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Abstract

Self-supervised models of how the brain represents and categorises the causes of its sensory input can be divided into two classes: tho
that minimise the mutual information (i.e. redundancy) among evoked responses and those that minimise the prediction error. Although
these models have similar goals, the way they are attained, and the functional architectures employed, can be fundamentally different. Thi
review describes the two classes of models and their implications for the functional anatomy of sensory cortical hierarchies in the brain.
We then consider how empirical evidence can be used to disambiguate between architectures that are sufficient for perceptual learning ar
synthesis.

Most models of representational learning require prior assumptions about the distribution of sensory causes. Using the notion of empirical
Bayes, we show that these assumptions are not necessary and that priors can be learned in a hierarchical context. Furthermore, we try
show that learning can be implemented in a biologically plausible way. The main point made in this review is that backward connections,
mediating internal or generative models of how sensory inputs are caused, are essential if the process generating inputs cannot be inverte
Because these processes are dynamical in nature, sensory inputs correspond to a non-invertible nonlinear convolution of causes. Th
enforces an explicit parameterisation of generative models (i.e. backward connections) to enable approximate recognition and suggest
that feedforward architectures, on their own, are not sufficient. Moreover, nonlinearities in generative models, that induce a dependence
on backward connections, require these connections to be modulatory; so that estimated causes in higher cortical levels can interact t
predict responses in lower levels. This is important in relation to functional asymmetries in forward and backward connections that have
been demonstrated empirically.

To ascertain whether backward influences are expressed functionally requires measurements of functional integration among brair
systems. This review summarises approaches to integration in terms of effective connectivity and proceeds to address the question pose
by the theoretical considerations above. In short, it will be shown that functional neuroimaging can be used to test for interactions between
bottom-up and top—down inputs to an area. The conclusion of these studies points toward the prevalence of top—down influences and th
plausibility of generative models of sensory brain function.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction key focus of this section is on the functional architectures

implied by each model of representational learning. Infoss
In concert with the growing interest in contextual and mation theory can, in principle, proceed using only forwares
extra-classical receptive field effects in electrophysiology connections. However, it turns out that this is only possible
(i.e. how the receptive fields of sensory neurons change ac-when processes generating sensory inputs are invertible aad
cording to the context a stimulus is presented in), a sim- independent. Invertibility is precluded when the cause ofsa
ilar paradigm shift is emerging in imaging neuroscience. percept and the context in which it is engendered interaet.
Namely, the appreciation that functional specialisation ex- These interactions create a problem of contextual invarianae
hibits similar extra-classical phenomena in which a cortical that can only be solved using internal or generative modets.
area may be specialised for one thing in one context but Contextual invariance is necessary for categorisation of sen-
something else in another. These extra-classical phenom-sory input (e.g. category-specific responses) and represeats
ena have implications for theoretical ideas about how the a fundamental problem in perceptual synthesis. Generatige
brain might work. This review uses the relationship among models based on predictive coding solve this problem witl
theoretical models of representational learning as a vehiclehierarchies of backward and lateral projections that prevail
to illustrate how imaging can be used to address importantin the real brain. In short, generative models of representa-

questions about functional brain architectures. tional learning are a natural choice for understanding real
We start by reviewing two fundamental principles of functional architectures and, critically, confer a necessary
brain organisation, nameljunctional specialisationand role on backward connections. 71

functional integrationand how they rest upon the anatomy Empirical evidence, from electrophysiological studies:
and physiology of cortico-cortical connections in the brain. of animals and functional neuroimaging studies of human
Section 2deals with the nature and learning of representa- subjects, is presented Bections 3 and 4o illustrate the 7a
tions from a theoretical or computational perspective. This context-sensitive nature of functional specialisation and
section reviewsupervisede.g. connectionist) approaches, how its expression depends upon integration among remete
information theoreticapproaches and those predicated on cortical areas.Section 3looks at extra-classical effects77
predictive codingand reprises their heuristics and mo- in electrophysiology, in terms of the predictions affordeds
tivation using the framework ofienerative modelsThe by generative models of brain function. The theme ab
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context-sensitive evoked responses is generalised to a corthe functional integration among them. Functional specigdz
tical level and human functional neuroimaging studies in isation and integration are not exclusive, they are compiss
the subsequent section. The critical focus of this section is mentary. Functional specialisation is only meaningful in the:

evidence for the interaction of bottom—up and top—down context of functional integration and vice versa. 135
influences in determining regional brain responses. These
interactions can be considered signatures of backward con-2.2. Functional specialisation and segregation 136

nections. The final section reviews some of the implications
of the forging sections for lesion studies and neuropsychol-  The functional role, played by any component (e.g. casv
ogy. ‘Dynamic diaschisis’, is described, in which aberrant tical area, sub-area, neuronal population or neuron) of thke
neuronal responses can be observed as a consequence bfain, is defined largely by its connections. Certain pate
damage to distal brain areas providing enabling or mod- terns of cortical projections are so common that they could
ulatory afferents. This section uses neuroimaging in neu- amount to rules of cortical connectivity. “These rules res
ropsychological patients and discusses the implications forvolve around one, apparently, overriding strategy that thae
constructs based on the lesion-deficit model. cerebral cortex uses—that of functional segregati@®ek{, 143
1990. Functional segregation demands that cells with coms
mon functional properties be grouped together. This archib

2. Functional specialisation and integration tectural constraint in turn necessitates both convergence aad
divergence of cortical connections. Extrinsic connections;
2.1. Background between cortical regions, are not continuous but occuriig

patches or clusters. This patchiness has, in some instanges,
The brain appears to adhere to two fundamental princi- a clear relationship to functional segregation. For exampi,
ples of functional organisation, functional integration and the secondary visual area V2 has a distinctive cytochrome
functional specialisation, where the integration within and oxidase architecture, consisting of thick stripes, thin stripgs
among specialised areas is mediated by effective connectiv-and inter-stripes. When recordings are made in V2, diress
ity. The distinction relates to that between ‘localisationism’ tionally selective (but not wavelength or colour selectiveu
and ‘(dis)connectionism’ that dominated thinking about cells are found exclusively in the thick stripes. Retrograds
cortical function in the nineteenth century. Since the early (i.e. backward) labelling of cells in V5 is limited to thesess
anatomic theories of Gall, the identification of a particular thick stripes. All the available physiological evidence sugz
brain region with a specific function has become a central gests that V5 is a functionally homogeneous area that is spe-
theme in neuroscience. However, functional localisation per cialised for visual motion. Evidence of this nature suppotts
se was not easy to demonstrate: for example, a meeting thathe notion that patchy connectivity is the anatomical infrase
took place on 4 August 1881, addressed the difficulties of tructure that underpins functional segregation and speciadi-
attributing function to a cortical area, given the dependence sation. If it is the case that neurons in a given cortical area
of cerebral activity on underlying connection®hfllips share a common responsiveness (by virtue of their extrinsic
et al.,, 1984. This meeting was entitled “Localisation of connectivity) to some sensorimotor or cognitive attributess
function in the cortex cerebri”. Goltz, although accepting then this functional segregation is also an anatomical ores.
the results of electrical stimulation in dog and monkey Challenging a subject with the appropriate sensorimotor @t
cortex, considered that the excitation method was inconclu- tribute or cognitive process should lead to activity changes
sive, in that the behaviours elicited might have originated in, and only in, the areas of interest. This is the model upea
in related pathways, or current could have spread to dis- which the search for regionally specific effects with funese
tant centres. In short, the excitation method could not be tional neuroimaging is based. 170
used to infer functional localisation because localisationism
discounted interactions, or functional integration among 2.3. The anatomy and physiology of cortico-cortical 171
different brain areas. It was proposed that lesion studiesconnections 172
could supplement excitation experiments. Ironically, it was
observations on patients with brain lesions some years later If specialisation rests upon connectivity then important
(seeAbsher and Benson, 199&at led to the concept of  organisational principles should be embodied in the neaws
‘disconnection syndromes’ and the refutation of localisa- roanatomy and physiology of extrinsic connections. Extritvs
tionism as a complete or sufficient explanation of cortical sic connections couple different cortical areas whereasiirs-
organisation. Functional localisation implies that a function trinsic connections are confined to the cortical sheet. There
can be localised in a cortical area, whereas specialisationare certain features of cortico-cortical connections that pres
suggests that a cortical area is specialised for some aspectside strong clues about their functional role. In brief, there
of perceptual or motor processing where thiigcialisation appears to be a hierarchical organisation that rests upornthe
can be anatomicallgegregatedvithin the cortex. The cor-  distinction betweeforward andbackwardconnections. The 1s1
tical infrastructure supporting a single function may then designation of a connection as forward or backward deperds
involve many specialised areas whose union is mediated byprimarily on its cortical layers of origin and termination.ss
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Table 1

Some key characteristics of extrinsic cortico-cortical connections in the brain

Hierarchical organisation

The organisation of the visual cortices can be considered as a hierdretignian and Van Essen, 1991
The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections
This distinction rests upon different laminar specificiockland and Pandya, 1979; Salin and Bullier, 1995

Backward connections are more numerous and transcend more levels

Backward connections are more divergent than forward connectteis énd Shipp, 1988

Forwards connections

Sparse axonal bifurcations

Topographically organised

Originate in supragranular layers

Terminate largely in layer VI

Postsynaptic effects through fast AMPA (1.3-2.4 ms decay)
and GABA, (6 ms decay) receptors

Backwards connections
Abundant axonal bifurcation
Diffuse topography
Originate in bilaminar/infragranular layers
Terminate predominantly in supragranular layers
Modulatory afferents activate slow (50 ms decay)
voltage-sensitive NMDA receptors

Some characteristics of cortico-cortical connections are pre-e
sented below and are summarised@ble 1 The list is not
exhaustive, nor properly qualified, but serves to introduce
some important principles that have emerged from empirical
studies of visual cortex.

e Hierarchical organisation

The organisation of the visual cortices can be consid-
ered as a hierarchy of cortical levels with reciprocal ex-
trinsic cortico-cortical connections among the constituent
cortical areasKelleman and Van Essen, 199The no-
tion of a hierarchy depends upon a distinction between e
forward and backward extrinsic connections.

Forwards and backwards connections—laminar speci-
ficity

Forwards connections (from a low to a high level)
have sparse axonal bifurcations and are topographically
organised; originating in supragranular layers and termi-
nating largely in layer VI. Backward connections, on the
other hand, show abundant axonal bifurcation and a dif-
fuse topography. Their origins are bilaminar/infragranular
and they terminate predominantly in supragranular layers
(Rockland and Pandya, 1979; Salin and Bullier, 1995
Forward connections are driving and backward connec-
tions are modulatory

Reversible inactivation (e.&andell and Schiller, 1982;
Girard and Bullier, 198pand functional neuroimaging
(e.g.Bichel and Friston, 199&tudies suggest that for-
ward connections are driving, whereas backward connec-
tions can be modulatory. The notion that forward connec- e
tions are concerned with the promulgation and segregation
of sensory information is consistent with: (i) their sparse
axonal bifurcation; (ii) patchy axonal terminations; and
(iii) topographic projections. In contradistinction, back-
ward connections are generally considered to have a role
in mediating contextual effects and in the co-ordination
of processing channels. This is consistent with: (i) their
frequent bifurcation; (ii) diffuse axonal terminations; and
(iiif) non-topographic projectionsS@lin and Bullier, 1995;
Crick and Koch, 1998

Modulatory connections have slow time constants 223
Forward connections meditate their post-synaptic efs
fects through fast AMPA (1.3—-2.4 ms decay) and GABAe25
(6 ms decay) receptors. Modulatory afferents activate
NMDA receptors. NMDA receptors are voltage-sensitivey?
showing nonlinear and slow dynamics (50 ms decay)e
They are found predominantly in supragranular layets
where backward connections termina®alfn and Bullier, 230
1995. These slow time-constants again point to a rolean
mediating contextual effects that are more enduring than
phasic sensory-evoked responses. 233
Backwards connections are more divergent than forward
connections 235
Extrinsic connections show an orderly convergence anel
divergence of connections from one cortical level to the
next. At a macroscopic level, one point in a given corticak
area will connect to a region 5-8 mm in diameter in arse
other. Animportant distinction between forward and backe
ward connections is that backward connections are mare
divergent. For example, the divergence region of a poimt
in V5 (i.e. the region receiving backward afferents froms
V5) may include thick and inter-stripes in V2, whereass
its convergence region (i.e. the region providing forwazes
afferents to V5) is limited to the thick stripeZdki and 246
Shipp, 1988. Reciprocal interactions between two levelss?
in conjunction with the divergence of backward conness
tions, renders any area sensitive to the vicarious influenee
of other regions at the same hierarchical level even in the
absence of direct lateral connections. 251
Backward connections are more numerous and transcesud
more levels 253
Backward connections are more abundant then forwasd
connections. For example, the ratio of forward efferent
connections to backward afferents in the lateral genies
ulate is about 1:10/20. Another important distinction s7
that backward connections will traverse a number of his
erarchical levels, whereas forward connections are memxe
restricted. For example, there are backward connectiesis
from TE and TEO to V1 but no monosynaptic connegs1
tions from V1 to TE or TEO $alin and Bullier, 1995 262
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In summary, the anatomy and physiology of cortico- nonlinear are used almost synonymously. Modulatory efz
cortical connections suggest that forward connections arefects imply the post-synaptic response evoked by one ingut
driving and commit cells to a pre-specified response given is modulated, or interacts, with another. By definition thise
the appropriate pattern of inputs. Backward connections, oninteraction must depend on nonlinear synaptic mechanisss.
the other hand, are less topographic and are in a position In summary, the brain can be considered as an ensemhle
to modulate the responses of lower areas to driving inputs of functionally specialised areas that are coupled in a nonkge
from either higher or lower areas (séable J). Backwards ear fashion by effective connections. Empirically, it appears
connections are abundant in the brain and are in a positionthat connections from lower to higher areas are predomi+
to exert powerful effects on evoked responses, in lower nantly driving whereas backwards connections, that medi
levels, that define the specialisation of any area or neuronalate top—down influences, are more diffuse and are capakde
population. The idea pursued below is that specialisa- of exerting modulatory influences. In the next section we
tion depends upon backwards connections and, due to thedescribe a theoretical perspective, provided by ‘generatize
greater divergence of the latter, can embody contextual ef-models’, that highlights the functional importance of backzs
fects. Appreciating this is important for understanding how wards connections and nonlinear interactions. 330
functional integration can dynamically reconfigure the spe-

cialisation of brain areas that mediate perceptual synthesis.

3. Representational learning 331

2.4. Functional integration and effective connectivity
This section compares and contrasts the heuristics behiad
Electrophysiology and imaging neuroscience have firmly three prevalent computational approaches to representatiesal
established functional specialisation as a principle of brain learning and perceptual synthessipervised learningand 334
organisation in man. The functional integration of spe- two forms ofself-supervised learningased on informationsss
cialised areas has proven more difficult to assess. Functionaktheory and predictive coding. These approaches will theas
integration refers to the interactions among specialised neu-be reconciled within the framework gfenerative models 337
ronal populations and how these interactions depend uponThis article restricts itself to sensory processing in corticas
the sensorimotor or cognitive context. Functional integration hierarchies. This precludes a discussion of other importasat
is usually assessed by examining the correlations amongideas (e.g. reinforcement learnin§utton and Barto, 1990;340
activity in different brain areas, or trying to explain the Friston etal., 1994 neuronal selectiorHdelman, 199B8and 341
activity in one area in relation to activities elsewhdfanc- dynamical systems theor{Ffeeman and Barrie, 1994 342
tional connectivityis defined as correlations between remote  The relationship between model and real neuronal arciap-
neurophysiological events. However, correlations can arisetectures is central to cognitive neuroscience. We addressdhis
in a variety of ways. For example, in multi-unit electrode relationship, in terms ofepresentationsstarting with an s4s
recordings they can result from stimullesked transients overview of representations in which the distinctions amogg
evoked by a common input or reflect stimulinstuced various approaches can be seen clearly. An important fogus
oscillations mediated by synaptic connectiorGe(stein of this section is the interaction among ‘causes’ of sensesy
and Perkel, 1969 Integration within a distributed system input. These interactions posit the problem aointextual 3o
is usually better understood in terms effective connec- invariance In brief, it will be shown that the problem ofsso
tivity. Effective connectivity refers explicitly to the influ- contextual invariance points to the adoption of generatise
ence that one neuronal system exerts over another, eithemodels where interactions among causes of a perceptssae
at a synaptic (i.e. synaptic efficacy) or population level. modelled explicitly. Within the class of self-supervisegs
It has been proposed that “the (electrophysiological) no- models, we will compare classical information theoreties
tion of effective connectivity should be understood as the approaches and predictive coding. These two schemeszetse
experiment- and time-dependent, simplest possible circuit different heuristics which imply distinct architectures thads
diagram that would replicate the observed timing relation- are sufficient for their implementation. The distinction restss
ships between the recorded neuron&eitsen and PreiRl,  on whether an explicit model, of the way sensory inputs ase
1991). This speaks to two important points: (i) effective generated, is necessary for representational learning. If this

connectivity is dynamic, i.e. activity- and time-dependent;
and (ii) it depends upon a model of the interactions. An
important distinction, among models employed in func-

model is instantiated in backwards connections, then thesm-
retical distinctions may shed light on the functional role e41
backward and lateral connections that are so prevalengein

tional neuroimaging, is whether these models are linear or the brain. 363
nonlinear. Recent characterisations of effective connectivity
have focussed on nonlinear models that accommodate the3.1. The nature of representations
modulatory or nonlinear effects mentioned above. A more
detailed discussion of these models is providedéttion What is a representation? Here a representation is taden
5.2, after the motivation for their application is established to be a neuronal event that represents some ‘cause’ instae

in the next section. In this review the terms modulatory and sensorium. Causes are simply the states of the process gen-

364
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erating sensory data. It is not easy to ascribe meaning toAt the point the process is modelled, this distinction is imeo
these states without appealing to the way that we categorisevoked through notions of deterministic or observation noige:
things, perceptually or conceptually. High-level conceptual This section deals with how the brain might construct sueh
causes may be categorical in nature, such as the identity of anodels. 423
face in the visual field or the semantic category a perceived The importance of this formulation is that it highlights: ()24
object belongs to. In a hierarchical setting, high-level causesthe dynamicalaspects of sensory input; and (ii) the role afs
may induce priors on lower-level causes that are more para-interactionsamong the causes of the sensory input. Dynamie
metric in nature. For example, the perceptual cause “mov- aspects imply that the current state of the world, registered
ing quickly” may show a one-to-many relationship with through our sensory receptors, depends not only on theex-
over-complete representations of different velocities in V5 tant causes but also on their history. Interactions among these
(MT) units. An essential aspect of causes is their relation- causes, at any time in the past, can influence what is curremty
ship to each other (e.g. ‘is part of') and, in particular, their sensed. The second-order terms with 2 in Eq. (2)repre- 431
hierarchical structure. This ontology is often attended by sent pairwise interactions among the causes. These interac-
ambiguous many-to-one and one-to-many mappings (e.g. ations are formally identical to interaction terms in convenss
table has legs but so do horses; a wristwatch is a watch irre-tional statistical models of observed data and can be viewed
spective of the orientation of its hands). This ambiguity can as contextual effects, where the expression of a particular
render the problem of inferring causes from sensory infor- cause depends on the context induced by another. For exam-
mation ill-posed (as we will see further). ple, the extraction of motion from the visual field depends
Even though causes may be difficult to describe, they upon there being sufficient luminance or wavelength cans
are easy to define operationally. Causes are the variables otrast to define the surface moving. Another ubiquitous exse
states that are necessary to specify the products of a procesample, from early visual processing, is the occlusion of one
(or model of that process) generating sensory information. object by another. In the absence of interactions, we wowd
In very general terms, let us frame the problem of repre- see a linear superposition of both objects, but the visual 4m
senting real world causext) in terms of the system of put caused by the nonlinear mixing of these two causes ren-

deterministic equations der one occluded by the other. At a more cognitive level, the
i = fx,s) cause associated with the word ‘HAMMER’ will depend oss
U= g(x; 1) the semantic context (that determines whether the word igea

verb or a noun). These contextual effects are profound amd
wheresis a vector of underlying causes in the environment must be discounted before the representations of the under-
(e.g. the velocity of a particular object, direction of radiant lying causes can be considered veridical. 449
light, etc.) andu represents sensory inpuismeans the rate The problem the brain has to contend with is to findsso
of change ofx, which here denotes some unobserved statesfunction of the inputu(t) that recognises or represents the1
of the world that form our sensory impression of it. The underlying causes. To do this, the brain must effectiveby
functionsf andg can be highly nonlinear and allow for both  undo the convolution and interactions to expose contextss
the current state of the world and the causes of changes inally invariant causes. In other words, the brain must perforsa
those states to interact, when evoking responses in sensorgome form of nonlinear unmixing of ‘causes’ and ‘contextss
units. Sensory input can be shown to be a function of, and without knowing either. The key point here is that this nomss

only of, the causeand their recent history linear mixing may not be invertible and that the estimatiasr

~ _ of causes from input may be fundamentally ill posed. Feg

! ! 'u(t) example, no amount of unmixing can discern the partssef
u:G(s):Z/.../ P'e, 9 > pariss

—Jo 0 0s(t —o1) .-+ ds(t — 07) an o_bject thgt are occluded by_anothgr. Th(_a mapplﬁgsz_ 460

X st — 1)+ s(t — 07) doy - - - do @) provides a trlv_lal example of_ this non-invertibility. Knowings1

u does not uniquely determire 462

G(9) is a functional (function of a function) that generates  Nonlinearities are not the only source of non-invertibilityss
inputs from the causeg&q. (2)is simply a functional Taylor =~ Because sensory inputs are convolutions of causes, thesesis
expansion covering dynamical systems of the sort implied a potential loss of information during the convolution ass
by Eq. (1) This expansion is called a Volterra series and can smoothing that may have been critical for a unique detess
be thought of as a nonlinear convolution of the causes to mination of the causes. The convolution impliedby. (2) 467
give the inputs (see Box 1). Convolution is like smoothing, means the brain has to de-convolve the inputs to obtain thase
in this instance over time. A key aspect of this expansion causes. In estimation theory this problem is sometimes caled
is that it does not refer to the many hidden states of the ‘blind de-convolution’ because the estimation is blind to the
world, only the causes of changes in states, that we want tounderlying causes that are convolved to give the observed
represent. Furthermor&g. (1) does not contain any noise variables. To simplify the presentation of the ideas below we
or error. This is becausgqgs. (1) and (2describe a real  will assume that the vectors of causeand their estimatess7a
world process. There is no distinction between determinis- v, include a sufficient history to accommodate the dynamics
tic and stochastic behaviour until that process is observed.implied by Eq. (1) 475
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Box 1 Dynamical systems and \olterra kernels.

Input-state—output systems and Volterra series
Neuronal systems are inherently nonlinear and lend themselves to modelling by nonlinear dynamical systems. How-
ever, due to the complexity of biological systems it is difficult to find analytic equations that describe them adequately.
Even if these equations were known the state variables are often not observable. An alternative approach to igentifica-
tion is to adopt a very general mod&Vfay and Green, 1994nd focus on the inputs and outputs. Consider the single
input—single output (SISO) system

x(0) = fx(@), u(®)
y(1) = g(x(n)

The Fliess fundamental formul&l{ess et al., 198Bdescribes the causal relationship between the outputs and the recent
history of the inputs. This relationship can be expressed as a Volterra series, in which theyitpomforms to a
nonlinear convolution of the inputk(t), critically without reference to the state variabk€f). This series is simply 4
functional Taylor expansion of{t).

Y1) = Y20 fo - foki(on, - opult — 01) - - u(t — 07) oy - - - doy

3 y(0)
ki(o1, -+, 00) =
ou(t —oq)---ou(t — oj)
wherex; (o1, ... , 0;) is theith-order kernel. Volterra series have been described as a ‘power series with memory’ and

are generally thought of as a high-order or ‘nonlinear convolution’ of the inputs to provide an outpBeSks (1990)
for a fuller discussion. This expansion is used in a number of places in the main text. When the inputs and outputs are
measured neuronal activity the Volterra kernels have a special interpretation.
Volterra kernels and effective connectivity
\olterra kernels are useful for characterising the effective connectivity or influences that one neuronal system exerts
over another because they represent the causal characteristics of the system in question. Neurobiologically they have a
simple and compelling interpretation—they are synonymous with effective connectivity.

dy(1) (oL, o7) = 9y(1)
Wt —op) 20102 = 5t —oDout — op)

k1(01) =

It is evident that the first-order kernel embodies the response evoked by a change in inpuatatn other words it
is a time-dependant measuredsiving efficacy. Similarly the second-order kernel reflects ti@dulatoryinfluence of

the input att —o1 on the response evokedtat-o. And so on for higher orders.

All the schemas considered below can be construed aspendence between the dynamics of the representationssand
trying to effect a blind de-convolution of sensory inputs to their causes. Models of neuronal computation try to sohss
estimate the causes with a recognition function. this problem in the hope that the ensuing parameters candbe
v = R, ¢, 6) 3) interpreted ir_1 relqtion to_ r_eal neuronal infr_astructures. Thae

o greater the biological validity of the constraints under whiebe
Herev represents an estimate of the causes and could correthese solutions are obtained, the more plausible this relation-
spond to the activity of neuronal units (i.e. neurons or popu- ship becomes. In what follows, we will consider three mosbo
lations of neurons) in the brain. The parametgend6 de- elling approaches: (i) supervised models; (i) models based
termine the transformations that sensory input is subject to on information theory; and (iii) those based on predictige
and can be regarded as specifying the connection strengthsoding. The focus will be on the sometimes hidden cas
and architecture of a neuronal network model or effective straints imposed on the parameters and the ensuing imphkoca-
connectivity (see Box 1). For reasons that will become ap- tions for connectivity architectures and the representatioswal
parent later, we make a distinction between parameters forproperties of the units. In particular, we will ask whetheus
forward connectiong and backward connectioms backward connections, corresponding to the paraméters?

The problem of recognising causes reduces to finding are necessary. And if so what is their role? The three am-
the right parameters such that the activity of the represen-proaches are reprised at the end of this section by treating
tational unitsv have some clearly defined relationship to them as special cases of generative models. Each subsestion
the causes. More formally, one wants to find the parame- below provides the background and heuristics for each ap-
ters that maximise the mutual information or statistical de- proach and describes its implementation using the formab
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Predictive coding

s@  u=E o__V(e.0)  dlnp(v:6)
— =T
o S8 T
o] ,,f/ o
o

T A 0 = min V{e, 0}

Fig. 1. Schematic illustrating the architectures implied by supervised, information theory-based approaches and predictive coding. Tapregefgs r

nodes in a network and the arrows represent a few of the connections. See the main text for an explanation of the equations and designation of the
variables each set of nodes represents. The light grey boxes encompass connections and nodes within the model. Connection strengths arg determined
the free parameters of the modgl(forward connections) and (backward connections). Nonlinear effects are implied when one arrow connects with
another. Nonlinearities can be construed as the modulation of responsiveness to one input by another (see Box 1 for a more formal account). The broke!
arrow in the lower panel denotes connections that convey an error signal to the higher level from the input level.

ism aboveFig. 1provides a graphical overview of the three neuroscience. We start by reviewing the role played by cen-
schemes. nectionist models in the characterisation of brain systesas
underlying cognitive functions. 523

3.2. Supervised models
3.2.1. Category specificity and connectionism 524

Connectionism is an approach that has proved very use- Semantic memory impairments can result from a vasis
ful in relating putative cognitive architectures to neuronal ety of pathophysiological insults, including Alzheimer’s diszs
ones and, in particular, modelling the impact of brain lesions ease, encephalitis and cerebrovascular accidents\ebgs, s27
on cognitive performance. Connectionism is used here as1989; Warrington and Shallice, 1984'he concept of cate-s2s
a well-known example of supervised learning in cognitive gory specificity stems from the work of Warrington and cadze
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leagues \(Varrington and McCarthy, 1983; Warrington and encoding semantic primitives (e.g. structural—'has fosus
Shallice, 198% and is based on the observation that pa- legs” or functional—‘can put things on it”). These primisse
tients with focal brain lesions have difficulties in recognis- tives are simple localist representations “that are assursed
ing or naming specific categories of objects. Patients can ex-to be encoded by larger pools of neurons in the braiss
hibit double dissociations in terms of their residual seman- (Devlin et al., 1998 Irrespective of their theoretical biassse
tic capacity. For example, some patients can name artifactsconnectionist models assume the existence of fixed repse-
but have difficulty with animals, whereas others can name sentations (i.e. units that represent a structural, phonologieal
animals with more competence than artifacts. These find- or lexico-semantic primitive) that are activated by some
ings have engendered a large number of studies, all point-input. These representational attributions are immutakde
ing to impairments in perceptual synthesis, phonological or where each unit has its ‘label’. The representation of a cesm
lexico-semantic analysis that is specific for certain categories cept, object or ‘cause’ in the sensorium is defined in terms
of stimuli. There are several theories that have been positedof which primitives are active. 596
to account for category specificity. Connectionist models  Connectionist models employ some form safpervised s97
have been used to adjudicate among some of them. learningwhere the model parameters (connection strengihes
Connectionist (e.g. parallel distributed processing or PDP) or biases) change to minimise the difference between the xb-
techniques use model neuronal architectures that can be leserved and required output. This output is framed in tersos
sioned to emulate neuropsychological deficits. This involves of a distributed profile or pattern of activity over the (outpudds
modelling semantic networks using connected units or nodesunits v = R(u, ¢) which arises from sensory inputcor- 602
and suitable learning algorithms to determine a set of con- responding to activity in (input) primitives associated witos
nection strengthsRumelhart and McClelland, 1986Se- the stimulus being simulated. There are often hidden units
mantic memory impairments are then simulated by lesioning interposed between the input and output units. The initied
the model to establish the nature of the interaction betweeninput (sometimes held constant or ‘clamped’ for a while) déss
neuropathology and cognitive deficit (elginton and Shal-  determined by a generative function of tite stimulus or eo7
lice, 1991; Plaut and Shallice, 1992\ compelling example  causeu; = G(s;). Connectionist models try to find the freeos
of this sort of approach is the connectionist modeFafah parameterg that minimise some function or potentidlof 609
and McClelland (1991 patterns of category-specific deficits the error or difference between the output obtained and that
led Warrington and McCarthy (1981 suggest that an ani-  desired 611
mate/inanimate distinction could be understood in terms of a .
differential dependence on functional and structural (percep- ¢ = min, Ve, §)
tual) features for recognition. For example, tools have asso- & = R(ui. ¢) — si
ciated motor acts whereas animals do not, or tools are easie
to discriminate based upon their structural descriptions than
four-legged animaldzarah and McClelland (1991incorpo-
rated this difference in terms of the proportion of the two

(4)

612

The potential is usually the (expected) sum of squared differs
ences. Although the connectionist paradigm has been wany
useful in relating cognitive science and neuropsychologysiit
has a few limitations in the context of understanding haas

types of semantic featural representations encoding a partlc-the brain learns to represent things:

ular object, with perceptual features dominating for animate

617

objects and both represented equally for artifacts. Damage toe First, one has to know the underlying cawseand the s1s

visual features led to impairment for natural kinds and con-

versely damage to functional features impaired the output
for artifacts. Critically the model exhibited category-specific

deficits in the absence of any category-specific organisa-
tion. The implication here is that an anatomical segrega-
tion of structural and functional representations is sufficient
to produce category-specific deficits following focal brain

damage. This example serves to illustrate how the connec-
tionist paradigm can be used to relate neuronal and cogni-
tive domains. In this example, connectionist models were
able to posit a plausible anatomical infrastructure wherein

the specificity of deficits, induced by lesions, is mediated e

by differential dependence on either the functional or struc-
tural attributes of an object and not by any (less plausible)
category-specific anatomical organisation per se.

3.2.2. Implementation
In connectionist models causes or ‘concepts’ like
“TABLE” are induced by patterns of activation over units

generative function, whereas the brain does not. Thisis
the conventional criticism of supervised algorithms asa
model of neuronal computation. Neural networks, of tlha
sort used in connectionism, are well known to be flexie
ble nonlinear function approximators. In this sense thex
can be used to approximate the inverse of any geneva-
tive functionu; = G(s;) to give model architectures that2s
can lesioned. However, representational learning in the
brain has to proceed without any information about the
processes generating inputs and the ensuing architecteses
cannot be ascribed to connectionist mechanisms. 629
Secondly, the generative mapping = G(s;) precludes 630
nonlinear interactions among stimuli or causes, dynarsic
or static. This is a fundamental issue because one of ke
main objectives of neuronal modelling is to see how regas
resentations emerge with the nonlinear mixing and cen
textual effects prevalent in real sensory input. Omitting ises
teractions among the causes circumvents one of the mest
important questions that could have been asked; namety
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how does the brain unmix sensory inputs to discount con- is no such uncertainty and this term can be discounted (see

textual effects and other aspects of nonlinear mixing? In Bell and Sejnowski, 1995More generally 691
short, the same inputs are activated by a given cause, irre- g 9

spective of the context. This compromises the plausibility a—(pl(u, v; §) = 3—¢H(v; ®) ©)
of connectionist models when addressing the emergence

of representations. It follows that maximising the mutual information is thess

o S same as maximising the entropy of the responses. Theséa-
In summary, connectionist models specify distributed pro- fomax principle (maximum information transfer) is closekgs
files of activity over (semantic) primitives that are induced |g|ated to the idea of efficient coding. Generally speakings
by (conceptual) causes and try to find connectivity parame- requndancy minimisation and efficient coding are all varia?

ters that emulate the inverse of these mappings. They havgjgns on the same theme and can be considered as the isfo-
been used to understand how the performance (storage ang,;x principle operating under some appropriate constraints
generalisation) of a network responds to simulated damage.or hounds. Clearly it would be trivial to conform to the inoo
after learning is complete. However, connectionism has a fomax principle by simply multiplying the inputs by a veryo:
limited role in understanding representational learning per large number. What we would like to do is to capture the
se. In the next subsection we will look at self-supervised niormation in the inputs using a small number of outpus
approaches that do not require the causes for learning. channels operating in some bounded way. The key thing
that distinguishes among the various information theoretie

3.3. Information theoretic approaches schemas is the nature of the constraints under which entrapy
is maximised. These constraints render infomax a viable ap-

There have been many compelling developments in theo-proach to recovering the original causes of data, if one cam
retical neurobiology that have used information theory (e.g. enforce the outputs to conform to the same distribution 70
Barlow, 1961; Optican and Richmond, 1987; Linsker, 1988; the causes (segection 3.3.). One useful way of looking at71io

Oja, 1989; Foldiak, 1990; Tovee et al., 1993; Tononi et al., constraints is in terms of efficiency. 711
1994). Many appeal to the principle of maximum informa-

tion transfer (e.gLinsker, 1988; Atick and Redlich, 1990; 3.3.1. Efficiency, redundancy and information 712
Bell and Sejnowski, 1995 This principle has proven ex- The efficiency of a system can be considered as the com-

tremely powerful in predicting some of the basic receptive plement of redundancyBarlow, 1963, the less redundant,14
field properties of cells involved in early visual processing the more efficient a system will be. Redundancy is reflected
(e.g.Atick and Redlich, 1990; Olshausen and Field, 1996 in the dependencies or mutual information among the out
This principle represents a formal statement of the com- puts. (cf.Gawne and Richmond, 1993 77
mon sense notion that neuronal dynamics in sensory system
should reflect, efficiently, what isygoing on in the e>:1vi);on- §(U’ 9= Z Hvi; ¢) = H(v. ¢) (7) 7
ment Barlow, 196). In the present context, the principle HereH(v;; ¢) is the entropy of théh output.Eq. (7)implies 719
of maximum information transfer (infomakjnsker, 1983 that redundancy is the difference between the joint entropy
suggests that a model’s parameters should maximise the muand the sum of the entropies of the individual units (com
tual information between the sensory inpund the evoked  ponent entropies). Intuitively this expression makes senseif
responses or outputs= R(u, ¢). This maximisation is usu-  one considers that the variability in activity of any single units
ally considered in the light of some sensible constraints, e.g. corresponds to its entropy. Therefore, an efficient neuronal
the presence of noise in sensory inpéti¢gk and Redlich, system represents its inputs with the minimal excursions
1990 or dimension reductiondja, 1989 given the smaller  from baseline firing rates. Another way of thinking abouts
number of divergent outputs from a neuronal population than Eq. (7)is to note that maximising efficiency is equivalent tez
convergent inputsHriston et al., 1992 minimising the mutual information among the outputs. Thiss
Intuitively, mutual information is like the covariance or s the basis of approaches that seek to de-correlate or ortheg-
correlation between two variables but extended to cover onalise the outputs. To minimise redundancy one can eitser
multivariate observations. It is a measure of statistical de- minimise the entropy of the output units or maximise them
pendence. In a similar way, entropy can be regarded as thgoint entropy, while ensuring the other is bounded in some
uncertainty or variability of an observation (cf. variance of way. Olshausen and Field (199f)esent a very nice analy+33
a univariate observation). The mutual information between sis based on sparse coding. Sparse coding minimises reaun-

inputs and outputs underis given by dancy using single units with low entropy. Sparse coding
implies coding by units that fire very sparsely and will, gems

I(u,v; ¢) = Hw) + H(v; ¢) — H(u, v; ¢) erally, not be firing. Therefore, one can be relatively certai
= H(v; ¢) — H(v|u) (5) about their (quiescent) state, conferring low entropy on thems.

Approaches that seek to maximise the joint entropy of the
where H(v|u) is the conditional entropy or uncertainty in  units include principal component analysis (PCA) learning
the output, given the input. For a deterministic system there algorithms (that sample the subspace of the inputs that hawve
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the highest entropy) (e.droldiak, 1990 and independent forward connections may not be defined in relation to the
component analysis (ICA). In PCA the component entropies  generation of inputs. 792
are bounded by scaling the connection strengths of a simplee Second, we have to assume that the causes are indepen-
recognition modeb = R(u, ¢) = ¢u so that the sum of the dent. While this may be sensible for simple systemsrit
variances of; is constant. ICA finds nonlinear functions of is certainly not appropriate for more realistic hierarchicak
the inputs that maximise the joint entropggdmmon, 1994; processes that generate sensory inputsgseton 3.5.1. 79

Bell and Sejnowski, 1995 The component entropies are This is because correlations among causes at any level
constrained by the passing the outputs through a sigmoid are induced by, possibly independent, casual change®at
squashing functiom = R(u, ¢) = o(¢u) so that the outputs supraordinate levels. 799
lie in a bounded interval (hypercube). Seection 3.6.%or ) _
a different perspective on ICA in which the outputs are not  Finally, the dynamical nature of evoked neuronal trase
bounded but forced to have cumulative density functions that Sients is lost in many information theoretic formulatiors:
conform to the squashing function. which treat the inputs as a stationary stocha;ug process,
An important aspect of the infomax principle is that it Notas the products of a dynamical system. This is becatse
goes a long way to explaining functional segregation in the the mutual information and entropy measures, that govesn
cortex. One perspective on functional segregation is that learning, pertain to probability distributions. These densities
each cortical area is segregating its inputs into relatively do not embody information about the temporal evolutiens
independent functional outputs. This is exactly what infomax ©f states, if they simply describe the probability the system
predicts. See Friston et al. (2001 and references therein)Will be found in a particular state when sampled over tines
for an example of how infomax can be used to predict the Indeed, in many instances, the connection strengths sase
segregation of processing streams from V2 to Speciansedidentifiable given just the densities of the inputs, withogito

motion, colour and form areas in extrastriate cortex. any reference to the fact that they were generated dynam-
ically or constituted a time-series (cf. principal componesit
3.3.2. Implementation learning algorithms that need only the covariances of thedms

In terms of the above formulation, information theoretic PUts). Discounting dynamics is not a fundament of infomans
approaches can be construed as finding the parameters ofchemas. For example, my own work using ICA r_eferreds
a forward recognition function that maximise the efficiency t0 above (Friston et al., 2000) expanded inputs using tems-

or minimise the redundancy poral basis functions to model the functional segregationsof
motion, colour and form in V2. This segregation emergec
¢ = ming I(v; ¢) ®) as a consequence of maximising the information trass
v = R(u, ¢) fer between spatio-temporal patterns of visual inputs amd
V2 outputs. 821

But. when are the outputs .Of an infomag model veridical | summary ICA and like-minded approaches, that try te
estimates of the causes of its inputs? This is assured wheng, some deterministic function of the inputs that maximises
(i) the generating process is invertible; and (ii) the real world 5 mation transfer, impose some simplistic and strong caps
causes are independent such tHet) = > H(s;). Thiscan gy qinis on the generating process that must be met befose
be seen by noting veridical representations emerge. In the final approach, ces-
sidered here, we discuss predictive coding models thatseto

I(v;¢) = ) H(vi; ¢) = H(v; 9) not require invertibility or independence and, consequentis
_ Z H(Ri(G(s), $)) — Z H(s;) suggest a more natural form for representational learningpse
— <In ‘ww >0 (9) 3.4. Predictive coding and the inverse problem 830

v

Over the past years predictive coding and generatige

with equality wherv = R(u, ¢) = G~1(u) = s. Compared )
to the connectionist scheme this has the fundamental advan-mOdGIS have supervened over other modelling approaches

tage that the algorithm is unsupervised by virtue of the fact to brain function and represent one of the most pro

that the causes and generating process are not needed b|ng avenues, offered by computational neuroscience,sio

Eqg. (8) Note that the architectures kg. 1, depicting con- ﬁ/nderstgnd.mg neurongl .dynamllcs in relation _to percgptm. !
L . - . categorisation. In predictive coding the dynamics of unitsdss
nectionist and infomax schemes, are identical apart from the

. . ) ) . a network are trying to predict the inputs. As with infomassz
nodes representing desired output (unfilled circles in the up- . .
4 schemas, the representational aspects of any unit emerge
per panel). However, there are some outstanding problems:

spontaneously as the capacity to predict improves with

e First, infomax recovers causes only when the generatinglearning. There is no a priori ‘labelling’ of the units or angao
process is invertible. However, as we have seen above thesupervision in terms of what a correct response shouldsime
nonlinear convolution of causes generating inputs may not (cf. connectionist approaches). The only correct responsgis
be invertible. This means that the recognition enacted by one in which the implicit internal model of the causes amng
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their nonlinear mixing is sufficient to predict the input with  or forward model is instantiated explicitly. Here the forwarde
minimal error. model is the nonlinear mixing of causes that, by definitiooo
Conceptually, predictive coding and generative models must exist. The estimation of the causes still rests upon can-
(see further) are related to ‘analysis-by-synthesis’ (Neisser, straints, but these are now framed in terms of the forwand
1967). This approach to perception, from cognitive psychol- model and have a much more direct relationship to caswal
ogy, involves adapting an internal model of the world to processes in the real world. The ensuing mirror symmedoy
match sensory input and was suggested/loynford (1992) between the real generative process and its forward madel
as a way of understanding hierarchical neuronal process-is illustrated in the architecture iRig. 1 Notice that the 906
ing. The idea is reminiscent of Mackay’s epistemological connections within the model are now going backwards.omn
automata (MacKay, 1956) which perceive by comparing ex- the predictive coding scheme these backward connectiones,
pected and actual sensory inptRap, 1999. These mod- parameterised by form predictions from some estimate afos
els emphasise the role of backward connections in medi-the cause® to provide a prediction error. The parametesso
ating the prediction, at lower or input levels, based on the now change to minimise some function of the prediction ers
activity of units in higher levels. The connection strengths ror cf. Eq. (4) 912
of the model are changed so as to minimise the error be-
tween the predicted and observed inputs at any level. This
is in direct contrast to connectionist approaches were con-

nection strengths change to minimise the error between theThe differences betweeigs. (10) and (4pre that the er- 014
observed andesiredoutput. In predictive coding there isno  rors are at the input level, as opposed to the output levsl
‘output’ because the representational meaning of the unitsand the parameters now pertain to a forward model insteus-
is not pre-specified but emerges during learning. tiated in backward connections. This minimisation scheme
Predictive coding schemes can also be regarded as ariseschews the real causebut where do their estimates comes
ing from the distinction between forward and inverse mod- from? These casual estimates or representations changesin
els adopted in machine ViSiOB@”ard et al., 1983, Kawato the same way as the other free parameters of the model.
et al., 1993. Forward models generate inputs from causes, They change to minimise prediction error subject to someza

whereas inverse models approximate the reverse transfor-priori constraint, modelled by a regularisation tekiw, 6), 922
mation of inputs to causes. This distinction embraces the ysyally through gradient ascent. 923

non-invertibility of generating processes and the ill-posed Bie o M. 8
nature of inverse problems. As with all underdetermined in- ; — — (e, 6) + . 0) (11) o,
verse problems the role of constraints becomes central. In dv v

the inverse literature a priori constraints usually enter in The erroris Con\/eyed from the input |ayer to the Output |am5
terms of regularised solutions. For example; “Descriptions by forward connections that are rendered as a broken linezin
of physical properties of visible surfaces, such as their dis- the lower panel ofig. 1 This component of the predictivesz7
tance and the presence of edges, must be recovered frongoding scheme has a principled (Bayesian) motivation thatis
the primary image data. Computational vision aims to un- described in the next subsection. For the moment, consiger
derstand how such descriptions can be obtained from inher-what would transpire after training and prediction error dso
ently ambiguous and noisy data. A recent development in |argely eliminated. This implies the brain’s nonlinear coms:
this field sees early vision as a set of ill-posed problems, volution of the estimated causes recapitulates the real can-
which can be solved by the use of regularisation methods” yolution of the real causes. In short, there is a veridical (s
(Poggio et al., 1986 The architectures that emerge from at |east sufficient) representation of both the causes andsthe
these schemes suggest that “feedforward connections fromgynamical structure of their mixing through the backwaoes
the lower visual cortical area to the higher visual cortical connection®. 936
area provides an approximated inverse model of the imaging The dynamics of representational units or populatiosns
process (optics), while the backprojection connection from jmplied by Eq. (11)represents the essential difference bss
the higher area to the lower area provides a forward model tween this class of approaches and those considered abave.

6 = mingV(s, H)

e=u—G(,0) (10)

913

of the optics” Kawato et al., 1998 Only in predictive coding are the dynamics changing 4
) minimise the same objective function as the parameterse4n
3.4.1. Implementation both the connectionist and infomax schemes the represen-

inverse problem on its head. Instead of trying to find func- through the connection parameters. Predictive coding issa
tions of the inputs that predlct_ the causes they flnd functions gyrategy that has some compelling (Bayesian) underpinnings
of causal estimates that predict the inputs. As in approachegsee further) and is not simply using a connectionist arctis

based on information theory, the causes do not enter into thegecture in auto-associative mode or using error minimisatian

learning rules, which are therefore unsupervised. Further-

more' they_ do not reqw_re the_ ConVOI_Ut_lon of causes, enge_n- 1 For simplicity, time constants have been omitted from expressions

dering the inputs, to be invertible. This is because generativedescribing the ascent of states or parameters on objective functions.
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to maximise information transfer. It is a real time, dynam- same as the probability of the input given the causes times
ical scheme that embeds two concurrent processes. (i) Thehe prior probability of the causes. 1003
parameters of the generative or forward model change to
emulate the real world mixing of causes, using the current
estimates; and (ii) these estimates change to best explain thelhe MAP estimator of the causes is the most likely giess
observed inputs, using the current forward model. Both the the data. 1006

arameters and the states change in an identical fashion to
Fninimise prediction error. The prgdictive coding scheme es- Um = mvaxln pQlu) = mva><[lnp(u|v) +Inp()] (13) 1007

chews the problems associated with earlier schemes. It canppq firot torm on the right is known as the log likelihood o

easily accommodate ngnlmgar mixing of causes In the real likelihood potential and the second is the prior potentialiode
world. It does not require this mixing to be invertible and

p(u,v) = p(vlu) p(u) = p(ulv) p(v) (12) 1004

. ) gradient ascent to find,, would take the form 1010
needs only the sensory inputs. However, there is an outstand-
ing problem: D= —
. _ T (14)
e To finesse the inverse problem, posed by non-invertible ¢(u) = In p(u|v; ) + In p(v; 6) 1011

generative models, regularisation constraints are required. W, .
These resolve the problem of non-invertibility that con- Wnere the dependence of the likelihood and priors onathe

founds simple infomax schemes but introduce a new prob- mode! parameters has been made explicit. The likelihoael
lem. Namely one needs to know the prior distribution of 'S defined by the forward model = G(v,6) + e where 1014

the causes. This is because, as shown next, the regulari?1v: §) o €xp(—V(e, 6)). Vnow plays the role of a Gibb'sos
sation constraints are based on these priors potential that specifies ones distributional assumptions abnsit

the prediction error. Now we have 1017
learning as an ill-posed inverse problem and uses an explicitv = — oVee. 6) + 91n p(; 6) (15) 1018
parameterisation of a forward model to generate predictions v 3y
of the observed input. The ensuing error is then used to re-This is formally identical to the predictive coding schemes
fine the forward model. This component of representational Eq. (11) in which the regularisation term.(v,6) = 1020
learning is dealt with belowSection 3.§. The predictions  In p(v; #) becomes a log prior that renders the ensuing esti-
are based on estimated causes that also minimise predicmation Bayesian. In this formulation the state of the brair
tive error, under some constraints that resolve the generallychanges, not to minimise error per se, but to attain ames-
ill-posed estimation problem. We now consider these con- timate of the causes that maximises both the likelihoodoof

In summary, predictive coding treats representational

straints from a Bayesian point of view. the input given that estimate and the prior probability 1afs
the estimate being true. The implicit Bayesian estimaticfms
3.4.2. Predictive coding and Bayesian inference can be formalised from a number of different perspectives.

One important aspect of predictive coding and generative Rao and Ballard (1998yive a very nice example usingzs
models (see further) is that they portray the brain as an infer- the Kalman filter that goes some way to dealing with the

ential machine Dayan et al., 1995 From this perspective, dynamical aspect of real sensory inputs. 1030
functional architectures exist, not to filter the input to obtain
the causes, but to estimate causes and test the prediction8.5. Cortical hierarchies and empirical Bayes 1031

against the observed input. A compelling aspect of predic-
tive coding schemas is that they lend themselves to Bayesian The problem withEq. (15)is that the brain cannot conesz
treatment. This is important because it can be extended usingstruct priors de novo. They have to be learned along withithe
empirical Bayes and hierarchical models. In what follows forward model. In Bayesian estimation priors are estimatad
we shall first describe the Bayesian view of regularisation from data usingmpiricalBayes. Empirical Bayes harnessass
in terms of priors on the causes. We then consider hierar-the hierarchical structure of a forward model, treating the
chical models in which priors can be derived empirically. estimates of causes at one level as prior expectations forthe
The key implication, for neuronal implementations of pre- subordinate levelEfron and Morris, 1978 This provides aioss
dictive coding, is that empirical priors eschew assumptions natural framework within which to treat cortical hierarchiesse
about the independence of causes (cf. infomax schemes) oin the brain, each providing constraints on the level belowo
the form of constraints in regularised inverse solutions. Fig. 2 depicts a hierarchical architecture that is describetbim
Suppose we knew the a priori distribution of the causes more detail below. This extension models the world as aibiz
p(v), but wanted the best estimate given the input. This max- erarchy of (dynamical) systems where supraordinate caiuges
imum a posteriori (MAP) estimate maximises the posterior induce, and moderate, changes in subordinate causesodor
p(v|u). The two probabilities are related through Bayes rule example, the presence of a particular object in the visual fielsl
which states that the probability of the cause and input oc- changes the incident light falling on a particular part of tloes
curring together is the probability of the cause given the in- retina. A more abstract example, that illustrates the brainis
put times the probability of the input. This, in turn, is the inferential capacities, is presentedFiy. 3. On reading theioss
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Hierarchical prediction

p(s) = p(s, | s;)p(s, | s5)...p(s,)
Sl = G:’(SHI ) + Sl

83 5, = Li & L
/yﬂ O'\.
<O
<+P»0
u=3§ =y aé 7 )‘g- 7
7 1 C i+
Vi, =——C —
Forward 1+ av'“ é; av,+| ém

Backward & lateral & =V, =G (v, 8)=Ag,

Fig. 2. Schematic depicting a hierarchical extension to the predictive coding architecture, using the same fbigndt &kere hierarchical arrangements

within the model serve to provide predictions or priors to representations in the level below. The open circles are the error units and the Silsé circle

the representations of causes in the environment. These representations change to minimise both the discrepancy between their predictée value and t
mismatch incurred by their own prediction of the representations in the level below. These two constraints correspond to prior and likelihaé] potent
respectively (see main text).

1049 Tirst sentence ‘Jack and Jill went up the hill’ we perceive the predictions to which the posterior estimate is accountatoke.
1050 word ‘event’ as ‘went’. In the absence of any hierarchical When this prior biases in favour of ‘went’ we toleratei@s
w051 inference the best explanation for the pattern of visual stimu- small error as a lower level of visual analysis to minimises
1052 lation incurred by the text is ‘event’. This would correspond the overall prediction error at the visual and lexical levebo
1053 to the maximum likelihood estimate of the word and would This illustrates the role of higher level estimates in provios:
1054 be the most appropriate in the absence of prior information ing predictions or priors for subordinate levels. These prinss
1055 about which is the most likely word. However, within hier- offer contextual guidance towards the most likely causeoed
1056 archical inference the semantic context provides top—down the input. Note that predictions at higher levels are subjeet
to the same constraints, only the highest level, if thereoés

0 - oy one in the brain, is free to be directed solely by bottom-+ys

f@d“' and 3}"‘% wonk up the ill influences (although there are always implicit priors). If ther

brain has evolved to recapitulate the casual structure afoéts
environment, in terms of its sensory infrastructures, it isaitwe
teresting to reflect on the possibility that our visual corticem
reflect the hierarchical casual structure of our environment.

:TF:@ g(l/\j: G}JWI’L/J UM (‘Wﬁﬁ&ii

mput wend wan, The hierarchical structure of the real world is literally re72
prediction wenk  ewend aoml goumit flected by the hierarchical architectures trying to minimises
prediction error, not just at the level of sensory input butat

] I ] ] all levels of the hierarchy (notice the deliberate mirror syfuws

lexical —* went event went event metry inFig. 2). The nice thing about this architecture is thats

the dynamics of casual representations atitthéevelv; re- 1077
quire only the error for the current level and the immediatehg
\ preceding level. This follows from the Markov property af7o

hierarchical systems where one only needs to know theiisr-

went event

G Jack and Jill went up the hill . . . .
semantie P mediately supraordinate causes to determine the densitysof
Fig. 3. Schematic illustrating the role of priors in biasing towards one Causes at any level in question, i@v;|vit1, ... ,v,) = 1082
representation of an input or anotheeft The word ‘event’ is selected  p(v;|v;+1). The fact that only error from the current anadss
as the most likely cause of the visual inp&ight The word ‘went’ is lower level is required to drive the dynamicsgfis impor- 1084

selected as the most likely word that is: (i) a reasonable explanation for
the sensory input; and (ii) conforms to prior expectations induced by
semantic context.

tant because it permits a biologically plausible implementas
tion, where the connections driving the error minimisatiobe
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have only to run forward from one level to the next (see low p(v;_1|v;). In a neuronal setting the (whitened) prediass

Section 3.5.JandFig. 2). tion error is encoded by the activities of units denoted byi134
These error units receive a prediction from units in the leved

3.5.1. Empirical Bayes in the brain above and connections from the principal unitsbeing pre-1136
The biological plausibility of the scheme depictedFig. 2 dicted. Horizontal interactions among the error units servato

can be established fairly simply. To do this a hierarchical de-correlate them (cfoldiak, 19909, where the symmetriaizs
predictive scheme is described in some detail. A more thor- lateral connection strengthls hyper-parameterise the ca:so
ough account of this scheme, including simulations of var- variances of the errory_; which are the prior covarianceso
ious neurobiological and psychophysical phenomena, will for leveli — 1. 1141
appear in future publications. For the moment, we will re-  The estimators; 1 and the connection strength parames2
view neuronal implementation at a purely theoretical level, ters perform a gradient ascent on the compound log proba-

using the framework developed above. bility. 1144
Consider any level in a cortical hierarchy containing T T
) . . , e OE; 0811

units (neurons or neuronal populations) whose activjty Vip1 = = g e

is predicted by corresponding units in the level aboyg. dvit1 Vi1 dvit1

The hierarchical form of the implicit generative model is ; o¢ ogT (19)

0= — =——L¢

u=Gi(vz,01) + &1 "0 30;

v2 = G2(v3, 62) + &2 (16) 1) &l > 1
= Ai=—=——tE—(1+1)

v3=--- 8Ai aki 1145

with v1 = u. Technically, these models fall into the class WhenG;(v;+1, ) models dynamical processes (i.e. is effecs
of conditionally independent hierarchical models when the tively a convolution operator) this gradient ascent is mareg
error terms are independent at each letelss and Steffey, = complicated. In a subsequent paper we will show that, witia
1989. These models are also callpdrametric empirical dynamical models, it is necessary to maximise bo#mnd 1149
Bayes(PEB) models because the obvious interpretation of its temporal derivatives (e.g). An alternative is to assumeso
the higher-level densities as priors led to the developmenta simple hidden Markov model for the dynamics and usa
of PEB methodologyHEfron and Morris, 1978 We require Kalman filtering (cf.Rao and Ballard, 1998 For the mo-1152
units in all levels to jointly maximise the posterior probabili- ment, we will assume the inputs change sufficiently slowlss
ties ofv; 1 givenv;. We will assume the errors are Gaussian for gradient ascent not to be confounded. 1154
with covarianced_; = " (1;). Thereforep; andx; param- Despite the complicated nature of the hierarchical maded
eterise the means and covariances of the likelihood at eachand the abstract theorising, three simple and biologicalty
level. plausible things emerge: 1157

pilviy1) = N : G(vit1, 6:), ;) e Reciprocal connections 1158
- |Z,- |—1/2 eXP(—%S,-TZi_lé‘i) (7) The dynamics of_repres_entational uni;s;;_l are subjectiisg

to two, locally available, influences. A likelihood termeo
This is also the prior density for the level below. Although ~ mediated by forward afferents from the error units in thex
6; and; are both parameters of the forward modeglare level below and an empirical prior term conveyed by e2
sometimes referred to as hyperparameters and in classical ror units in the same level. This follows from the condiss
statistics correspond to variance components. We will pre- tional independence conferred by the hierarchical stuuex
serve the distinction between parameters and hyperparam_ ture of the model. Critically, the influences of the ernass
eters because minimising the prediction error with respect units in both levels are meditated by linear connections
to the estimated causes and parameters is sufficient to max- With a strength that is exactly the same as the (negative)
imise the likelihood of neuronal states at all levels. This is  €ffective connectivity of the reciprocal connection framss
the essence of predictive coding. For the hyperparameters vi+1 t0 & andé; 1 (see Box 1 for definition of effectiveiss

there is an additional term that depends on the hyperparam- connectivity). In short, the lateral, forwards and backwarth
eters themselves (see further). connections are all reciprocal, consistent with anatormis

In this hierarchical setting, the objective function com-  cal observations. Lateral connections, within each level
prises a series of log likelihoods

) = In p(ulvy) + In(uifve) + -+ €@) = 36761 — 36leo — - = 3In [y | - AIn |3, ] — -
£ = v — Gi(vit1,0) — Mi&i = (L+ A) L

(18)

Heer (A =1+A. The likelihood at each level corre 2 Clearly, the backward connections are not inhibitory but, after media-

sponds tg(v;|v;+1) which also plays the role of a prior on tion by inhibitory interneurons, their effective influence could be rendered
that is jointly maximised with the likelihood of the level be- inhibitory.
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decorrelate the error units allowing competition between nections stop changing when the prediction error has hesn

prior expectations with different precisions (precision is Whitened@,-siT) =1 1227

the inverse of variance). Non-diagonal forms foi; complicate the biological in1228

Functionally asymmetric forward and backward connec- terpretation because changes at any one connection dapend

tions on changes elsewhere. The problem can be finessed slightly
The forward connections are the reciprocal (nega- by rewriting the equations as 1231

tive transpose) of the backward effective connectivity b = £l — by

9&;/9dv;+1 from the higher level to the lower level, extant " = >'"i+1 =7 (21)

at that time. However, the functional attributes of the Ji; = &7 — ik —1 1232

forward and backward influences are different. The influ- A . ]
ences of units on error units in the lower level mediate Where the decay terms are mediated by integration at thezsl|

the forward modek; = —G;(vi41,6) + . ... These can body in a fashion similar to that describedkniston et al.1234
be nonlinear, where each unit in the higher lewshy (1993) Y 4 ) 1235
modulate or interact with the influence of othéagcord- The overall scheme implied Hyq. (19)sits comfortablyi2zs

ing to the nonlinearities ifG). In contradistinctionthe the hypothesisNlumford, 1993. “On the role of the recip-2s7
influences of units in lower levels do not interagbhen rocal, topographic pathways between two cortical areas,1ose
producing changes in the higher level because their ef- often a ‘higher’ area dealing with more gbstra.\ct informatiage
fects are linearly separabie,1 = —d&/dvis1& — - - -. about the world, the other ‘lower’, dealing _W|_th more corz4o
This is a key observation because the empirical evidence,crété data. The higher area attempts to fit its abstractiens
reviewed in the previous section, suggests that backward!© the data it receives from lower areas by sending back4o
connections are in a position to interact (e.g. though themfr(_)m its deep pyramldgl cells a template reconstructieg
NMDA receptors expressed predominantly in the supra- best f|t§|ng the lower Ieve'l view. Thg lower area at@emptam
granular layers receiving backward connections) whereasreconcile the reconstruction of its view that it receives froas
forward connections are not. It should be noted that, higher areas with what it knows, sending back from its sus
although the implied forward connectiofs /dv; 1 me- perficial _pyramidal cell; the features in its data which are
diate linearly separable effects &f on v;,1, these con- not pret;hcted by the hlgher area. The whole calcglatlomzm
nections might be activity- and time-dependent because done with all areas working simultaneously, but with ordem
of their dependence ory.1. imposed by synchronous activity in the various top—dowsag
Associative plasticity bottom-up loops”. o _ 1251
Changes in the parameters correspond to plasticity [N summary, the predictive coding approach lends itsed?
in the sense that the parameters control the strength ofhaturally to a hierarchical treatment, which considers tie
backward and lateral connections. The backward connec-Prain as an empirical Bayesian device. The dynamics ofithe
tions parameterise the prior expectations of the forward Units or populations are driven to minimise error at all levelss
model and the lateral connections hyper-parameterise thef the cortical hierarchy and implicitly render themselvess
prior covariances. Together they parameterise the Gaus-POSterior estimates of the causes given the data. In cen-
sian densities that constitute the priors (and likelihoods) trad|st|nct|on to co_nnect|on|st.schemas, hierarchical p_regim
of the model. The motivation for these parameters max- fion does not require any desired output. Indeed predictioss
imising the same objective functiod as the neuronal of intermediate outputs at each hierarchical level emearge
states is discussed in the next subsection. For the mo-SPontaneously. Unlike information theoretic approaches they
ment, we are concerned with the biological plausibility do notassume independent causes and invertible generative
of these changes. The plasticity implied is seen more Processes. Incontrast to regularised mverse.sollutlons (e;gsan
clearly with an explicit parameterisation of the connec- Machine vision) they do not depend on a priori constrainis.
tions. For example, 1€G;(vis1, 6;) = 6iviz1. In this These emerge spontaneously as empirical priors from higher

instance levels. The Bayesian considerations above pertain largelysto
1 T the estimates of the causes. In the final subsection we &en-

= @+, (20) sider the estimation of model parameters using the framme-

=1 +r)" L& -1 work provided by density learning with generative modelsso

This is just Hebbian or associative plasticity where the 3.6. Generative models and representational learning 1270

connection strengths change in proportion to the product of

pre and post-synaptic activity. An intuition abdag. (20) In this section we bring together the various schemes eon-
obtains by considering the conditions under which the ex- sidered above using the framework provided by densityieg-
pected change in parameters is zero (i.e. after learning). Fortimation as a way of fitting generative models. This seos
the backward connections this implies there is no compo- tion follows Dayan and Abbott (2001) to which the readera
nent of prediction error that can be explained by casual es-is referred for a fuller discussion. Generative models repres
timates at the higher leveE;v’ ,) = 0. The lateral con-  sent a generic formulation of representational leaning in7a

i+1
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self-supervised context. There are many forms of generativeunder the constraint that the recognition model is (apprasz
models that range from conventional statistical models (e.g. mately) the inverse of the generative modsd. (25)is the 1328
factor and cluster analysis) and those motivated by Bayesiansame asq. (24)after applyingG to both sides. The impli1329
inference and learning (e.payan et al., 1995; Hinton etal., cation is that one needs an explicit parameterisation ofitbe
1995. Indeed many of the algorithms discussed under the (approximate) recognition (inverse) model and generatise
heading of information theory can be formulated as genera- (forward) models that induces the need for both forward a3d
tive models. The goal of generative models is “to learn rep- backward influences. Separate recognition and generatkge
resentations that are economical to describe but allow themodels resolve the problem caused by the non-invertibikity
input to be reconstructed accurateligton et al., 199h of generating processes. The corresponding motivationzam
In current treatments, representational learning is framed in probabilistic learning, rests on finessing the combinatoriad
terms of estimating probability densities of the inputs and explosion of ways in which stochastic generative modets
outputs. Although density learning is formulated at a level of can generate input patternddyan et al., 1995 The com-133s
abstraction that eschews many issues of neuronal implemen-binatorial explosion represents another perspective orvthe
tation (e.g. the dynamics of real-time learning), it does pro- uninvertible ‘many to one’ relationship between causes ad
vide a unifying framework that connects the various schemesinputs. 1341
considered so far. In the general density learning framework, represemta:
The goal of generative models is to make the density of tional learning has two components that can be seen in tesms
the inputs, implied by the generative mo@éli; 6), as close of expectation maximisation (ENDempster et al., 1937In 1344
as possible to those observe@). The generative model is  the E-Step the approximate recognition distribution is maeks
specified in terms of the prior distribution over the causes ified to match the density implied by the generative modet
p(u; 6) and the conditionabenerativedistribution of the parameters, so thatv; u, ¢) ~ p(v|u; 0) and in theM -Step 1347
inputs given the causgs(u|v; ) which together define the  these parameters are changed to render 6) ~ p(u). In 1348
marginal distribution that has to be matched to the input other words, thé€e-Step ensures the recognition model apso

distribution proximates the generative model andtheStep ensures thatsso
the generative model can predict the observed inputs. Iftbe
p(u; 0) = /P(ulv; 6) p(v; 6) dv (22) model is invertible th&-Step reduces to settingv; u, ¢) = 1352

p(vlu; 0) usingEq. (23) Probabilistic recognition proceedsss
Once the parameters of the generative model have been eshy usingg(v; u, ¢) to determine the probability thatcausedissa
timated, through this matching, the posterior density of the the observed sensory inputs. This recognition becomesade-
causes, given the inputs are given by the recognition modelterministic wheng(v; u, ¢) is a Diracs-function over theisse

defined in terms of theecognitiondistribution MAP estimator of the causes,. The distinction betweenss?
p(ulv; 0) p(v; ) probabilistic and deterministic recognition is important hess
p(lu; 0) = o8 (23) cause we have restricted ourselves to deterministic madeds
PRt thus far but these are special cases of density estimatiagsin
However, as considered in depth above, the generative modebfenerative modelling. 1361
may not be invertible and it may not be possible to compute
the recognition distribution froraq. (23) Inthisinstance,an  3.6.1. Density estimation and EM 1362
approximate recognition distribution can be ugéd; u, ¢) EM provides a useful procedure for density estimatioss

that we try to approximate to the true one. The distribution that helps relate many different models within a framewmosde
has some parametepghat need to be learned, for example, that has direct connections with statistical mechanics. Beth
the strength of forward connections. The question addressedsteps of the EM algorithm involve maximising a function ofe
in this review is whether forward connections are sufficient the densities that corresponds to the negative free energysin
for representational leaning. For a moment, consider deter-physics. 1368
ministic models that discount probabilistic or stochastic as-
pects. We have been asking whether we can find the param- s ) — <f q(v: 1, $)In p(v, u; 0) dv>
u

eters of a deterministic recognition model that renders it the q(v; u, ) 1370

inverse of a generating process = {(In p(u; 0)), — (KL(g(v; u, ¢), p(v|u; 6)), (26) 1371
-1

v(u, ¢) = G (u, ) (24)  This objective function comprises two terms. The first is the

expected log likelihood of the inputs, under the generaiime
model, over the observed inputs. Maximising this term irgv4
plicitly minimises the Kullback—Leibler (KL) divergengeis7s
between the actual input density and that implied by the gers-
erative model. This is equivalent to maximising the log likez?

The problem is thaG (v, 6) is a nonlinear convolution and
is generally not invertible. The generative model approach
posits that it is sufficient to find the parameters of an (ap-
proximate) recognition model and the generative model
that predict the inputs

G((u, ¢),0) =u (25) 3 A measure of the discrepancy between two densities.
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lihood of the inputs. The second term is the KL divergence responds to the squashing function $ection 3.3.1The 1428
between the approximating and true recognition densities. Indeterministic equivalent of sparse coding is ICA that obtairzs
short, maximising= encompasses two components of rep- when)_ — 0. The relationships among different modekso
resentational learning: (i) it increases the likelihood that the are rendered apparent under the perspective of genenative
generative model could have produced the inputs; and (ii) models. It is useful to revisit the schemes above to examise

minimises the discrepancy between the approximate recog-their implicit generative and recognition models. 1433
nition model and that implied by the generative model. The

E-Step increaseB with respect to the recognition parame- 3.6.2. Supervised representational learning 1434
ters¢ through minimising the KL term, ensuring a veridical In supervised schemes the generative model is already

approximation to the recognition distribution implied &y known and only the recognition model needs to be estis
The M-Step increaseB by changing, enabling the gener-  mated. The generative model is known in the sense thai4he
ative model to reproduce the inputs. desired output determines the input either deterministically
E: ¢ =ming F($.6) or st_o_chastlcally (e.g. the |_npu_t pr|m|t|ve_s are completei;_g
. 27) specified by their cause, which is the desired output). In this
M: 6=min Fig,6) case only theE-Step is required in which the parametears:
This formulation of representational leaning is critical forthe ¢ that specifyg(v; u, ) change to maximis&. The only 1442
thesis of this review because it shows that backward connec-term in Eq. (26)that depends og is the divergence ternmass
tions, parameterising a generative model, are essential whersuch that learning reduces to minimising the expected diffew
the model is not invertible. If the generative model is invert- ence between the approximate recognition density andithat
ible then the KL term can be discounted and learning reducesrequired by the generative model. This can proceed proba-
to theM-Step (i.e. maximising the likelihood). In principle, bilistically (e.g. Contrastive Hebbian learning in stochasticz
this could be done using a feedforward architecture corre- networks (Abbott and Dayan, 2001, p. 322)) or determinigs
sponding to the inverse of the generative model. However, tically. In the deterministic modg(v; u, ¢) corresponds to aa4g
when processes generating inputs are non-invertible (due tos-function over the point estimatay, = R(u, ¢). The con-14s0
nonlinear interactions among, and temporal convolutions of, nection strength# are changed, typically using the deltss:
the causes) a parameterisation of the generative model (backrule, such that the distance between the modes of the appsex-
ward connections) and approximate recognition model (for- imate and desired recognition distributions are minimisexd
ward connections) is required that can be updatéd-irand over all inputs. This is equivalent to nonlinear function aps4
E-Steps, respectively. In short, non-invertibility enforces an proximation; a perspective that can be adopted on all supes-
explicit parameterisation of the generative model in repre- vised learning of deterministic mappings with neural netass
sentational learning. In the brain this parameterisation may Note, again, that any scheme, based on supervised leamn-

be embodied in backward and lateral connections. ing, requires the processes generating inputs to be knowssa
The EM scheme enables exact and approximate maxi-priori and as such cannot be used by the brain. 1459

mum likelihood density estimation for a whole variety of

generative models that can be specified in terms of priors 3.6.3. Information theory 1460

and generative distributions. Dayan and Abbott (2001) work  In section on information theory we had considengeh
though a series of didactic examples from cluster analy- whether infomax principles were sufficient to specify deterz
sis to independent component analyses, within this unifying ministic recognition architectures, in the absence of baeks
framework. For example, factor analysis corresponds to theward connections. They were introduced in terms of finding

generative model some function of the inputs that produces an output dess
p(v:6) = N(v: 0, 1) sity with maximum entropy. Maximisation d¥ attains theisss

’ ’ (28) same thing through minimising the discrepancy between.tbe
plulv:0) =N :6v.3) observed input distributiop(u) and that implied by a genzass

Namely, the underlying causes of inputs are independenterative model with maximum entropy priors. Although theo
normal variates that are mixed linearly and added to Gaus-infomax and density learning approaches have the samesob-
sian noise to form inputs. In the limiting case »f — 0 jective their heuristics are complementary. Infomax is meotr
the generative and recognition models become deterministicvated by maximising the mutual information betweeand 1472
and the ensuing model conforms to PCA. By simply assum- v under some constraints. The generative model appreash
ing non-Gaussian priors one can specify generative modelstakes its heuristics from the assumption that the causes7of
for sparse coding of the sort proposed ®fshausen and  inputs are independent and possibly non-Gaussian. Thisire-

Field (1996) sults in a prior with maximum entropy(v; 6) = [ | p(v;; 0). 1476
p(v; 0) = ] p(vi, 0) The reason for adopting non-Gaussian priors (e.g. spawrse
’ " (29) coding and ICA) is that the central limit theorem impliess

plv:i6) =N :6v,30) mixtures of causes will have Gaussian distributions asvd
where p(v;6) are chosen to be suitably sparse (i.e. therefore something that is not Gaussian is unlikely to hesa
heavy-tailed) with a cumulative density function that cor- mixture. 1481
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For invertible deterministic models = R(u,¢) = £(u) is simply the log of the joint probability, under thes2
G~1(u, 6) the KL component of disappears leaving only  generative model, of the observed inputs and their caisse,
the likelihood term. implied by approximate recognition. This log probabilitys4
can be decomposed into a log likelihood and log prior ased
F = (Inp@u; 0))u = (Inp(v; 0)u + (INp(ulv; 6))u is exactly the same objective function used to find the MAR

8R . . . . .

_ <In l_[ (v 9)> +(in (u, P) estimator in predictive coding cEq. (14) 1537
u ou " On-line representational learning can be thought ofizas
__ Z H(vi: 0) + H(v: ¢) — H(w) (30) comprising two components, corresponding to Eheand 1539

M-Steps. The expectatioi) component updates the recogwo
This has exactly the same dependence on the parametersition density, whose mode is encoded by the neuronahsa-
as the objective function employed by infomaxEx. (7) tivity v, by maximising¢(u). Maximising £(u) is sufficient 1542
In this context, the free energy and the information differ to maximise its expectatiof over inputs because it is maxsas
only by the entropy of the inputs F = I + H(u). This imised for each input separately. The maximisatidm) (1544
equivalence rests on uses maximum entropy priors of thecomponent corresponds to an ascent of these parameters,

sort assumed for sparse coding. encoded by the connection strengths, on the same log psab-
Notice again that, in the context of invertible deterministic ability 1547

generative models, the parameters of the recognition model ) Y]

specify the generative model and only the recognition model £: ¢ =v= P

(i.e. forward connections meditating= R(u, ¢)) needs to Y (32)

be instantiated. If the generative modal cannot be inverted M : 6 = 7 1548

the recognition model is not defined and the scheme above

is precluded. In this instance one has to parameterise both arsuch that the expected change approxinfatgsascent onsas
approximate recognition and generative model as requiredF; (§) ~ (3¢/d6), = 9F/d0. Eq. (32)is formally identi- 1550
by EM. This enables the use of nonlinear generative models, cal to Eq. (19) the hierarchical prediction scheme, whass:
such as nonlinear PCA (e.gramer, 1991; Karhunen and  the hyperparameters have been absorbed into the pasam-
Joutsensalo, 1994; Dong and McAvoy, 1996; Taleb and Jut-eters. In short, predictive coding can be regarded assan
ten, 1997. These schemes typically employ a ‘bottleneck’ on-line or dynamic form of density estimation using a dess
architecture that forces the inputs through a small number of terministic recognition model and a stochastic generatise
nodes. The output from these nodes then diverges to producenodel. Conjoint changes in neuronal states and connectian
the predicted inputs. The approximate recognition model is strengths map to the expectation maximisation of the agr
implemented, deterministically in connections to the bottle- proximate recognition and generative models, respectiusty.
neck nodes and the generative model by connection fromNote that there is no explicit parameterisation of the receege
these nodes to the outputs. Nonlinear transformations, fromnition model; the recognition density is simply representes
the bottleneck nodes to the output layer, recapitulate the non-py its mode for the inputi at a particular time. This affordsse1
linear mixing of the real causes of the inputs. After learning, a very unconstrained recognition model that can, in pringsz
the activity of the bottleneck nodes can be treated as esti-ple, approximate the inverse of highly nonlinear generatiss

mates of the causes. These representations obtain by projeamodels. 1564
tion of the input onto a low-dimensional curvilinear mani-
fold (encompassing the activity of the bottleneck nodes) by 3.7, summary 1565

an approximate recognition model.

o . In summary, the formulation of representational learsss
3.6.4. Predictive coding o ing in terms of generative models embodies a numbersef
_ Inthe forgoing, density learning is based on the expecta- ey gistinctions: (i) the distinction between invertible versses
tions of probability distributions over the inputs. Clearly the |, invertible models; (ii) deterministic versus probabilistigs

brain does not_ have d|rect.access to the;e expectations b“rtepresentations; and (iii) dynamic versus density learningzo
sees only one input at any instant. In this instance represen-  Non.invertible generative models require their explicit psr
tational learning has to proceed on-line, by sampling inputs 5 meterisation and suggest an important role for backveard
overtime. B _ connections in the brain. Invertible models can, in prinsis

For deterministic recognition modetgw; u, ¢) is param- e he implemented using only forward connections becasse
eterised by its input-specific mod€u), whereg(v(u); u) = the recognition model completely specifies the generative

1and model and vice versa. However, nonlinear and dynamiciss-
v, u; 0 ects of the sensorium render invertibility highly unlikekg:
L) = [qv; u,¢)lnp((—”¢; dv =Inp(v(u), u; 6) P y highly 77
q(v; u, -
=In p(ulv(u); 6) + In p(v(u); H) (31) 4 This approximation can be finessed by using traces, to approximate

the expectation explicitly, and changing the connections in proportion
F =), with the trace.
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This section has focused on the conditions under which for- architectures. However, it should be noted that the difies:
ward connections are sufficient to parameterise a generativeences among them have been deliberately emphasiseds#zor
model. In short, these conditions rest on invertibility and example, predictive coding and the implicit error miniméss
speak to the need for backward connections in the contextsation results in the maximisation of information transfees
of nonlinear and noninvertible generative models. In other words, predictive coding conforms to the pringiss
Most of the examples in this section have focussed on ple of maximum information transfer, but in a distinct wayszs
deterministic recognition models where neuronal dynamics Predictive coding is entirely consistent with the principleesz
encode the most likely causes of the current sensory input.maximum information. The infomax principle is a principlegs
This is largely because we have been concerned with how thewhereas predictive coding represents a particular scheme
brain represents things. The distinction between determinis-that serves that principle. There are examples of infornax
tic and probabilistic representation addresses a deeper queghat do not employ predictive coding (e.g. transformatiaas
tion about whether neuronal dynamics represent the state ofof stimulus energy in early visual processingtick and 1642
the world or the probability densities of those states. From Redlich, 1990that may be specified genetically or epigenets
the point of view of hierarchical models the state of the neu- ically. However, predictive coding is likely to play a muaksa
ronal units encodes the mode of the posterior density at anymore prominent role at higher levels of processing for tha
given level. This can be considered a point recognition den- reasons detailed in the previous section. 1646
sity. However, the states of units at any level also induce a In a similar way predictive coding, especially in its hie47
prior density in the level below. This is because the prior erarchical formulation, conforms to the same PDP prineis
mode is specified by dynamic top—down influences and the ples that underpin connectionist schemes. The represesata-
prior covariance by the strength of lateral connections. Thesetion of any cause depends upon the internally consisteint
covariances render the generative model a probabilistic one.representations of subordinate and supraordinate causesiin
By encoding densities in terms of their modes, using neu- lower and higher levels. These representations mutuallyeis>-
ronal activity, the posterior and prior densities can change duce and maintain themselves, across and within all lewsls
quickly with sensory inputs. However, this does entail uni- of the sensory hierarchy, through dynamic and reentrantes-
modal densities. From the point of view of a statistician this teractionsEdelman, 1998 The same PDP phenomena (e1gss
may be an impoverished representation of the world that lateral interactions leading to competition among represess-
compromises any proper inference, especially when the pos-tations) can be observed. For example, the lateral connection
terior distribution is multimodal. However, it is exactly this  strengths embody what has been learnt empirically aboutdize
approximate nature of recognition that pre-occupies psy- prior covariances among causes. A prior that transpires tade
chophysicists and psychologists; The emergence of unitary,very precise (i.e. low variance) will receive correspondingdyo
deterministic perceptual representations in the brain is com-low strength inhibitory connections from its competing ess1
monplace and is of special interest when the causes are amror units (recally"(1;,)¥2 = 1 + ;). It will therefore su-1e62
biguous (e.g. illusions and perceptual transitions induced by pervene over other error units and have a greater corregtéze
binocular rivalry and ambiguous figures). impact on the estimate causing the prediction error. Cess
The brain is a dynamical system that samples inputs dy- versely, top—down expectations that are less informative wH
namically over time. It does not have instantaneous access tanduce errors that are more easily suppressed and haveskess
the statistics of its inputs that are required for distiaeand effect on the representations. In predictive coding, theseiehy-
M-Steps. Representational learning therefore has to proceedamics are driven explicitly by error minimisation, whereass
under this constraint. In this review, hierarchical predictive in connectionist simulations the activity is determined solelg
coding has been portrayed as a variant of density leaningby the connection strengths established during training.i67o
that conforms to these constraints. In addition to the theoretical bias toward generative mogds
We have seen that supervised, infomax and generativeels and predictive coding, the clear emphasis on backwertd
models require prior assumptions about the distribution of and reentrantfdelman, 199B8dynamics make it a more nats7s
causes. This section introduced empirical Bayes to show thatural framework for understanding neuronal infrastructunes
these assumptions are not necessary and that priors can bEig. 1 shows the fundamental difference between infomers
learned in a hierarchical context. Furthermore, we have tried and generative schemes. In the infomax schemes the een-
to show that hierarchical prediction can be implemented in nections are universally forward. In the predictive codisgr
brain-like architectures using mechanisms that are biologi- scheme the forward connections (broken line) drive the pses-
cally plausible. diction so as to minimise error whereas backwards conmee-
tions (solid lines) use these representations of causes to esswu-
late mixing enacted by the real world. The nonlinear aspesits
4. Generative models and the brain of this mixing imply that only backward influences intems2
act in the predictive coding scheme whereas the nonlinear
The arguments in the preceding section clearly favour unmixing, in classical infomax schemas, is mediated by fag4
predictive coding, over supervised or information theoretic ward connectionsSection 2assembled some of the anatomnsss
frameworks, as a more plausible account of functional brain ical and physiological evidence suggesting that backwagel
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connections are prevalent in the real brain and could supportthese contextual afferents will not elicit a response by thenn:
nonlinear mixing through their modulatory characteristics. selves. Effects of this sort, which change the responsivemess
It is pleasing that purely theoretical considerations and neu- of units but do not elicit a response, are a hallmark of mods
robiological empiricism converge on the same architecture. ulatory projections. In summary, hierarchical models offara
Before turning to electrophysiological and functional neu- scheme that allows for contextual effects; firstly through ks
roimaging evidence for backward connections we consider asing responses towards their prior expectation and secandly
the implications for classical views of receptive fields and by conferring a context-sensitivity on these priors througty

the representational capacity of neuronal units. modulatory backward projections. Next we consider the nas
ture of real neuronal responses and whether they are consis-

4.1. Context, causes and representations tent with this perspective. 1750

The Bayesian perspective suggests something quite pro-4.2. Neuronal responses and representations 1751

found for the classical view of receptive fields. If neuronal
responses encompass a bottom-up likelihood term and Classical models (e.g. classical receptive fields) assumre
top—down priors, then responses evoked by bottom—up in-that evoked responses will be expressed invariably inithe
put should change with the context established by prior same units or neuronal populations irrespective of the aes-
expectations from higher levels of processing. Consider the text. However, real neuronal responses are not invariantssit
example inFig. 3 again. Here a unit encoding the visual depend upon the contextinwhich they are evoked. For exapa-
form of ‘went’ responds when we read the first sentence at ple, visual cortical units have dynamic receptive fields that
the top of this figure. When we read the second sentencecan change from moment to moment (cf. the non-classical
‘The last event was cancelled’ it would not. If we recorded receptive field effects modelled iR&o and Ballard, 1998 1759
from this unit we might infer that our ‘went’ unit was, in  Another example is attentional modulation of evoked r®o
some circumstances, selective for the word ‘event’. Without sponses that can change the sensitivity of neurons to diffarent
an understanding of hierarchical inference and the semanticperceptual attributes (e.dreue and Maunsell, 1996The 1762
context the stimulus was presented in this might be difficult evidence for contextual responses comes from neuroanatem-
to explain. In short, under a predictive coding scheme, the ical and electrophysiological studies. There are numenoes
receptive fields of neurons should be context-sensitive. Theexamples of context-sensitive neuronal responses. Pethégs
remainder of this section deals with empirical evidence for the simplest is short-term plasticity. Short-term plasticitys
these extra-classical receptive field effects. refers to changes in connection strength, either potentia-
Generative models suggest that the role of backward con-tion or depression, following pre-synaptic inputs (&gbot 17es
nections is to provide contextual guidance to lower lev- et al., 1997. In brief, the underlying connection strengthsee
els through a prediction of the lower level's inputs. When that define what a unit represents, are a strong functiorvof
this prediction is incomplete or incompatible with the lower the immediately preceding neuronal transient (i.e. preaed-
area’s input, an error is generated that engenders changes iing representation). A second, and possibly richer, exanpte
the area above until reconciliation. When, and only when, the is that of attentional modulation. It has been shown, both
bottom—up driving inputs are in harmony with top—down pre- in single unit recordings in primate3§reue and Maunselly774
diction, error is suppressed and a consensus between the pret996 and human functional fMRI studieB{ichel and Fris-1775
diction and the actual input is established. Given this concep-ton, 1997, that attention to specific visual attributes can prors
tual model a stimulus-related response or ‘activation’ corre- foundly alter the receptive fields or event-related responses
sponds to some transient error signal that induces the approto the same stimuli. 1778
priate change in higher areas until a veridical higher-level  These sorts of effects are commonplace in the brain and
representation emerges and the error is ‘cancelled’ by back-are generally understood in terms of the dynamic modutse
wards connections. Clearly the prediction error will depend tion of receptive field properties by backward and lateral
on the context and consequently the backward connectionsafferents. There is clear evidence that lateral connectionsgsin
confer context-sensitivity on the functional specificity of the visual cortex are modulatory in naturdi¢sch and Gilbert,17s3
lower area. In short, the activation does not just depend on1991), speaking to an interaction between the functional segr
bottom—up input but on the difference between bottom—up regation implicit in the columnar architecture of V1 and tives
input and top—down predictions. neuronal dynamics in distal populations. These observations,
The prevalence of nonlinear or modulatory top—down ef- suggests that lateral and backwards interactions may corveey
fects can be inferred from the fact that context interacts with contextual information that shapes the responses of any nes-
the content of representations. Here context is establishedron to its inputs (e.gKay and Phillips, 1996; Phillips andrss
simply through the expression of causes other than the oneSinger, 199Yto confer on the brain the ability to make corro
in question. Backward connections from one higher area ditional inferences about sensory input. See alsdntosh 1791
can be considered as providing contextual modulation of the (2000)who develops the idea from a cognitive neuroscience
prediction from another. Because the effect of context will perspective “that a particular region in isolation may not:
only be expressed when the thing being predicted is presentact as a reliable index for a particular cognitive functiares
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Instead, theneural contextin which an area is active may ily to the component of motion perpendicular to a contougs
define the cognitive function.” His argument is predicated orientation, but over a period of approximately 60 ms thess:
on careful characterisations of effective connectivity using sponses gradually shift to encode the true stimulus directiem,

neuroimaging. regardless of orientation”. 1853
The preceding examples were taken from electrophys-
4.2.1. Examples from electrophysiology iology. Similar predictions can be made, albeit at a less

In the next section we will illustrate the context-sensitive refined level, about population responses elicited in fuises
nature of cortical activations, and implicit specialisation, in tional neuroimaging where functional specialisation (ek7
the inferior temporal lobe using neuroimaging. Here we con- selectivity in unit recordings) is established by showimgs
sider the evidence for contextual representations in terms ofregionally-specific responses to some sensorimotor attribte
single cell responses, to visual stimuli, in the temporal cor- or cognitive component. At the level of cortical responses
tex of awake behaving monkeys. If the representation of ain neuroimaging the dynamic and contextual natureissf
stimulus depends on establishing representations of suborevoked responses means that regionally-specific respaases
dinate and supraordinate causes at all levels of the visualto a particular cognitive component may be expressedsdn
hierarchy, then information about the high-order attributes one context but not another. In the next section we lookset
of a stimulus, must be conferred by top—down influences. some empirical evidence from functional neuroimaging theas
Consequently, one might expect to see the emergence of seeonfirms the idea that functional specialisation is conferred
lectivity, for high-level attributesafter the initial visually in a context-sensitive fashion by backwards connecticias
evoked response (it typically takes about 10 ms for volleys from higher brain areas. 1868
of spikes to be propagated from one cortical area to another
and about a 100 ms to reach prefrontal areas). This is be-
cause the representations at higher levels must emerge be5. Functional architectures assessed with 1869
fore backward afferents can reshape the response profile obrain imaging 1870
neurons in lower areas. This temporal delay, in the emer-
gence of selectivity, is precisely what one sees empirically:  Information theory and predictive coding schemas stig:
Sugase et al. (1999¢corded neurons in macaque temporal gest alternative architectures that are sufficient for repressn-
cortex during the presentation of faces and objects. The facegational learning. Forward connections are sufficient for the
were either human or monkey faces and were categorised informer, whereas the latter posits that most of the brain’siéns
terms of identity (whose face it was) and expression (happy, frastructure is used to predict sensory input through a hieras-
angry, etc.). “Single neurones conveyed two different scales chy of top—down projections. Clearly to adjudicate betweem
of facial information in their firing patterns, starting at dif- these alternatives the existence of backward influences must
ferent latencies. Global information, categorising stimuli as be established. This is a slightly deeper problem for fures
monkey faces, human faces or shapes, was conveyed in théional neuroimaging than might be envisaged. This is faes
earliest part of the responses. Fine information about iden-cause making causal inferences about effective connectiwity
tity or expression was conveyed later”, starting on average is not straightforward (seearl, 200Q It might be thoughtiss1
about 50 ms after face-selective responses. These observahat showing regional activity was partially predicted by ags2
tions demonstrate representations for facial identity or ex- tivity in a higher level would be sufficient to confirm the exss3
pression that emerge dynamically in a way that might rely istence of backward influences, at least at a population leyei.
on backward connections. These influences imbue neuronsThe problem is that this statistical dependency does not es-
with a selectivity that is not intrinsic to the area but depends mit any causal inference. Statistical dependencies could:ses-
on interactions across levels of a processing hierarchy. ily arise in a purely forward architecture because the higher

A similar late emergence of selectivity is seen in motion |evel activity is predicated on activity in the lower level. Omes
processing. A critical aspect of visual processing is the inte- resolution of this problem is to perturb the higher level diso
gration of local motion signals generated by moving objects. rectly using transmagnetic stimulation or pathological dige
This process is complicated by the fact that local velocity ruptions (seeSection §. However, discounting these intetso:
measurements can differ depending on contour orientationventions, one is left with the difficult problem of inferringoz
and spatial position. Specifically, any local motion detector backward influences, based on measures that could be.ger-
can measure only the component of motion perpendicular related because of forward connections. Although thereiare
to a contour that extends beyond its field of viéa¢k and causal modelling techniques that can address this prohbesm
Born, 200). This “aperture problem” is particularly relevant  we will take a simpler approach and note that interacticsns
to direction-selective neurons early in the visual pathways, between bottom—-up and top—down influences cannot bessx-
where small receptive fields permit only a limited view of plained by a purely feedforward architecture. This is because
a moving objectPack and Born (2001have shown “that  the top—down influences have no access to the bottomsasp
neurons in the middle temporal visual area (known as MT inputs. An interaction, in this context, can be construed asan
or V5) of the macaque brain reveal a dynamic solution to effect of backward connections on the driving efficacy of fom:
the aperture problem. MT neurons initially respond primar- ward connections. In other words, the response evoked bysthe
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same driving bottom—up inputs depends upon the context esribute (e.g. colour, motion etc.). The areas highlighteditsg
tablished by top—down inputs. This interaction is used below subtraction were identified with homologous areas in mos?
simply as evidence for the existence of backward influences. keys that showed selective electrophysiological responses4o
However, there are some instances of predictive coding thatequivalent visual stimuli. 1959
emphasises this phenomenon. For example, the “Kalman fil- Consider a specific example; namely the difference e
ter model demonstrates how certain forms of attention can between simply saying “yes” when a recognisable objectsa
viewed as an emergent property of the interaction betweenseen, and saying “yes” when an unrecognisable non-ohjsgt
top—down expectations and bottom—up signal&dg, 1999. is seen. Regionally specific differences in brain activity theat
The remainder of this article focuses on the evidence distinguish between these two tasks could be implicateddn
for these interactions. From the point of view of func- implicit objectrecognition. Although its simplicity is appeailses
tionally specialised responses these interactions manifesting this approach embodies some strong assumptions absut
as context-sensitive or contextual specialisation, where the way that the brain implements cognitive processesssA
modality-, category- or exemplar-specific responses, driven key assumption is ‘pure insertion’. Pure insertion asserts téeat
by bottom up inputs are modulated by top—down influences one can insert a new component into a task without effest
induced by perceptual set. The first half of this section ing the implementation of pre-existing components (for exeo
adopts this perceptive. The second part of this section usesample, how do we know that object recognition is not itselfi
measurements of effective connectivity to establish inter- affected by saying “yes"?). The fallibility of this assumptiagr2
actions between bottom—up and top—down influences. All has been acknowledged for decades, perhaps most exgplic-
the examples presented below rely on attempts to establishitly by Sternberg’s revision of Donder’s subtractive methagra
interactions by trying to change sensory-evoked neuronal The problem for subtraction is as follows: if one developss
responses through putative manipulations of top—down in- task by adding a component then the new task comprisesonot
fluences. These include inducing independent changes inonly the previous components and the new componentidut
perceptual set, cognitive (attentional) set and, in the last the integration of the new and old components (for exampie,

section through the study of patients with brain lesions. the integration of phonology and object recognition). This
integration orinteractioncan itself be considered as a newso
5.1. Context-sensitive specialisation component. The difference between two tasks thereforas-

cludes the new component and the interactions betweemethe
If functional specialisation is context-dependent then one new component and those of the original task. Pure ingeg-
should be able to find evidence for functionally-specific re- tion requires that all these interaction terms are negligindes
sponses, using neuroimaging, that are expressed in one con€learly in many instances they are not. We next consider fess-
text and not in another. The first part of this section pro- torial designs that eschew the assumption of pure insertigg.
vides an empirical example. If the contextual nature of spe-
cialisation is mediated by backwards modulatory afferents 5.1.2. Multifactorial designs 1987
then it should be possible to find cortical regions in which  Factorial designs combine two or more factors withinoss
functionally-specific responses, elicited by the same stim- task or tasks. Factorial designs can be construed asigsr-
uli, are modulated by activity in higher areas. The second forming subtraction experiments in two or more differando
example shows that this is indeed possible. Both of these ex-contexts. The differences in activations, attributable to tfve
amples depend on multifactorial experimental designs that effects of context, are simply the interaction. Consider g2
have largely replaced subtraction and categorical designs inpeating the above implicit object recognition experimentdss

human brain mapping. another context, for example naming (of the object’s nawe
or the non-object’s colour). The factors in this example ars
5.1.1. Categorical designs implicit object recognition with two levels (objects versuss

Categorical designs, such as cognitive subtraction, havenon-objects) and phonological retrieval (naming versus segy-
been the mainstay of functional neuroimaging over the pasting “yes”). The idea here is to look at the interaction hevs
decade. Cognitive subtraction involves elaborating two tasks tween these factors, or the effect that one factor has ondise
that differ in a separable component. Ensuing differences responses elicited by changes in the other. Generallyzomn-
in brain activity are then attributed to this component. The teractions can be thought of as a difference in activatizos
tenet of cognitive subtraction is that the difference between brought about by another processing demand. Dual taskoin-
two tasks can be formulated as a separable cognitive or senterference paradigms are a clear example of this approach
sorimotor component and that the regionally specific differ- (e.g.Fletcher et al., 1995 2004
ences in hemodynamic responses identify the corresponding Consider the above object recognition experiment agais.
functionally specialised area. Early applications of subtrac- Noting that object-specific responses are elicited (by aste
tion range from the functional anatomy of word processing ing subjects to view objects relative to meaningless shapes),
(Petersen et al., 198%o functional specialisation in extras-  with and without phonological retrieval, reveals the factotials
triate cortex Lueck et al., 198p The latter studies involved  nature of this experiment. This ‘two by two’ design allowss
presenting visual stimuli with and without some sensory at- one to look specifically at the interaction between phorae
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Regionally-specific interactions
Object-specific activations

.

@ st s &

adjusted rCBF

. s CO“}.“.“.

Context: no naming naming

Fig. 4. This example of regionally specific interactions comes from an experiment where subjects were asked to view coloured non-object shapes or
coloured objects and say “yes”, or to name either the coloured object or the colour of the kbfipA regionally specific interaction in the left
infero-temporal cortex. The SPM threshold #s< 0.05 (uncorrected)Hriston et al., 1995b Right The corresponding activities in the maxima of this

region are portrayed in terms of object recognition-dependent responses with and without naming. It is seen that this region shows object recognitio
responses when, and only when, there is phonological retrieval. The ‘extra’ activation with naming corresponds to the interaction. These data were
acquired from 6 subjects scanned 12 times using PET.

logical retrieval and object recognition. This analysis iden- to that stimulus when, and only when, activity in the parietak
tifies not regionally specific activations but regionally spe- source is high? If such an interaction exists, then one migst
cific interactions When we actually performed this exper- infer that the parietal area is modulating responses tozdke
iment these interactions were evident in the left posterior, stimulus attribute for which the area is selective. This bas
inferior temporal region and can be associated with the in- clear ramifications in terms of the top—down modulatioreets
tegration of phonology and object recognition ($&g. 4 specialised cortical areas by higher brain regions. 2049
andFriston et al., 1996or details). Alternatively this region The statistical model employed in testing for psychophysse
can be thought of as expressing recognition-dependent re-ological interactions is a simple regression model of effectinve
sponses that are realised in, and only in, the context of havingconnectivity that embodies nonlinear (second-order or mos>-
to name the object seen. These results can be construed aglatory effects). As such, this class of model speaks direxty
evidence of contextual specialisation for object-recognition to functional specialisation of a nonlinear and contextua
that depends upon modulatory afferents (possibly from tem- sort. Fig. 5illustrates a specific example (sB®lan et al., 2055
poral and parietal regions) that are implicated in naming a 1997 for details). Subjects were asked to view (degradeed
visually perceived object. There is no empirical evidence in faces and non-face (object) controls. The interaction betwesn
these results to suggest that the temporal or parietal regionsactivity in the parietal region and the presence of faces wes
are the source of this top—down influence but in the next ex- expressed most significantly in the right infero-temporal z@s
ample the source of modulation is addressed explicitly using gion not far from the homologous left infero-temporal reeo

psychophysiological interactions. gion implicated in the object naming experiment abox®:
Changes in parietal activity were induced experimentallytsy
5.1.3. Psychophysiological interactions pre-exposure of the (un-degraded) stimuli before some sg@ns

Psychophysiological interactions speak directly to the but not others to prime them. The data in the right panel
interactions between bottom—up and top—down influences,of Fig. 5 suggests that the infero-temporal region shows
where one is modelled as an experimental factor and theface-specific responses, relative to non-face objects, wihes,
other constitutes a measured brain response. In an analysiand only when, parietal activity is high. These results candse
of psychophysiological interactions one is trying to explain interpreted as a priming-dependent face-specific respanse,
a regionally specific response in terms of an interaction be- in infero-temporal regions that are mediated by interactions
tween the presence of a sensorimotor or cognitive processwith medial parietal cortex. This is a clear example of cosve

and activity in another part of the braiRr{ston et al., 199y textual specialisation that depends on top—down effectszo71
The supposition here is that the remote region is the source
of backward modulatory afferents that confer functional 5.2. Effective connectivity 2072

specificity on the target region. For example, by combining

information about activity in the posterior parietal cortex, The previous examples demonstrating contextual spegiad-
mediating attentional or perceptual set pertaining to a partic- isation are consistent with functional architectures implet
ular stimulus attribute, can we identify regions that respond by predictive coding. However, they do not provide defigizs
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Modulation of face-selectivity by PPC

adjusted rCBF

PPC activity

emergence of face selectivity

Fig. 5. Top Examples of the stimuli presented to subjects. During the measurement of brain responses only degraded stimuli where shown (e.g. the right
hand picture). In half the scans the subject was given the underlying cause of these stimuli, through presentation of the original picturdd¢éoge left)
scanning. This priming induced a profound difference in perceptual set for the primed, relative to non-primed, RightliActivity observed in a

right infero-temporal region, as a function of (mean corrected) PPC activity. This region showed the most significant interaction betweendie presen
of faces in visually presented stimuli and activity in a reference location in the posterior medial parietal cortex (PPC). This analysis canth# though

as finding those areas that are subject to top—down modulation of face-specific responses by medial parietal activity. The crosses corresippnd to activ
whilst viewing non-face stimuli and the circles to faces. The essence of this effect can be seen by noting that this region differentiates bstween face
and non-faces when, and only when, medial parietal activity is high. The lines correspond to the best second-order polynomial fit. These data were
acquired from six subjects using PEdeft Schematic depicting the underlying conceptual model in which driving afferents from ventral form areas
(here designated as V4) excite infero-temporal (IT) responses, subject to permissive modulation by PPC projections.

tive evidence for an interaction between top—down and of neuronal interactions, involving a huge number of micza
bottom—up influences. In this subsection we look for direct scopic variables, it may seem an impossible task to nabe
evidence of these interactions using functional imaging. meaningful measurements of coupling among brain systeoas,
This rests upon being able to measure effective connectivity especially with measurements afforded by techniques dike
in a way that is sensitive to interactions among inputs. This fMRI. However, the problem is not as intractable as ane
requires a plausible model of coupling among brain regions might think. 2099
that accommodates nonlinear and dynamical effects. We Suppose that the variablesepresented a complete antho
have used a model that is based on the Volterra expansiorself-consistent description of the state variables of a brain
introduced inSection 3 Before turning to empirical evi-  region. In other words, everything needed to determinezthe
dence for interactions between bottom—up and top—down evolution of that region’s state, at a particular place and
inputs the motivation for this particular model of effective time, was embodied in these measurements. If such a sebof
connectivity is presented briefly. variables existed they would satisfy some immensely cotvs

plicated nonlinear equations (d&qg. (1) 2106
5.2.1. Effective connectivity and Volterra kernels o

. : x = f(s,u)

The problem faced, when trying to measure effective con- (33)
nectivity, is that measurements of brain responses are usu-r =8 ) 2107
ally very limited, either in terms of their resolution (in space u represents a set of inputs conveyed by projections feom
or time) or in terms of the neurophysiological or biophysi- other regions and is a large vector of state variables whieivg
cal variable that is measured. Given the complicated naturerange from depolarisation at every point in the dendritic tre®
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to the phosphorylation status of every relevant enzyme; from the details of each region’s electrochemical status. We erdy
the biochemical status of every glial cell compartment to need to know the history of its inputs, which obtain froms
every aspect of gene expression. The vast majority of thesethe measurable outputs of other regions. In principle, a coms-
variables are hidden and not measurable directly. However,plete description of regional responses could be framegain
there are measurementthat can be made, that, as we have terms of inputs and the Volterra kernels required to produee

seen inSection 3 are simply a nonlinear convolution of the

the outputs. The nice thing about the kernels is that they2ean

inputs with some \olterra kernels. These measures usuallybe interpreted directly as effective connectivity (see Box213o

reflect the activity of whole cells or populations and are mea-
sured in many ways, for example firing at the initial segment
of an axon or local field potentials. The critical thing here is
that the output is casually related to the inputkich are the

outputs of other regiond his means that that we never need
to know the underlying and ‘hidden’ variables that describe

Because the inputs (and outputs) are measurable oneigan
estimate the kernels empirically. The first-order kernebi
simply the change in response induced by a change in inpat
in the recent past. The second-order kernels are the charge
in the first—order effective connectivity induced by changes
in a second (modulatory) input and so on for higher orders.

O

Changes in V5 responses to inputs from V2 with
PPC activity
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Fig. 6. Left Brain regions and connections comprising the moé&egiht Characterisation of the effects of V2 inputs on V5 and their modulation by

posterior parietal cortex (PPC). The broken lines represent estimates of V5 responses when PPC activity is zero, according to a second-arder Volterr
model of effective connectivity with inputs to V5 from V2, PPC and the pulvinar (PUL). The solid curves represent the same response when PPC activity
is one standard deviation of its variation over conditions. It is evident that V2 has an activating effect on V5 and that PPC increases the responsivene

of V5 to these inputs. The insert shows all the voxels in V5 that evidenced a modulatory éffec0.05 uncorrected). These voxels were identified
by thresholding a SPMFiston et al., 1995bof the F statistic testing for the contribution of second-order kernels involving V2 and PPC (treating all

other terms as nuisance variables). The data were obtained with fMRI

under identical stimulus conditions (visual motion subtended by radially movin

dots) whilst manipulating the attentional component of the task (detection of velocity changes).
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Another nice thing about the Volterra formulation is that the

27

ture implied by predictive coding because they estabtish

response is linear in the unknowns, which can be estimatedthe existence of functionally expressed backward connee-
using standard least square procedures. In short, Volterrations. V5 cortical responses evidence an interaction betveeen
kernels are synonymous with effective connectivity because bottom—up input from early visual cortex and top—down 2me4
they characterise the measurable effect that an input has orfluences from parietal cortex. In the final section the impliss

its target.

5.2.2. Nonlinear coupling among brain areas
Linear models of effective connectivity assume that the
multiple inputs to a brain region are linearly separable. This

assumption precludes activity-dependent connections that6. Functional integration and neuropsychology

cations of this sort of functional integration are addressed
from the point of view of the lesion-deficit model and nets?
ropsychology. 2198

2199

are expressed in one context and not in another. The resolu-

tion of this problem lies in adopting nonlinear models like
the Volterra formulation that include interactions among in-

If functional specialisation depends on interactions ameaxng
cortical areas then one might predict changes in functiapal

puts. These interactions can be construed as a context- ospecificity in cortical regions that receive enabling or modzss

activity-dependent modulation of the influence that one re-
gion exerts over anotheB(ichel and Friston, 1997In the
\olterra model, second-order kernels model modulatory ef-
fects. Within these models the influence of one region on
another has two components: (i) the directdsiving in-
fluence of input from the first (e.g. hierarchically lower)
region, irrespective of the activities elsewhere; and (ii) an
activity-dependentmodulatory component that represents
an interaction with inputs from the remaining (e.g. hierar-

latory afferents from a damaged area. A simple consequenece
is that aberrant responses will be elicited in regions hierag
chically below the lesion if, and only if, these responses zies
pend upon inputs from the lesion site. However, there maybe
other contexts in which the region’s responses are perfeetly
normal (relying on other, intact, afferents). This leads to the
notion of a context-dependent regionally-specific abnormals
ity, caused by, but remote from, a lesion (i.e. an abnormal
response that is elicited by some tasks but not others)2i\e

chically higher) regions. These are mediated by the first and have referred to this phenomenon as ‘dynamic diaschisig’

second-order kernels, respectively. The example provided in(Price et al., 2000
Fig. 6 addresses the modulation of visual cortical responses

by attentional mechanisms (e:reue and Maunsell, 1996
and the mediating role of activity-dependent changes in ef-
fective connectivity.

The right panel irFig. 6 shows a characterisation of this

modulatory effect in terms of the increase in V5 responses,

to a simulated V2 input, when posterior parietal activity is
zero (broken line) and when it is high (solid lines). In this
study subjects were studied with fMRI under identical stim-
ulus conditions (visual motion subtended by radially moving
dots) whilst manipulating the attentional component of the

2213

6.1. Dynamic diaschisis 2214
Classical diaschisis, demonstrated by early anatominal
studies and more recently by neuroimaging studies of rest-
ing brain activity, refers to regionally specific reductionszinz
metabolic activity at sites that are remote from, but cens
nected to, damaged regions. The clearest example is ‘crazsed
cerebellar diaschisisLénzi et al., 1982in which abnormal-2220
ities of cerebellar metabolism are seen characteristicallyzat
lowing cerebral lesions involving the motor cortex. Dynamiez

task (detection of velocity changes). The brain regions and diaschisis describes the context-sensitive and task-speeific
connections comprising the model are shown in the upper effects that a lesion can have on tieoked responsesf a 2224
panel. The lower panel shows a characterisation of the ef-distant cortical region. The basic idea behind dynamiczelis
fects of V2 inputs on V5 and their modulation by posterior aschisis is that an otherwise viable cortical region expresses
parietal cortex (PPC) using simulated inputs at different lev- aberrant neuronal responses when, and only when, thosezre-
els of PPC activity. It is evident that V2 has an activating ef- sponses depend upon interactions with a damaged regigmn.
fect on V5 and that PPC increases the responsiveness of V5This can arise because normal responses in any given region
to these inputs. The insert shows all the voxels in V5 that ev- depend upon inputs from, and reciprocal interactions withg
idenced a modulatory effecP(< 0.05 uncorrected). These other regions. The regions involved will depend on the cexgs
voxels were identified by thresholding statistical parametric nitive and sensorimotor operations engaged at any particadar
maps of the F statistidfiston et al., 1995ptesting for the  time. If these regions include one that is damaged, therezb-
contribution of second-order kernels involving V2 and PPC normal responses may ensue. However, there may be sittsa-
while treating all other components as nuisance variables.tions when the same region responds normally, for instanee
The estimation of the Volterra kernels and statistical infer- when its dynamics depend only upon integration with s
ence procedure is describedHrniston and Blichel (2000) damaged regions. If the region can respond normally in sorse
This sort of result suggests that backward parietal inputs situations then forward driving components must be intazs
may be a sufficient explanation for the attentional modu- This suggests that dynamic diaschisis will only presentite
lation of visually evoked extrastriate responses. More im- self when the lesion involves a hierarchically equivalentan
portantly, they are consistent with the functional architec- higher area. 2241



2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262

ARTICLE IN PRESS

28 K. Friston/Progress in Neurobiology 590 (2002) 1-31

Dynamic diaschisis

(@) Lesion sites in four patients

(b) Patterns of activation
Normal activations Activations in Patients Activations in first patient
Implicit reading Implicit reading Semantic task

Context-sensitive
failure to activate

Failure to activate
Implicit reading

Fig. 7. (a) Top These renderings illustrate the extent of cerebral infarcts in four patients, as identified by voxel-based morphometry. Regions of reduced
grey matter (relative to neurologically normal controls) are shown in white on the left hemisphere. The Bt (et al., 1995pbwere thresholded

at P < 0.001 uncorrected. All patients had damage to Broca’'s area. The first (upper left) patient’s left middle cerebral artery infarct was most extensive
encompassing temporal and parietal regions as well as frontal and motor cortBottith SPMs illustrating the functional imaging results with regions

of significant activation shown in black on the left hemisphere. Results are shown for: (i) normal subjects reading words (left); (ii) activatimrs com

to normal subjects and patients reading words using a conjunction analysis (middle-top); (iii) areas where normal subjects activate sigoifecantly m
than patients reading words, using the group times condition interaction (middle lower); and (iv) the first patient activating normally for @ tsetanti
Context-sensitive failures to activate are implied by the abnormal activations in the first patient, for the implicit reading task, despite @tivatioal a

during a semantic task.

6.1.1. An empirical demonstration (undamaged by the stroke) (sEwy. 4). These two regiona2es
We investigated this possibility in a functional imaging are crucial for word productiorPfice, 1998 Examination2264
study of four aphasic patients, all with damage to the left pos- of individual responses in this area revealed that all the pwe
terior inferior frontal cortex, classically known as Broca’s mal subjects showed increased activity for words relativezte
area (sed-ig. 7, upper panels). These patients had speech consonant letter strings while all four patients showed tfwe
output deficits but relatively preserved comprehension. Gen-reverse effect. The abnormal responses in the left posterier
erally functional imaging studies can only make inferences inferior temporal lobe occurred even though this undamaged
about abnormal neuronal responses when changes in cogniregion: (i) lies adjacent and posterior to a region of the beft
tive strategy can be excluded. We ensured this by engagingmiddle temporal cortex that activated normally (see midete
the patients in an explicit task that they were able to perform column ofFig. 7b); and (ii) is thought to be involved in ape72
normally. This involved a keypress response when a visually earlier stage of word processing than the damaged lefbar-
presented letter string contained a letter with an ascendingferior frontal cortex (i.e. is hierarchically lower than the k&4
visual feature (e.g.: h, k, I, or t). While the task remained sion). From these results we can conclude that, duringete
constant, the stimuli presented were either words or conso-reading task, responses in the left basal temporal langezage
nant letter strings. Activations detected for words, relative area rely on afferent inputs from the left posterior inferarz
to letters, were attributed to implicit word processing. Each frontal cortex. When the first patient was scanned agairs,
patient showed normal activation of the left posterior mid- during an explicit semantic task, the left posterior inferbore
dle temporal cortex that has been associated with semantemporal lobe responded normally. The abnormal implieéb
tic processingRrice, 1993 However, none of the patients reading related responses were therefore task-specific.2281
activated the left posterior inferior frontal cortex (damaged These results serve to illustrate the concept of ghgs
by the stroke), or the left posterior inferior temporal region namic diaschisis; namely the anatomically remote ared
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2284 context-specific effects of focal brain lesions. Dynamic access to the context in which the inputs are generatedzhey
2285 diaschisis represents a form of functional disconnection are in a position to modulate the selectivity or specialisatigsa
2286 Where regional dysfunction can be attributed to the loss of lower areas. The implications for classical models (esge
2287 Of enabling inputs from hierarchically equivalent or higher classical receptive fields in electrophysiology, classical spe-
2288 brain regions. Unlike classical or anatomical disconnection cialisation in neuroimaging and connectionism in cognitige
2289 syndromes its pathophysiological expression depends upormodels) are severe and suggest these models may presside
2200 the functional brain state at the time responses are evokedincomplete accounts of real brain architectures. On the atiwer
2201 Dynamic diaschisis may be characteristic of many region- hand, predictive coding in the context of hierarchical gesa4
2202 ally specific brain insults and may have implications for erative models not only accounts for many extra-classieal
2203 neuropsychological inference. phenomena seen empirically but also enforces a viewsaf

the brain as an inferential machine through its empiricat

Bayesian motivation. 2348
2204 7. Conclusion

2295 In conclusion, the representational capacity and inherentUncited references 2349
2206 function of any neuron, neuronal population or cortical area
2207 in the brain is dynamic and context-sensitive. Functional in-  Friston (1995a)Friston (2000) Fukushima (1986Harth 2350

2208 tegration, or interactions among brain systems, that employ et al. (1987) McIntosh and Gonzalez-Lima (1994) 2351
2299 driving (bottom up) and backward (top—down) connections,

2300 mediate this adaptive and contextual specialisation. A crit-

2301 ical consequence is that hierarchically organised neuronalacknowledgements 2352
2302 responses, in any given cortical area, can represent different

2303 things at different times. We have seen that most models of The Wellcome Trust funded this work. | would like tass

2304 representational learning require prior assumptions about theyp 5 nk my colleagues for help in writing this review and des

2305 distribution of causes. However, empirical Bayes SuggeStSveloping these ideas, especially Cathy Price for the psyels-

2306 that these assumptions can be relaxed and that priors can bﬁ)gical components and Peter Dayan for the theoretical nes-
2307 learned in a hierarchical context. We have tried to show that robiology. 357

2308 this hierarchical prediction can be implemented in brain-like

2309 architectures and in a biologically plausible fashion.

2310  The main point made in this review is that backward con- References 2358
2311 hections, mediating internal or generative models of how

2312 sensory inputs are caused, are essential if the processes gefpnot, L.F., Varela, J.A., Nelson, S.B., 1997. Synaptic depression za5d

2313 erating inputs are non-invertible. Because these generating cortical gain control. Science 275, 220-223. 2360
2314 processes are dynamical in nature, sensory input correspondébsher, J.R., Benson, D.F., 1993. Disconnection syndromes: an ovensew
2315 to a non-invertible nonlinear convolution of causes. This  ©of Geschwind's contributions. Neurology 43, 862-867. 2362
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