mea-2118

sured in many ways, for example firing at the initial segment2119

of an axon or local field potentials. The critical thing here is2120

that the output is casually related to the inputs,which are the2121

outputs of other regions. This means that that we never need2122

to know the underlying and ‘hidden’ variables that describe2123

Fig. 6. Left: Brain regions and connections comprising the model.Right: Characterisation of the effects of V2 inputs on V5 and their modulation by
posterior parietal cortex (PPC). The broken lines represent estimates of V5 responses when PPC activity is zero, according to a second-order Volterra
model of effective connectivity with inputs to V5 from V2, PPC and the pulvinar (PUL). The solid curves represent the same response when PPC activity
is one standard deviation of its variation over conditions. It is evident that V2 has an activating effect on V5 and that PPC increases the responsiveness
of V5 to these inputs. The insert shows all the voxels in V5 that evidenced a modulatory effect (P < 0.05 uncorrected). These voxels were identified
by thresholding a SPM (Friston et al., 1995b) of the F statistic testing for the contribution of second-order kernels involving V2 and PPC (treating all
other terms as nuisance variables). The data were obtained with fMRI under identical stimulus conditions (visual motion subtended by radially moving
dots) whilst manipulating the attentional component of the task (detection of velocity changes).

the details of each region’s electrochemical status. We only2124

need to know the history of its inputs, which obtain from2125

the measurable outputs of other regions. In principle, a com-2126

plete description of regional responses could be framed in2127

terms of inputs and the Volterra kernels required to produce2128

the outputs. The nice thing about the kernels is that they can2129

be interpreted directly as effective connectivity (see Box 1).2130

Because the inputs (and outputs) are measurable one can2131

estimate the kernels empirically. The first-order kernel is2132

simply the change in response induced by a change in input2133

in the recent past. The second-order kernels are the change2134

in the first–order effective connectivity induced by changes2135

in a second (modulatory) input and so on for higher orders.
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Another nice thing about the Volterra formulation is that the2136

response is linear in the unknowns, which can be estimated2137

using standard least square procedures. In short, Volterra2138

kernels are synonymous with effective connectivity because2139

they characterise the measurable effect that an input has on2140

its target.2141

5.2.2. Nonlinear coupling among brain areas2142

Linear models of effective connectivity assume that the2143

multiple inputs to a brain region are linearly separable. This2144

assumption precludes activity-dependent connections that2145

are expressed in one context and not in another. The resolu-2146

tion of this problem lies in adopting nonlinear models like2147

the Volterra formulation that include interactions among in-2148

puts. These interactions can be construed as a context- or2149

activity-dependent modulation of the influence that one re-2150

gion exerts over another (Büchel and Friston, 1997). In the2151

Volterra model, second-order kernels model modulatory ef-2152

fects. Within these models the influence of one region on2153

another has two components: (i) the direct ordriving in-2154

fluence of input from the first (e.g. hierarchically lower)2155

region, irrespective of the activities elsewhere; and (ii) an2156

activity-dependent,modulatorycomponent that represents2157

an interaction with inputs from the remaining (e.g. hierar-2158

chically higher) regions. These are mediated by the first and2159

second-order kernels, respectively. The example provided in2160

Fig. 6addresses the modulation of visual cortical responses2161

by attentional mechanisms (e.g.Treue and Maunsell, 1996)2162

and the mediating role of activity-dependent changes in ef-2163

fective connectivity.2164

The right panel inFig. 6 shows a characterisation of this2165

modulatory effect in terms of the increase in V5 responses,2166

to a simulated V2 input, when posterior parietal activity is2167

zero (broken line) and when it is high (solid lines). In this2168

study subjects were studied with fMRI under identical stim-2169

ulus conditions (visual motion subtended by radially moving2170

dots) whilst manipulating the attentional component of the2171

task (detection of velocity changes). The brain regions and2172

connections comprising the model are shown in the upper2173

panel. The lower panel shows a characterisation of the ef-2174

fects of V2 inputs on V5 and their modulation by posterior2175

parietal cortex (PPC) using simulated inputs at different lev-2176

els of PPC activity. It is evident that V2 has an activating ef-2177

fect on V5 and that PPC increases the responsiveness of V52178

to these inputs. The insert shows all the voxels in V5 that ev-2179

idenced a modulatory effect (P < 0.05 uncorrected). These2180

voxels were identified by thresholding statistical parametric2181

maps of the F statistic (Friston et al., 1995b) testing for the2182

contribution of second-order kernels involving V2 and PPC2183

while treating all other components as nuisance variables.2184

The estimation of the Volterra kernels and statistical infer-2185

ence procedure is described inFriston and Büchel (2000).2186

This sort of result suggests that backward parietal inputs2187

may be a sufficient explanation for the attentional modu-2188

lation of visually evoked extrastriate responses. More im-2189

portantly, they are consistent with the functional architec-2190

ture implied by predictive coding because they establish2191

the existence of functionally expressed backward connec-2192

tions. V5 cortical responses evidence an interaction between2193

bottom–up input from early visual cortex and top–down in-2194

fluences from parietal cortex. In the final section the impli-2195

cations of this sort of functional integration are addressed2196

from the point of view of the lesion-deficit model and neu-2197

ropsychology. 2198

6. Functional integration and neuropsychology 2199

If functional specialisation depends on interactions among2200

cortical areas then one might predict changes in functional2201

specificity in cortical regions that receive enabling or modu-2202

latory afferents from a damaged area. A simple consequence2203

is that aberrant responses will be elicited in regions hierar-2204

chically below the lesion if, and only if, these responses de-2205

pend upon inputs from the lesion site. However, there may be2206

other contexts in which the region’s responses are perfectly2207

normal (relying on other, intact, afferents). This leads to the2208

notion of a context-dependent regionally-specific abnormal-2209

ity, caused by, but remote from, a lesion (i.e. an abnormal2210

response that is elicited by some tasks but not others). We2211

have referred to this phenomenon as ‘dynamic diaschisis’2212

(Price et al., 2000). 2213

6.1. Dynamic diaschisis 2214

Classical diaschisis, demonstrated by early anatomical2215

studies and more recently by neuroimaging studies of rest-2216

ing brain activity, refers to regionally specific reductions in2217

metabolic activity at sites that are remote from, but con-2218

nected to, damaged regions. The clearest example is ‘crossed2219

cerebellar diaschisis’ (Lenzi et al., 1982) in which abnormal-2220

ities of cerebellar metabolism are seen characteristically fol-2221

lowing cerebral lesions involving the motor cortex. Dynamic2222

diaschisis describes the context-sensitive and task-specific2223

effects that a lesion can have on theevoked responsesof a 2224

distant cortical region. The basic idea behind dynamic di-2225

aschisis is that an otherwise viable cortical region expresses2226

aberrant neuronal responses when, and only when, those re-2227

sponses depend upon interactions with a damaged region.2228

This can arise because normal responses in any given region2229

depend upon inputs from, and reciprocal interactions with,2230

other regions. The regions involved will depend on the cog-2231

nitive and sensorimotor operations engaged at any particular2232

time. If these regions include one that is damaged, then ab-2233

normal responses may ensue. However, there may be situa-2234

tions when the same region responds normally, for instance2235

when its dynamics depend only upon integration with un-2236

damaged regions. If the region can respond normally in some2237

situations then forward driving components must be intact.2238

This suggests that dynamic diaschisis will only present it-2239

self when the lesion involves a hierarchically equivalent or2240

higher area. 2241



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

28 K. Friston / Progress in Neurobiology 590 (2002) 1–31

Fig. 7. (a)Top: These renderings illustrate the extent of cerebral infarcts in four patients, as identified by voxel-based morphometry. Regions of reduced
grey matter (relative to neurologically normal controls) are shown in white on the left hemisphere. The SPMs (Friston et al., 1995b) were thresholded
at P < 0.001 uncorrected. All patients had damage to Broca’s area. The first (upper left) patient’s left middle cerebral artery infarct was most extensive
encompassing temporal and parietal regions as well as frontal and motor cortex. (b)Bottom: SPMs illustrating the functional imaging results with regions
of significant activation shown in black on the left hemisphere. Results are shown for: (i) normal subjects reading words (left); (ii) activations common
to normal subjects and patients reading words using a conjunction analysis (middle-top); (iii) areas where normal subjects activate significantly more
than patients reading words, using the group times condition interaction (middle lower); and (iv) the first patient activating normally for a semantic task.
Context-sensitive failures to activate are implied by the abnormal activations in the first patient, for the implicit reading task, despite a normal activation
during a semantic task.

6.1.1. An empirical demonstration2242

We investigated this possibility in a functional imaging2243

study of four aphasic patients, all with damage to the left pos-2244

terior inferior frontal cortex, classically known as Broca’s2245

area (seeFig. 7, upper panels). These patients had speech2246

output deficits but relatively preserved comprehension. Gen-2247

erally functional imaging studies can only make inferences2248

about abnormal neuronal responses when changes in cogni-2249

tive strategy can be excluded. We ensured this by engaging2250

the patients in an explicit task that they were able to perform2251

normally. This involved a keypress response when a visually2252

presented letter string contained a letter with an ascending2253

visual feature (e.g.: h, k, l, or t). While the task remained2254

constant, the stimuli presented were either words or conso-2255

nant letter strings. Activations detected for words, relative2256

to letters, were attributed to implicit word processing. Each2257

patient showed normal activation of the left posterior mid-2258

dle temporal cortex that has been associated with seman-2259

tic processing (Price, 1998). However, none of the patients2260

activated the left posterior inferior frontal cortex (damaged2261

by the stroke), or the left posterior inferior temporal region2262

(undamaged by the stroke) (seeFig. 4). These two regions2263

are crucial for word production (Price, 1998). Examination2264

of individual responses in this area revealed that all the nor-2265

mal subjects showed increased activity for words relative to2266

consonant letter strings while all four patients showed the2267

reverse effect. The abnormal responses in the left posterior2268

inferior temporal lobe occurred even though this undamaged2269

region: (i) lies adjacent and posterior to a region of the left2270

middle temporal cortex that activated normally (see middle2271

column ofFig. 7b); and (ii) is thought to be involved in an2272

earlier stage of word processing than the damaged left in-2273

ferior frontal cortex (i.e. is hierarchically lower than the le-2274

sion). From these results we can conclude that, during the2275

reading task, responses in the left basal temporal language2276

area rely on afferent inputs from the left posterior inferior2277

frontal cortex. When the first patient was scanned again,2278

during an explicit semantic task, the left posterior inferior2279

temporal lobe responded normally. The abnormal implicit2280

reading related responses were therefore task-specific.2281

These results serve to illustrate the concept of dy-2282

namic diaschisis; namely the anatomically remote and2283
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context-specific effects of focal brain lesions. Dynamic2284

diaschisis represents a form of functional disconnection2285

where regional dysfunction can be attributed to the loss2286

of enabling inputs from hierarchically equivalent or higher2287

brain regions. Unlike classical or anatomical disconnection2288

syndromes its pathophysiological expression depends upon2289

the functional brain state at the time responses are evoked.2290

Dynamic diaschisis may be characteristic of many region-2291

ally specific brain insults and may have implications for2292

neuropsychological inference.2293

7. Conclusion2294

In conclusion, the representational capacity and inherent2295

function of any neuron, neuronal population or cortical area2296

in the brain is dynamic and context-sensitive. Functional in-2297

tegration, or interactions among brain systems, that employ2298

driving (bottom up) and backward (top–down) connections,2299

mediate this adaptive and contextual specialisation. A crit-2300

ical consequence is that hierarchically organised neuronal2301

responses, in any given cortical area, can represent different2302

things at different times. We have seen that most models of2303

representational learning require prior assumptions about the2304

distribution of causes. However, empirical Bayes suggests2305

that these assumptions can be relaxed and that priors can be2306

learned in a hierarchical context. We have tried to show that2307

this hierarchical prediction can be implemented in brain-like2308

architectures and in a biologically plausible fashion.2309

The main point made in this review is that backward con-2310

nections, mediating internal or generative models of how2311

sensory inputs are caused, are essential if the processes gen-2312

erating inputs are non-invertible. Because these generating2313

processes are dynamical in nature, sensory input corresponds2314

to a non-invertible nonlinear convolution of causes. This2315

non-invertibility demands an explicit parameterisation of2316

generative models (backward connections) to enable approx-2317

imate recognition and suggests that feedforward architec-2318

tures, are not sufficient for representational learning. More-2319

over, nonlinearities in generative models, that induce depen-2320

dence on backward connections, require these connections2321

to be modulatory; so that estimated causes in higher cortical2322

levels can interact to predict responses in lower levels. This2323

is important in relation to asymmetries in forward and back-2324

ward connections that have been characterised empirically.2325

The arguments in this article were developed under pre-2326

diction models of brain function, where higher-level sys-2327

tems provide a prediction of the inputs to lower-level re-2328

gions. Conflict between the two is resolved by changes in the2329

higher-level representations, which are driven by the ensu-2330

ing error in lower regions, until the mismatch is ‘cancelled’.2331

From this perspective the specialisation of any region is de-2332

termined both by bottom–up driving inputs and by top–down2333

predictions. Specialisation is therefore not an intrinsic prop-2334

erty of any region but depends on both forward and back-2335

ward connections with other areas. Because the latter have2336

access to the context in which the inputs are generated they2337

are in a position to modulate the selectivity or specialisation2338

of lower areas. The implications for classical models (e.g.2339

classical receptive fields in electrophysiology, classical spe-2340

cialisation in neuroimaging and connectionism in cognitive2341

models) are severe and suggest these models may provide2342

incomplete accounts of real brain architectures. On the other2343

hand, predictive coding in the context of hierarchical gen-2344

erative models not only accounts for many extra-classical2345

phenomena seen empirically but also enforces a view of2346

the brain as an inferential machine through its empirical2347

Bayesian motivation. 2348
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