
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 621670, 34 pages
doi:10.1155/2010/621670

Research Article
Generalised Filtering

Karl Friston,1 Klaas Stephan,1, 2 Baojuan Li,1, 3

and Jean Daunizeau1, 2

1 Wellcome Trust Centre for Neuroimaging, University College London, Queen Square,
London WC1N 3BG, UK

2 Laboratory for Social and Neural Systems Research, Institute of Empirical Research in Economics,
University of Zurich, 8006 Zurich, Switzerland

3 College of Mechatronic Engineering and Automation, National University of Defense Technology,
Changsha, Hunan 410073, China

Correspondence should be addressed to Karl Friston, k.friston@fil.ion.ucl.ac.uk

Received 29 January 2010; Accepted 17 March 2010

Academic Editor: Massimo Scalia

Copyright q 2010 Karl Friston et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This
scheme is called Generalised Filtering and furnishes posterior (conditional) densities on hidden
states and unknown parameters generating observed data. Crucially, the scheme operates online,
assimilating data to optimize the conditional density on time-varying states and time-invariant
parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require
a backwards pass. In contrast to variational schemes, it does not assume conditional independence
between the states and parameters. Generalised Filtering optimises the conditional density with
respect to a free-energy bound on the model’s log-evidence. This optimisation uses the generalised
motion of hidden states and parameters, under the prior assumption that the motion of the
parameters is small. We describe the scheme, present comparative evaluations with a fixed-form
variational version, and conclude with an illustrative application to a nonlinear state-space model
of brain imaging time-series.

1. Introduction

This paper is about the inversion of dynamic causal models based on nonlinear state-space
models in continuous time. These models are formulated in terms of ordinary or stochastic
differential equations and are ubiquitous in the biological and physical sciences. The problem
we address is how to make inferences about the hidden states and unknown parameters
generating data, given only observed responses and prior beliefs about the form of the
underlying generative model, and its parameters. The parameters here include quantities that
parameterise the model’s equations of motion and control the amplitude (variance or inverse
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precision) of random fluctuations. If we consider the parameters and precisions as separable
quantities, model inversion represents a triple estimation problem. There are relatively few
schemes in the literature that can deal with problems of this sort. Classical filtering and
smoothing schemes such as those based on Kalman and Particle filtering (e.g., [1, 2]) deal
only with estimation of hidden states. Recently, we introduced several schemes that solve the
triple estimation problem, using variational or ensemble learning [3–5]. Variational schemes
of this sort simplify the problem by assuming conditional independence among sets of
unknown quantities, usually states, parameters and precisions. This is a natural partition,
in terms of time-varying hidden states and time-invariant parameters and precisions. The
implicit mean-field approximation leads to schemes that optimise the posterior or conditional
density on time-varying hidden states, while accumulating the sufficient statistics necessary
to optimise the conditional density of parameters and precisions, after all the data have been
observed.

In this paper, we dispense with the mean-field approximation and treat all unknown
quantities as conditionally dependent variables, under the prior constraint that the changes
in parameters and precisions are very small. This constraint is implemented by representing
all unknown variables in generalised coordinates of motion, which allows one to optimise
the moments of the joint posterior as data arrive. The resulting scheme enables an efficient
assimilation of data and the possibility of online and real-time deconvolution. We refer to this
Bayesian filtering in generalised coordinates as Generalised Filtering (GF). Furthermore, by
assuming a fixed form for the conditional density (the Laplace assumption) one can reduce
the triple estimation problem to integrating or solving a set of relatively simple ordinary
differential equations. In this paper, we focus on GF under the Laplace assumption.

We have previously described Variational filtering in [3] and smoothing in [5] for
probabilistic inference on the hidden states of generative models based upon stochastic
differential equations (see also [6–8], for recent and related advances). Variational filtering
and its fixed form variant (Dynamic Expectation Maximization) outperform extended
Kalman filtering and Particle filtering (provided the true posterior density is unimodal)
in terms of the accuracy of estimating hidden states [3]. This improvement rests upon
using generalised coordinates of motion. In other words, instead of just trying to estimate
the conditional density of hidden states, one optimises the conditional density on their
generalised motion to arbitrarily high order. The implicit modelling of generalised states
has several fundamental advantages. First, it can accommodate temporal correlations in
random fluctuations on the hidden states (e.g., fractal time and 1/f spectra in biological
systems [9]). In other words, random terms in the model’s stochastic differential equations
can have analytic autocovariance functions, whose smoothness can be estimated. This allows
one to eschew standard Weiner assumptions, which is important in many realistic settings,
particularly in the analysis of biological time-series. Second, generalised states afford a very
simple filtering scheme that is formally distinct from Kalman and Particle filtering. In brief,
Variational filtering uses a gradient descent on a free-energy bound on the model’s (negative)
log-evidence. This means that filtering can be reduced to the solution of differential equations
that necessarily entail continuity constraints on the conditional estimates. Clearly, the free-
energy is a functional of time, which means that the gradient descent has to “hit a moving
target.” Generalised coordinates finesse this problem by placing the gradient descent in a
frame of reference that moves with the conditional expectation or mean (see [4] for details).
This is heuristically related to the separation of temporal scales in centre manifold theory
[10], where the motion of free-energy minima (the centre manifold) enslaves the dynamics
of the gradient descent.
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Variational filtering of this sort is fundamentally different in its mathematical
construction from conventional schemes like Kalman filtering because of its dynamical
formulation. It can be implemented without any assumptions on the form of the conditional
density by using an ensemble of “particles” that are subject to unit (standard) Wiener
perturbations. The ensuing ensemble density tracks the conditional mean of the hidden
states and its dispersion encodes conditional uncertainty. Variational filtering can be further
simplified by assuming the ensemble density (conditional density) is Gaussian, using the
Laplace assumption. Crucially, under this approximation, the conditional covariance (second
moment of the conditional density) becomes an analytic function of the conditional mean. In
other words, only the mean per se has to be optimized. This allows one to replace an ensemble
of particles, whose motion is governed by stochastic differential equations, with a single
ordinary differential equation describing the motion of the conditional mean. The solution
of this ordinary differential equation corresponds to the D-step in Dynamic Expectation
Maximisation (DEM). DEM comprises additional E (expectation) and M (maximization)
steps that optimise the conditional density on parameters and precisions after the D
(deconvolution) step has been solved. Iteration of these steps proceeds until convergence,
in a way that is formally related to conventional variational schemes (cf. [5, 11]).

In this work, we retain the Laplace approximation to the conditional density but
dispense with the mean-field approximation; in other words, we do not assume conditional
independence between the states, parameters, and precisions. We implement this by
absorbing parameters and precisions into the hidden states. This means that we can
formulate a set of ordinary differential equations that describe the motion of time-dependent
conditional means and implicitly the conditional precisions (inverse covariances) of all
unknown variables. This furnishes (marginal) conditional densities on the parameters and
precisions that are functionals of time. The associated conditional density of the average
parameters and precisions over time can then be accessed using Bayesian parameter
averaging. Treating time-invariant parameters (and precisions) as states rests on modelling
their motion. Crucially, we impose prior knowledge that this motion is zero, leading to a
gradient descent on free-energy, which is very smooth (cf. the use of filtering as a “second-
order” technique for learning parameters [12]). In brief, the resulting scheme assimilates
evidence in the generalised motion of data to provide a time-varying density on all the
model’s unknown variables, where the marginal density on the parameters and precisions
converges slowly to a steady-state solution. The scheme can be iterated until the time or path-
integral of free-energy (free-action) converges and may represent a useful and pragmatic
(online) alternative to variational schemes.

This paper comprises four sections. In the first, we describe the technical details
of Generalised Filtering from the first principles. This section starts with the objective (to
maximize the path-integral of a free-energy bound on a model’s log-evidence). It ends with
set of ordinary differential equations, whose solution provides the conditional moments of
a Gaussian approximation to the conditional density we seek. The second section reviews
a generic model that embodies both dynamic and structural (hierarchical) constraints. We
then look at Generalised Filtering from the first section, under this model. The third section
presents comparative evaluations of GF using a simple linear convolution model, which is
a special case of the model in Section 2. These evaluations are restricted to a comparison
with DEM because DEM is formally the closest scheme to GF and has been compared
with Extended Kalman filtering and Particle filtering previously [4]. In the final section, we
apply Generalised Filtering to a neurobiological problem, namely, inferring the parameters
and hidden physiological states generating a time-series of functional magnetic resonance
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imaging (fMRI) data from the human brain. We use this to illustrate the effect of the mean-
field assumption implicit in DEM and establish the face validity of Generalised Filtering in
terms of known neurobiology. We conclude with a brief discussion.

2. Generalised Filtering

In this section, we present the conceptual background and technical details behind
Generalised Filtering, which (in principle) can be applied to any nonlinear state-space or
dynamic causal model formulated with stochastic differential equations. Given the simplicity
of the ensuing scheme, we also take the opportunity to consider state-dependant changes in
the precision of random fluctuations. This represents a generalisation of our previous work
on dynamic causal models and will be exploited in a neurobiological context, as a metaphor
for attention (Feldman et al.; in preparation). However, we retain a focus on cascades of state-
space models, which we have referred to previously as hierarchical dynamic models [13].

2.1. Filtering from Basic Principles

Given a model m and generalised sensor data s̃ = [s, s′, s′′, . . .]T ∈ Rp comprising real values,
their velocity, acceleration, jerk, and so forth, we want to evaluate the log-evidence integrated
over the time t ∈ [0, T] that data are observed (cf. [14, 15]):

ε =
∫T

0
dt ln p(s̃(t) | m). (2.1)

Generally, this path-integral cannot be evaluated directly; however, one can induce an upper
bound S ≥ −ε that can be evaluated with a recognition density q(t) := q(ϑ(t)) on the causes
(i.e., states and parameters) of the data. We will see later that these causes comprise time-
varying states u(t) ⊂ ϑ and slowly varying parameters ϕ(t) ⊂ ϑ. This bound is based on free-
energy, which is constructed by simply adding a nonnegative term DKL(t) to the (negative)
log-evidence [11, 16, 17]. The resulting integral is called free-action because it is a path-
integral of free-energy (see also [18])

S =
∫

dtF(t) ≥ −ε,

F(t) = − ln p(s̃(t) | m) +DKL(t),

DKL(t) =
〈

ln q(ϑ(t)) − ln p(ϑ(t) | s̃(t), m)
〉

q.

(2.2)

By Gibb’s inequality the Kullback-Leibler divergence DKL(t) ≥ 0 is greater than zero, with
equality when q(t) = p(ϑ(t) | s̃(t), m) : ∀t ∈ [0, T] is the true conditional density. In this case,
(negative) free-action becomes accumulated log-evidence S = −ε. Minimising this bound, by
optimising the recognition density at each time point, makes it an approximate conditional
density on the causes and makes free-action a bound approximation to the accumulated log-
evidence. The approximate conditional density can then be used for inference on the states or
parameters of a particular model, and the accumulated log-evidence can be used to compare
different models (e.g., [19]).
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Crucially, the free-energy can be evaluated easily because it is a function of q(ϑ(t)) and
a generative model p(s̃(t), ϑ(t) | m) entailed by m

F(t) = 〈L(t)〉q −H(t),

L(t) = − ln p(s̃(t), ϑ(t) | m),

H(t) = −
〈

ln q(t)
〉

q.

(2.3)

The free-energy has been expressed here in terms of H(t), the negentropy of q(t), and an
energy L(t) expected under q(t). In physics, L(t) is called Gibb’s energy and is a log-
probability that reports the joint surprise about data and their causes. If we assume that
q(ϑ(t)) = N(μ(t),C(t)) is Gaussian (the Laplace assumption), then we can express free-
energy in terms of its sufficient statistics, the mean and covariance of the recognition density

F = L
(

μ
)

+
1
2

tr
(

CLμμ
)

− 1
2

ln|C| − n
2

ln 2πe, (2.4)

where n = dim(μ). Here and throughout, subscripts denote derivatives. We can now
minimise free-action with respect to the conditional precisions P(t) = C(t)−1 (inverse
covariances) by solving δCS = 0⇒ ∂CF = 0 to give

FΣ =
1
2
Lμμ −

1
2
P = 0 =⇒ P = Lμμ. (2.5)

Equation (2.5) shows that the precision is an analytic function of the mean, which means
all we have worry about is the (approximate) conditional mean. One can see this clearly by
eliminating the conditional covariance to express the free-energy as a function of (and only
of) the conditional means

F = L
(

μ
)

+
1
2

ln
∣

∣Lμμ
∣

∣ − n
2

ln 2π. (2.6)

The conditional means, which minimise free-energy, are the solutions to the following
ordinary differential equations. For the generalised states ũ(t) ⊂ ϑ these equations are

˙̃μ
(u)

= Dμ̃(u) − Fũ

⇐⇒

μ̇(u) = μ
′(u) − Fu

μ̇
′(u) = μ′′(u) − Fu′

μ̇′′(u) = μ′′′(u) − Fu′′

...

(2.7)
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where D is a derivative matrix operator with identity matrices above the leading diagonal,
such thatDũ = [u′, u′′, . . .]T . Here and throughout, we assume that all gradients are evaluated
at the mean; here ũ(t) = μ̃(u)(t). The stationary solution of (2.7), in a frame of reference that
moves with the generalised motion of the mean, minimises free-energy and action. This can
be seen by noting that the variation of free-action with respect to the solution is zero:

˙̃μ
(u) − Dμ̃(u) = 0 =⇒ Fũ = 0 =⇒ δũS = 0. (2.8)

This ensures that when Gibb’s energy is minimized, the mean of the motion is the motion of
the mean, that is, Fũ = 0 ⇒ ˙̃μ

(u)
= Dμ̃(u). For slowly varying parameters ϕ(t) ⊂ ϑ this motion

disappears and we can use the following scheme:

μ̇(ϕ) = μ′(ϕ),

μ̇′(ϕ) = −Fϕ − κμ′(ϕ).
(2.9)

Here, the solution ˙̃μ
(ϕ)

= 0 minimises free-energy, under constraint that the motion of the
mean is small; μ′(ϕ) → 0. This can be seen by noting

μ̇(ϕ) = μ̇′(ϕ) = 0 =⇒ Fϕ = 0 =⇒ δϕS = 0. (2.10)

Equations (2.7) and (2.9) prescribe recognition (filtering) dynamics for expected states and
parameters respectively. The dynamics for states can be regarded as a gradient descent in a
frame of reference that moves with the expected motion (cf. a moving target). Conversely,
the dynamics for the parameters can be thought of as a gradient descent that resists transient
fluctuations in free-energy with a damping term −κμ′(ϕ). This instantiates our prior belief that
fluctuations in the parameters are small, where κ can be regarded as a prior precision. Figure 1
shows the implicit kernel (solid line) that is applied to fluctuating free-energy gradients to
produce changes in the conditional mean. It can be seen that the height of the kernel is 1/κ.
We find that using κ = 8T ensures stable convergence in most situations. This renders the
integral of the kernel over the time-series about one eighth (see Appendix A for a discussion
of this assimilation scheme in relation to classical methods).

The solutions of (2.7) and (2.9) produce the time-dependent moments of an
approximate Gaussian conditional density on the unknown states and parameters. These can
be used for inference on states (or parameters) directly or for model comparison using the
(bound on) accumulated log-evidence (see (2.3) and (2.6)). Because the conditional means
of the parameters change slowly over time (unlike their conditional precisions), we can
summarise the conditional estimates with the conditional density on the average over time ϕ
using Bayesian parameter averaging

q
(

ϕ
)

=N
(

μ(ϕ),C
(ϕ)
)

,

μ(ϕ) = C
(ϕ)
∫

P(ϕ)(t)μ(ϕ)(t)dt,

C
(ϕ)−1

=
∫

P(ϕ)(t)dt.

(2.11)
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Figure 1: This graph shows the kernels implied by the recognition dynamics in (2.9) that accumulate
evidence for changes in the conditional estimates of model parameters. These kernels are applied to the
history of free-energy gradients to produce changes in the conditional mean (solid line) and its motion
(broken line). The kernels are derived from a standard Volterra-series expansion about the true conditional
mean, where, in this example, κ = 4.

Here, μ(ϕ) and C
(ϕ)

are the conditional moments of the average while μ(ϕ)(t) ⊂ μ(t) and
P(ϕ)(t)−1 = C(ϕ)(t) ⊂ C(t) are the mean and precision of the marginal conditional density
on the parameters at each point in time. This summary will be overconfident because it
neglects conditional dependencies due to temporally correlated random terms (and the use
of generalised data). However, it usefully connects the conditional density with posterior
distributions estimated in conventional schemes that treat the parameters as static.

In Generalised Filtering, changes in the conditional uncertainty about the parameters
are modelled explicitly as part of a time-varying conditional density on states and parameters.
In contrast, variational schemes optimise a conditional density on static parameters, that is,
q(ϕ) that is not a functional of time (although fluctuations in the conditional dependence
between states and parameters are retained as mean-field terms that couple their respective
marginals). This difference is related to a formal difference between the free-energy bound
on log-evidence in variational schemes and free-action. Variational schemes return the free-
energy of the accumulated data (e.g., see [3, equation (9)]). Conversely, in Generalised
Filtering, the free-energy is accumulated over time. This means that the variational free-
energy FV bounds the log-evidence of accumulated data, while free-action S =

∫

dtF(t)
bounds the accumulated log-evidence of data

S ≤
∫

dt ln p(s̃(t) | m),

FV ≤ ln p

(

⋃

t

s̃(t) | m
)

.

(2.12)
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These are not the same because evidence is a nonlinear function of the data (see, Appendix B
for an example). This distinction does not mean that one form of evidence accumulation
is better than another; although it raises interesting issues for model comparison that will
be pursued elsewhere (Li et al; in preparation). For the moment, we will approximate the
free-action associated with the conditional densities from variational schemes by assuming

that q(u(t), ϕ) = q(u(t))q(ϕ), where q(ϕ) = N(μ(ϕ),C(ϕ)) and C(ϕ) = TC
(ϕ)

(Appendix B).
This allows us to compare fixed-form schemes with (DEM) and without (GF) the mean field
assumption, in terms of free-action.

2.2. Summary

In summary, we have derived recognition or filtering dynamics for expected states and
parameters (in generalised coordinates of motion), which cause data. The solutions to these
equations minimise free-action (at least locally) and therefore minimise a bound on the
accumulated evidence for a model of how we think the data were caused. This minimisation
furnishes the conditional density on the unknown variables in terms of conditional means
and precisions. The precise form of the filtering depends on the energy L = − ln p(s̃, u | m)
associated with a particular generative model. In what follows, we examine the forms
entailed by hierarchical dynamic models.

3. Hierarchical Dynamic Models

In this section, we review the form of models that will be used in subsequent sections to
evaluate Generalised Filtering. Consider the state-space model

s = f (v)(x, v, θ) + z(v) : z(v) ∼ N
(

0,Σ(v)(x, v, γ
)

)

,

ẋ = f (x)(x, v, θ) + z(x) : z(x) ∼ N
(

0,Σ(x)(x, v, γ
)

)

.

(3.1)

Using σ(u)σ(u)T = Σ(u) : u ∈ v, x and unit noise w(u) ∼ N(0, I), this model can also be written
as

s = f (v)(x, v, θ) + σ(v)(x, v, γ
)

w(v),

ẋ = f (x)(x, v, θ) + σ(x)(x, v, γ
)

w(x).
(3.2)

The nonlinear functions f (u) : u ∈ v, x represent a mapping from hidden states to observed
data and the equations of motion of the hidden states. These equations are parameterised
by θ ⊂ ϕ. The states v ⊂ u are variously referred to as sources or causes, while the
hidden states x ⊂ u meditate the influence of causes on data and endow the system with
memory. We assume that the random fluctuations z(u) are analytic, such that the covariance
of z̃(u) is well defined. Unlike our previous treatment of these models, we allow for state-
dependent changes in the amplitude of random fluctuations. These effects are meditated by
the vector and matrix functions f (u) ∈ Rdim(u) and Σ(u) ∈ Rdim(u)×dim(u) respectively, which are
parameterised by first and second-order parameters {θ, γ} ⊂ ϕ.
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Under local linearity assumptions, the generalised motion of the data and hidden
states can be expressed compactly as

s̃ = ˜f (v) + z̃(v),

Dx̃ = ˜f (x) + z̃(x),
(3.3)

where the generalised predictions are (with u ∈ v, x)

˜f (u) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f (u) = f (u)(x, v, θ)

f ′(u) = f (u)
x x′ + f (u)

v v′

f ′′(u) = f (u)
x x′′ + f (u)

v v′′

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.4)

Gaussian assumptions about the random fluctuations prescribe a generative model in terms
of a likelihood and empirical priors on the motion of hidden states

p(s̃ | x̃, ṽ, θ,m) =N
(

˜f (v), ˜Σ(v)
)

,

p(Dx̃ | x, ṽ, θ,m) =N
(

˜f (x), ˜Σ(x)
)

.
(3.5)

These probability densities are encoded by their covariances ˜Σ(u) or precisions ˜Π(u) :=
˜Π(u)(x, v, γ) with precision parameters γ ⊂ ϕ that control the amplitude and smoothness
of the random fluctuations. Generally, the covariances ˜Σ(u) = V (u) ⊗ Σ(u) factorise into a
covariance proper and a matrix of correlations V (u) among generalised fluctuations that
encode their autocorrelation [4, 20]. In this paper, we will deal with simple covariance
functions of the form Σ(u) = exp(−γ (u))I(u). This renders the precision parameters log-
precisions.

Given this generative model, we can now write down the energy as a function of the
conditional expectations, in terms of a log-likelihood L(v) and log-priors on the motion of
hidden states L(x) and the parameters L(ϕ) (ignoring constants):

L = L(v) +L(x) +L(ϕ),

L(v) =
1
2
ε̃(v)T ˜Π(v)ε̃(v) − 1

2
ln
∣

∣

∣

˜Π(v)
∣

∣

∣,

L(x) =
1
2
ε̃(x)T ˜Π(x)ε̃(x) − 1

2
ln
∣

∣

∣

˜Π(x)
∣

∣

∣,

L(ϕ) =
1
2
ε̃(ϕ)T ˜Π(ϕ)ε̃(ϕ) − 1

2
ln
∣

∣

∣

˜Π(ϕ)
∣

∣

∣,

ε̃(v) = s̃ − ˜f (v)(μ
)

,

ε̃(x) = Dμ̃(x) − ˜f (x)(μ
)

,

ε̃(ϕ) = μ̃(ϕ) − η̃(ϕ).

(3.6)
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This energy has a simple quadratic form, where the auxiliary variables ε̃(j) : j ∈ v, x, ϕ
are prediction errors for data, the motion of hidden states and parameters respectively. The
predictions of the states are ˜f (u)(μ) : u ∈ v, x and the predictions of the parameters are their
prior expectations. Equation (3.6) assumes flat priors on the states and that priors on the
parameters are Gaussian p(ϕ | m) =N(η̃(ϕ), ˜Σ(ϕ)), where

ϕ̃ =
[

ϕ
ϕ′

]

, ˜Σ(ϕ) =
[

Σ(ϕ) 0
0 κ

]

. (3.7)

This assumption allows us to express the learning scheme in (2.9) succinctly as μ̈(ϕ) = −Fϕ −
Fϕ′ , where Fϕ′ = Lϕ′ = −κϕ′. Equation (3.6) provides the form of the free-energy and its
gradients required for filtering, where (with a slight abuse of notation),

F = L +
1
2

ln|P| −
p

2
ln 2π,

˙̃μ
(v)

= −Fṽ +Dμ̃(v),

˙̃μ
(x)

= −Fx̃ +Dμ̃(x),

μ̈(θ) = −Fθ − Fθ′ ,

μ̈(γ) = −Fγ − Fγ ′ ,

Fṽ = Lṽ +
1
2

tr(PṽC),

Fx̃ = Lx̃ +
1
2

tr(Px̃C),

Fθ = Lθ +
1
2

tr(PθC),

Fγ = Lγ +
1
2

tr
(

PγC
)

.

(3.8)

Note that the constant in the free-energy just includes p = dim(s̃) because we have used
Gaussian priors. The derivatives are provided in Appendix C. These have simple forms that
comprise only quadratic terms and trace operators.

3.1. Hierarchical Forms

We next consider hierarchical forms of this model. These are just special cases of Equation
(3.1), in which we make certain conditional independences explicit. Although they may look
more complicated, they are simpler than the general form above. They are useful because
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they provide an empirical Bayesian perspective on inference [21, 22]. Hierarchical dynamic
models have the following form

s = f (v)
(

x(1), v(1), θ
)

+ z(1,v)

ẋ(1) = f (x)
(

x(1), v(1), θ
)

+ z(1,x)

...

v(i−1) = f (v)
(

x(i), v(i), θ
)

+ z(i,v)

ẋ(i) = f (x)
(

x(i), v(i), θ
)

+ z(i,x)

...

v(h−1) = η(v) + z(h,v).

(3.9)

Again, f (i,u) := f (u)(x(i), v(i), θ) : u ∈ v, x are continuous nonlinear functions and
η(v)(t) is a prior mean on the causes at the highest level. The random terms z(i,u) ∼
N(0,Σ(x(i), v(i), γ (i,u))) : u ∈ v, x are conditionally independent and enter each level of
the hierarchy. They play the role of observation noise at the first level and induce random
fluctuations in the states at higher levels. The causes v = v(1) ⊕ v(2) ⊕ · · · link levels, whereas
the hidden states x = x(1) ⊕ x(2) ⊕ · · · link dynamics over time. In hierarchical form, the
output of one level acts as an input to the next. This input can enter nonlinearly to produce
quite complicated generalised convolutions with “deep” (i.e., hierarchical) structure [22].
The energy for hierarchical models is (ignoring constants)

L =
∑

i

L(i,v) +
∑

i

L(i,x) +L(ϕ),

L(i,v) =
1
2
ε̃(i,v)T ˜Π(i,v)ε̃(i,v) − 1

2
ln
∣

∣

∣

˜Π(i,v)
∣

∣

∣,

L(i,x) =
1
2
ε̃(i,x)T ˜Π(i,x)ε̃(i,x) − 1

2
ln
∣

∣

∣

˜Π(i,x)
∣

∣

∣,

ε̃(i,v) = ṽ(i−1) − ˜f (i,v),

ε̃(i,x) = Dx̃(i) − ˜f (i,x).

(3.10)

This is exactly the same as (3.6) but now includes extra terms that mediate empirical
(structural) priors on the causes L(i,v) = − ln p(ṽ(i−1) | x̃(i), ṽ(i), m). These are induced by the
conditional independence assumptions in hierarchical models. Note that the data enter the
prediction errors at the lowest level such that ε̃(1,v) = s̃ − ˜f (1,v).
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3.2. Summary

In summary, hierarchical dynamic models are nearly as complicated as one could imagine;
they comprise causal and hidden states, whose dynamics can be coupled with arbitrary (ana-
lytic) nonlinear functions. Furthermore, the states can be subject to random fluctuations with
state-dependent changes in amplitude and arbitrary (analytic) autocorrelation functions. A
key aspect is their hierarchical form that induces empirical priors on the causes that link
successive levels and complement the dynamic priors afforded by the model’s equations of
motion (see [13] for more details). These models provide a form for the free-energy and its
gradients that are needed for filtering, according to (3.8) (see Appendix C for details). We
now evaluate this scheme using simulated and empirical data.

4. Comparative Evaluations

In this section, we generate synthetic data using a simple linear convolution model used
previously to cross-validate Kalman filtering, Particle filtering, Variational filtering and DEM
[3, 4]. Here we restrict the comparative evaluations to DEM because it is among the few
schemes that can solve the triple estimation problem in the context of hierarchical models,
and provides a useful benchmark in relation to other schemes. Our hope was to show that the
conditional expectations of states, parameters and precisions were consistent between GF and
DEM but that the GF provided more realistic conditional precisions that are not confounded
by the mean-field assumption in implicit in DEM. To compare DEM and GF, we used the a
model based on (3.9) that is specified with the functions

f (1,x) = Ax(1) + Bv(1),

f (1,v) = Cx(1) +Dv(1),

f (2,v) = η(v),

A =

[

−0.25 1.00

−0.50 −0.25

]

, B =

[

1

0

]

, C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.1250 0.1633

0.1250 0.0676

0.1250 −0.0676

0.1250 −0.1633

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, D =

[

0

0

]

.

(4.1)

Here, the parameters θ ⊇ {A,B,C,D} comprise the state and other matrices. In this
standard state-space model, noisy input v(1) = η(v)+z(2,v) perturbs hidden states, which decay
exponentially to produce an output that is a linear mixture of hidden states. Our example
used a single input, two hidden states and four outputs. This model was used to generate
data for the examples below. This entails the integration of stochastic differential equations
in generalised coordinates, which is relatively straightforward (see [4, Appendix 2]). We
generated data over 32 time bins, using innovations sampled from Gaussian densities with
the log-precisions of eight and six for observation noise z(1,v) and state noise z(1,x) respectively.
We used d = 4 orders of generalised motion in all simulations and all random fluctuations
were smoothed with a Gaussian kernel whose standard deviation was one quarter of a time
bin.
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Figure 2: The linear state-space model and an example of the data it generates: the upper left panel shows
simulated data in terms of the output due to hidden states (coloured lines) and observation noise (red
lines). The (noisy) dynamics of the hidden states are shown in the upper right panels (blue lines), which
are the response to the cause or input on the lower left. The generative model is shown as a Bayesian
dependency graph on the lower right.

When generating data, we used a deterministic Gaussian bump function v(1)(t) =
exp((1/4)(t − 12)2) centred on t = 12. However, when inverting the model, this cause was
unknown and was subject to mildly informative shrinkage priors with zero mean and unit
precision; p(v(1) | m) =N(0, 1). These were implemented by fixing the log-precision γ (2,v) = 0.
This model and an example of the data it generates are shown in Figure 2. The format of
Figure 2 will be used in subsequent figures and shows the data and hidden states in the top
panels and the causes below. The upper left panel shows the simulated data in terms of the
output due to hidden states (coloured lines) and observation noise (red lines). The (noisy)
dynamics of the hidden states are shown in the upper right panels, which are the response to
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the cause or input on the lower left. The model is shown as a Bayesian dependency graph on
the lower right.

These data were then subject to GF and DEM to recover the conditional densities
on the hidden states, unknown cause, parameters and log-precisions. For both schemes, we
used uninformative priors on four parameters; p(θi | m) = N(0, 32), and set the remainder
to their true value, with infinitely precise priors. The four parameters included two from
the equations of motion A11, A21 and two from the observer function C11, C12. The log-
precision priors were p(γ (1,u) | m) = N(4, 1), where Π(1,u) = exp(γ (1,u))I(1,u) : u ∈ x, v. In
effect, model inversion or filtering entails estimating the hidden states and unknown inputs
perturbing these states while, at the same time, identifying the parameters underlying the
influence of the hidden states on their motion (and the system’s response) and the precision
of both observation and state noise. In addition, we estimated the smoothness of the random
fluctuations (see Appendix D) but placed very tight priors on the smoothness parameters
(whose prior expectations were the true values) to ensure a fair comparison with DEM. Note
that we are trying to infer the inputs to the system, which makes this a particularly difficult
problem. This inference is precluded in conventional filtering, which usually treats inputs as
noise (or as known).

Figure 3 shows the conditional estimates of the states during the first iteration (pass
through the time series) of the GF scheme. Here the predicted response and prediction error
are shown on the upper left while the conditional expectations of the hidden states and cause
are shown on the upper right and lower left respectively. For the hidden states (upper right)
the conditional means are depicted by blue lines and the 90% conditional confidence regions
by grey areas. These are sometimes referred to as “tubes”. Here, the confidence tubes are
based upon the marginal conditional density of the states. The key thing to observe here
is that the conditional confidence increases with time. This reflects smooth increases in the
conditional log-precisions (lower right panel) as they assimilate gradients and are drawn
from their initial value (prior expectation or four) toward the true values (of eight and six).
Note further how the parameter estimates show similar drifts; however, there is a marked
movement towards the true values (from the prior expectation of zero) when their role is
disclosed by the perturbation at around fifteen time bins.

The dynamics of the conditional states are prescribed by (2.7) and the slower
assimilation dynamics of the conditional parameters and log-precisions by (2.9). By passing
repeatedly through the time-series, the parameter and log-precision estimates converge
to their stationary solution, at which point free-action stops increasing. As they become
better estimates, the estimates of the states become more veridical and confident. By about
sixteen iterations we get the estimates shown in Figure 4 (each iteration takes a second
or so on a modern PC). Figure 4 uses the same format as Figure 3 but replaces the time-
dependent evolution of the parameters and log-precisions with the conditional estimates of
their Bayesian average (lower right; see (2.11)). Here, we see that the confidence tubes on
the hidden states have shrunk to the extent we can be very confident about the conditional
means. In this figure, the confidence tube around the cause is shown and suggests there is
much less confidence here; despite the fact that the estimates are remarkably close to the true
values (shown as broken grey lines) during the onset and offset of the true cause.

The conditional estimates of the parameters show good agreement with the true
values, with the exception of the first parameter of the equation of motion A11. Crucially,
this parameter has the highest conditional uncertainty, shown in terms of 90% confidence
intervals (red bars). Happily the true values lie within or near these intervals, with a slight
overconfidence for the parameters of the observer function (second pair). These estimates of
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Figure 3: Conditional estimates during the first iteration of Generalised Filtering. This format will be
used in subsequent figures and summarizes the predictions and conditional densities on the states of a
hierarchical dynamic model. The first (upper left) panel shows the predicted response (coloured lines)
and the error (red lines) on this response (their sum corresponds to observed data). For the hidden
states (upper right) and causes (lower left) the conditional mode is depicted by a blue line and the 90%
conditional confidence intervals (regions) by the grey area. The lower right panels show the optimisation
of the conditional means of the free parameters (above) and log-precisions (below) as a function of time.

conditional uncertainty should now be compared with the equivalent results from the DEM
scheme.

Figure 5 shows the results of DEM using exactly the same format as Figure 4. The first
thing to note is the remarkable similarity between the conditional expectations, both for the
states and parameters, which are virtually indistinguishable. The most poignant difference
between the two schemes lies in the confidence intervals: Although the results of the DEM
scheme look much “tighter” in terms of the confidence tubes on states, they fail to contain
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Figure 4: Conditional estimates after convergence of the GF scheme. This figure uses the same format
as the previous figure but includes the true values of states used to generate the response (broken grey
lines). Furthermore, time-dependent estimates of the parameters and precisions have been replaced with
the conditional moments of the Bayesian average of the parameters over time. The black bars are the true
values used to generate the data and the white bars are the conditional means. 90% confidence intervals
are shown in red.



Mathematical Problems in Engineering 17

−0.1

0

0.1

0.2

25 305 10 15 20

Prediction and error

Time
(a)

−0.5

−1

0

1

0.5

25 305 10 15 20

Hidden states

Time
(b)

−0.2

0

0.2

0.4

0.6

0.8

1

25 305 10 15 20

Causal state

Time

(c)

−0.5

−1

0

1

0.5

1 2 3

Parameters

4

True
GF

(d)

Figure 5: Conditional estimates after convergence of the DEM scheme. This is exactly the same as the
previous figure but shows the conditional estimates following Dynamic Expectation Maximisation of the
data in Figure 2. The key difference is manifested in terms of smaller confidence tubes and intervals on the
states and parameters, respectively, which are overconfident in relation to GF (cf. Figure 4).

the true values at all times. This implicit overconfidence problem is even more acute for
the parameter estimates that have very tight posterior precisions, most notably on the first
parameter that was identified with low confidence by GF. This example illustrates how the
mean-field assumption implicit in DEM can manifest in terms of overconfidence; and how
relaxing this assumption with GF partly resolves this problem. We are not claiming that this
is a ubiquitous behaviour but are just demonstrating that such differences are easy to find.
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Figure 6: Comparison of Generalised Filtering and DEM. Upper left: negative free-action for GF (solid line)
and DEM (dotted line) as a function of iteration number. Upper right: conditional moments of the log-
precisions, shown for GF (grey bars) and DEM (white bars), in relation to the true values used to generate
the data (black bars). 90% confidence intervals are shown in red. The lower panels show the conditional
moments of the parameters (left) and log-precisions (right) as a function of time, after convergence of the
GF scheme. The conductional means (minus the prior expectation of the parameters) are shown as blue
lines within their 90% confidence tubes (grey regions).

The free-action bound on accumulated log-evidence is shown in Figure 6 as a function
of (twenty four) iterations of the GF and DEM schemes. The first thing to note is that GF
furnishes a much tighter bound than DEM. This is not surprising because DEM optimises
the free-energy of the accumulated data under mean-field assumptions, not the accumulated
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free-energy. However, it does speak to a profound difference in the bounds on evidence that
might have important implications for Bayesian model comparison (this will be pursued in
the work of Li et al.—in preparation). GF extremises free-action until the last few iterations,
when there is a paradoxical (if small) reversal. We suppose that this is due to the first-order
approximations employed during integration of the scheme (see Appendix C). This effect
can be mitigated by using smaller step-sizes during solution of the recognition dynamics
and by increasing the precision of the random fluctuation in parameters: in practice, we
increase κ with each iteration, in proportion to the length of the time-series). The negative
free-action increases for the first few iterations of DEM and then decreases to well below its
starting point. A quantitative examination of the contributions to free-action suggests that
this decrease is largely due to the high conditional log-precisions estimated by DEM (upper
right panel).

It can be seen that DEM overestimates the precision of both observation and state noise
while GF overestimates observation noise but underestimates state noise. Both schemes are
overconfident about their estimate, in that the true values lie outside the 90% confidence
intervals (red bars). These confidence intervals are based on accumulating the conditional
precisions at each time step. For DEM, this accumulation is an integral part of optimisation
whereas for GF it rests on the Bayesian parameter averaging of time-dependent precisions.
These are shown on the lower right in terms of the corresponding confidence regions (grey
areas). This panel shows a mild contraction of the confidence tube for the precision of state
noise, when the hidden states are changing the most (shortly after the cause arrives). This is
sensible because state noise is on the motion of hidden sates. A similar but more pronounced
effect is seen in the equivalent confidence tubes for the parameters (lower left). Here, all
the parameters estimates enjoy a transient decrease in conditional uncertainty during the
perturbation because there is more information in the data about their putative role at these
times.

4.1. Summary

In this section, we have tried to illustrate some of the basic features of Generalised Filtering
and provide some comparative evaluations using an established and formally similar
variational scheme (DEM). In this example, the estimates of the conditional means were very
similar. The main difference emerged in the estimation of posterior confidence intervals and
the behaviour of the free-action bound on accumulated log-evidence. These differences are
largely attributable to the mean-field approximation inherent in DEM and related variational
schemes. In the next section, we turn to a more complicated (and nonlinear) model to show
that GF can recover causal structure from data, which DEM fails to disclose.

5. An Empirical Illustration

In this section, we turn to a model that is more representative of real-world applications
and involves a larger number of states, whose motion is coupled in a nonlinear fashion.
This model and the data used for its inversion have been presented previously in a
comparative evaluation of variational filtering and DEM. Here, we use it to illustrate that
the GF scheme operates with nonlinear models and to provide a face validation in this
context. This validation rests upon analysing data from a part of the brain known to be
functionally selective for visual motion processing [23]. We hoped to show that GF could
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Table 1: (a) Biophysical parameters (state-equation). (b) Biophysical parameters (observer).

(a)

Description Value (and prior mean
k rate of signal decay 1.2 s−1

χ rate of flow-dependent elimination 0.31 s−1

τ transit time 2.14 s
α Grubb’s exponent 0.36
φ resting oxygen extraction fraction 0.36

(b)

Description Value
V0 Blood volume fraction 0.04
ε Intra/extra-vascular ratio 1

establish a significant response to visual motion using evoked brain imaging responses. This
example was chosen because inference about brain states from noninvasive neurophysiologic
observations is an important issue in cognitive neuroscience and functional imaging (e.g.,
[24–26]), and GF may play a useful role in stochastic dynamic causal modelling.

5.1. The Biophysical Model

We used a hemodynamic model of brain responses to explain evoked neuronal activity that
has been described extensively in previous communications (e.g., [27, 28]). In brief, neuronal
activity causes an increase in a vasodilatory signal h1 that is subject to autoregulatory
feedback. Blood flow h2 responds in proportion to this signal and causes change in blood
volume h3 and deoxyhaemoglobin content h4. The observed signal is a nonlinear function of
volume and deoxyhaemoglobin. These dynamics are modelled by the differential equations

ḣ1 = Av − k(h1 − 1) − χ(h2 − 1),

ḣ2 = h1 − 1,

ḣ3 = τ(h2 − F(h3)),

ḣ4 = τ
(

h2E(h2) −
F(h3)h4

h3

)

.

(5.1)

In this model, changes in vasodilatory signal h1 are elicited by neuronal input v.
Relative oxygen extraction E(h2) = (1/φ)(1 − (1 − φ)1/h2) is a function of flow, where φ is
resting oxygen extraction fraction and outflow is a function of volume F(h3) = h1/α

3 with
Grubb’s exponent α. A description of the parameters of this model and their assumed values
(prior expectations) are provided in Table 1. Blood flow, volume, and deoxyhaemoglobin
concentration are all nonnegative quantities. One can implement this formal constraint with
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the transformation xi = lnhi ⇔ hi = exp(xi) : i ∈ 2, 3, 4. Under this transformation the
differential equations above can be written as

ḣi =
∂hi
∂xi

∂xi
∂t

= hiẋi = fi(h, v). (5.2)

This allows us to formulate the model in terms of hidden states xi = lnhi with
unbounded support (i.e., the conditional means can be positive or negative) to give the
following functions (see (3.9)):

f (1,x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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ẋ
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ẋ
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ẋ
(1)
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ẋ
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⎤
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⎥

⎥

⎥

⎥
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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1 − χ(h2 − 1)

x
(1)
1

h2
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⎥

⎥

⎥

⎥
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⎥
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⎥

⎥

⎥

⎥

⎦

,

f (1,v) = V0

(

6.93φ(1 − h2) + εφ
(

1 − h4

h3

)

+ (1 − ε)(1 − h3)
)

,

hi = exp
(

x
(1)
i

)

,

f (2,v) = η(v).

(5.3)

This model represents a multiple-input, single-output model with four hidden states.
The parameters θ ⊇ {k, χ, τ, α, φ,A} of interest here were Ai ⊂ θ : i ∈ 1, 2, 3 that couple
three distinct neuronal responses v(1)

i : i ∈ 1, 2, 3 to the vasodilatory signal x(1)
1 . These evoked

responses correspond to neuronal activity elicited experimentally, as described next:

5.2. Data and Preprocessing

Data were acquired from a normal subject at 2-Tesla using a Magnetom VISION (Siemens,
Erlangen) whole body MRI system, during a visual attention study. Contiguous multislice
images were obtained with a gradient echo-planar sequence (TE = 40 ms; TR = 3.22 seconds;
matrix size = 64 × 64 × 32, voxel size 3 × 3 × 3 mm). Four consecutive hundred-scan sessions
were acquired, comprising a sequence of 10-scan blocks under five conditions. The first
was a dummy condition to allow for magnetic saturation effects. In the second, Fixation,
subjects viewed a fixation point at the centre of a screen. In an Attention condition, subjects
viewed 250 dots moving radially from the centre at 4.7 degrees per second and were asked
to detect changes in radial velocity. In no attention, the subjects were asked simply to view
the moving dots. In another condition, subjects viewed stationary dots. The order of the
conditions alternated between Fixation and visual stimulation. In all conditions subjects
fixated the centre of the screen. No overt response was required in any condition and there
were no actual speed changes. The data were analysed using a conventional SPM analysis
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(http://www.fil.ion.ucl.ac.uk/spm). The activity from extrastriate cortex (motion-sensitive
area V5 [23]) was summarised using the principal local eigenvariate of a region centred on
the maximum of a contrast testing for the effect of visual motion. The first 256 samples from
this regional response were used for Generalised Filtering and DEM.

The three potential causes of neuronal activity were encoded as box-car functions
corresponding to the presence of a visual stimulus, motion in the visual field, and attention.
These stimulus functions constitute the priors η(v)i : i ∈ 1, 2, 3 on the three causes in the
model. The associated parameters, Ai encode the degree to which these experimental effects
induce hemodynamic responses. Given we selected a motion-selective part of the brain; one
would anticipate that the conditional probability that A2 exceeds zero would be large. The
regional data were subject to GF using the model in (5.3) and informative shrinkage priors
p(θi | m) = N(η(θ), 1/32) on all but the neuronal coupling parameters Ai (see Table 1 for
the prior means). We used mildly informative priors p(Ai | m) = N(0, 1) for the coupling
parameters and similarly for the log-precisions p(γ (1,u) | m) = N(2, 1) : u ∈ v, x. Otherwise,
the analysis was identical to the analysis of the simulated data of the previous section
(including unit prior precisions on the causes).

The ensuing conditional means and 90% confidence regions for the causal and hidden
states are shown in Figure 7. The dynamics of inferred activity, flow and other biophysical
states are physiologically plausible. For example, activity-dependent changes in flow are
around 50% ≈ exp(0.4), producing about a 3% change in fMRI signal. The conditional
estimates of the neuronal coupling parameters, θi : i = 1, 2, 3 are shown on the lower
right. As anticipated, we can be almost certain that neuronal activity encoding visual motion
induces a response. Interestingly, both visual stimulation per se and motion appear to elicit
responses in this area. This was somewhat unexpected because this area is meant to be
selective for motion processing. The interpretation of these results is confounded by profound
negative correlations between the visual and motion coupling parameters as evidenced by
the conditional covariance among the parameters in Figure 8 (these correlations mean that
one can infer confidently the sum of the two parameters but not their differences). This
figure shows the conditional means of the eight (Bayesian average) parameters (upper left)
and their conditional covariance (upper right). The first five (biophysical) parameters have
been estimated with a high conditional confidence while the neuronal parameters are less
precise and are interdependent. These conditional dependencies arise from the experiential
design, which is highly inefficient for disambiguating between visually evoked responses
and motion-specific responses. This is because there were only three blocks of static stimuli,
compared to twelve blocks of visual motion. We confirmed this by simulating data using the
conditional estimates of the parameters and precision from the current analysis but enforcing
motion-specific responses by making A1 = 0, A2 = 0.2 and A3 = 0. The conditional estimates
were virtually identical to those from the empirical analysis in Figure 8 (results not shown).
This highlights the importance of interpreting not just the marginal conditional density of a
single parameter but the conditional density over all parameters estimated.

Figure 8 also shows the time-dependent changes in conditional confidence during the
experimental session for the parameters (lower left) and log-precisions (lower right). We
have focused on the conditional precision of the visual coupling parameter (grey area) to
highlight the increase in precision during the two periods of stationary visual stimulation.
These are the only times that the data inform the strength of this parameter in a way that
is not confounded by the simultaneous presence of motion in the visual stimulus. Similar
transient increases in the conditional precision of the log-precision estimates are seen at the
onset and offset of visual stimulation on the lower right.
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Figure 7: Conditional estimates following Generalised Filtering of the empirical brain imaging time-series.
This figure adopts the same format as Figure 4; however, only three (of the eight) parameter estimates are
shown (lower right). These are the conditional means (grey bars) and 90% confidence intervals (red bars)
of coupling parameters that mediate the effects of vision, motion, and attention on neuronal activity.

A detailed summary of the hemodynamics is shown in Figure 9. This figure focuses
on the first 120 time bins and plots the hemodynamic states in terms of the conditional mean
of hi = exp(x(1)

1 ). Each time bin corresponds to 3.22 seconds. The hidden states are shown in
the upper panel, overlaid on periods (grey) of visual motion. It can be seen that a mixture
of neuronal activity (the conditional estimate of Av(1) shown in the lower panel), induces
a transient burst of vasodilatory signal (blue), which is suppressed rapidly by the resulting
increase in flow (green). The increase in flow dilates the venous capillary bed to increase
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Figure 8: Parameter and precision estimates from the analysis of the empirical data presented in the
previous figure. Upper left: conditional means (grey bars) and 90% confidence intervals (red bars) of all
(eight) free parameters in this nonlinear model. Upper right: the corresponding conditional covariances
are shown in image format (with arbitrary scaling). The lower panels show the time-dependent changes in
conditional moments as a function of scan number for the parameters (minus their prior expectation; left)
and the log-precisions (right). We have focused on the precision of the first (vision) coupling parameter
(grey area) in this figure.

volume (red) and dilute deoxyhaemoglobin (cyan). The concentration of deoxyhaemoglobin
determines the measured activity. Interestingly, the underlying neuronal activity appears
to show adaptation during visual stimulation and a marked offset transient in nearly all
the epochs shown. Note that the conditional densities of the hemodynamic states are non-
Gaussian (i.e., lognormal) despite the Laplace assumption entailed by the filtering scheme
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Figure 9: These are the same results shown in Figure 7 but focussing on the conditional expectations of
the hidden states and neuronal causes over the first 128 (3.22 second) time bins. Left panel: the hidden
states are overlaid on periods (grey bars) of visual motion. These hidden states correspond to flow-
inducing signal, flow, volume, and deoxyhaemoglobin (dHb). It can be seen that neuronal activity, shown
in the right panel, induces a transient burst of signal (blue), which is rapidly suppressed by the resulting
increase in flow (green). The increase in flow dilates the venous capillary bed to increase volume (red) and
dilute deoxyhaemoglobin (cyan). The concentration of deoxyhaemoglobin (involving volume and dHb)
determines the measured response.

This is an example of how nonlinear models, under Gaussian assumptions, can be used to
model non-Gaussian densities.

5.3. Comparison with DEM

Finally, we analysed the same data using DEM. The results are shown in Figure 10 using
the same format as Figure 8. It is immediately obvious that DEM has failed to detect visual
motion-dependent responses in this brain area. The coupling parameter estimates are small,
both quantitatively and statistically (their confidence intervals include zero). This failure is
also evident in the (negative) free-action bound on accumulated log-evidence in Figure 11.
This shows that GF provides a much tighter bound relative to DEM. Again, we do not
mean to suggest that this is a generic behaviour of variational schemes, just that one can
find examples where the mean-field assumption can have a profound effect on inference.
Having said this, it took some time to find the length of the time-series and priors on the
log-precisions that revealed this difference. In most of our analyses, the conditional estimates
from GF and DEM were very similar. The behaviour of the GF free-action over iterations is
interesting and speaks to the important point that online evidence accumulation leads to an
efficient inversion scheme for long time-series. This is because the conditional moments of the
parameters and precisions are near optimal at the end of long sequences (as in conventional
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Figure 10: The equivalent results for the hemodynamic deconvolution using DEM. These densities should
be compared with those in Figure 7 that were obtained using Generalised Filtering.

assimilation schemes). This is manifest by the convergence of free-action within a handful
of iterations (four in the example here, where each iteration took about ten seconds). This
computationally efficient form of data assimilation was one of the pragmatic motivations for
developing Generalised Filtering.

5.4. Summary

As noted in [4], it is perhaps remarkable that so much conditional information about
the underlying neuronal and hemodynamics can be extracted from a single time-series,
given only the functional form of its generation. This speaks to the power of generative
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Figure 11: Comparison of Generalised Filtering and DEM for hemodynamic deconvolution. Upper left:
negative free-action for GF (solid line) and DEM (dotted line) as a function of iteration number.

modelling, in which constraints on the form of the model allow one to access hidden
quantities. To date, dynamic causal models of neuronal systems, measured using fMRI or
electroencephalography (EEG), have used known, deterministic causes and have ignored
state-noise (see, [25, 26] for important exceptions). One of the motivations for Generalised
Filtering was to develop a computational efficient inference scheme that can deal with
correlated state-noise, of the sort seen in biological time-series.

6. Conclusion

In this paper, we have introduced Generalised Filtering, an online Bayesian scheme
for inverting generative models cast as stochastic differential equations in generalised
coordinates of motion. This scheme is based upon a path-integral optimisation of free-energy,
where free-energy bounds the log-evidence for a model. Under a Laplace approximation
to the true posterior density on the model’s unknown variables, one can formulate
deconvolution or model inversion as a set of ordinary differential equations, whose solution
provides their conditional mean (which implicitly prescribes their conditional precision).
Crucially, this density covers not only time-varying hidden states but also parameters, and
precisions that change slowly. We have seen that its performance is consistent with equivalent
fixed-form variational schemes (Dynamic Expectation Maximisation) that entail the extra
assumption that the states, parameters and precisions are conditionally independent.
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Although not emphasised in this paper, the basic approach on which Generalised
Filtering is based was developed with neurobiological implementation in mind. In other
words, we have tried to construct a scheme that could be implemented by the brain in a
neurobiologically plausible fashion. This was one of the primary motivations for a dynamical
optimisation of the parameter and precision estimates. In future communications, we will
focus on the neurobiological interpretation of Generalised Filtering and how it might relate
to the optimisation of synaptic activity, efficacy, and gain during perceptual inference in the
brain. Our particular focus here will be on state-dependent changes in precision as a model
of visual attention (Feldman et al; in preparation). In this context, the recognition dynamics
entailed by optimisation can be regarded as simulations of neuronal responses to sensory
inputs.

In a more practical setting, this sort of filtering may find a useful role, not only in
data analysis but also in online applications, such as speech recognition or active noise
cancellation. Indeed, we have already used DEM to infer the hidden states of chaotic
systems (hierarchically coupled Lorentz attractors) that were used to simulate bird songs
[29]. Applications of Generalised Filtering to similar time-series from chaotic systems may
finesse model optimisation in a variety of systems. This is clearly speculative but highlights
the potential importance of assimilating data to make inference dynamically, even when the
unknown quantities do not change with time.

Appendices

A. Parameter Optimisation, Newton’s Method, and Stability

There is a close connection between the updates implied by (2.9) and Newton’s method for
optimisation. Consider the update under a local linearisation [30], assuming that Lϕ ≈ Fϕ

Δμ̃(ϕ) =
(

exp
(

tI(ϕ)
)

− I
)

I(ϕ)−1 ˙̃μ
(ϕ)
,

˙̃μ
(ϕ)

=

[

μ′(ϕ)

−Lϕ − κμ′(ϕ)

]

,

I(ϕ) =
∂ ˙̃μ

(ϕ)

∂μ̃(ϕ)
=

[

0 I

−Lϕϕ −κ

]

.

(A.1)

As time proceeds, the change in generalised mean becomes

lim
t→∞

Δμ̃(ϕ) = −I(ϕ)−1 ˙̃μ
(ϕ)

=

[

Δμ(ϕ)

Δμ′(ϕ)

]

= −

⎡

⎣

L−1
ϕϕLϕ
μ′(ϕ)

⎤

⎦,

I(ϕ)−1 =

[

κL−1
ϕϕ −L−1

ϕϕ

1 0

]

.

(A.2)

The first line means the motion cancels itself and becomes zero, while the change in the
conditional mean Δμ(ϕ) = −L−1

ϕϕLϕ becomes a classical Newton update.
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An intuition about the need for a high prior precision on the fluctuations of the
model parameters can be motivated by a linear stability analysis of the associated recognition
dynamics (see (2.9)), with Jacobian in (A.1)

eig
(

I(ϕ)
)

= λ(ϕ) = −κ
2
±

√

−4Lϕϕ + κ2

2
. (A.3)

For the ensuing dynamics to converge exponentially to the conditional mean (when Lϕ = 0)
we require imag(λ(ϕ)) = 0⇒ κ2 ≥ 4Lϕϕ. In other words, the prior precision κ on the motion of
parameters should be greater than the (twice the root) conditional precision of the parameters
per se. Otherwise, the conditional estimate will exhibit (damped) oscillations.

B. Free-Energy and Action under Mean-Field Approximations

In this appendix, we compare the free-energy FV and action SV under the mean-field
approximation assumed in variational schemes, where

FV ≤ ln p

(

⋃

t

s̃(t) | m
)

,

SV ≤
∫

dt ln p(s̃(t) | m).

(B.1)

The mean-field approximation finesses evaluation of the free-energy of the accumulated
data by making the (implausible) assumption that q(

⋃

t u(t), ϕ) =
∏

tq(u(t))q(ϕ) for discrete
samples at t ∈ 1, . . . , T . This means that, under the Laplace assumption,

FV =
∑

t

(

L(u,t) +
1
2

ln
∣

∣

∣P(u,t)
∣

∣

∣ −
p

2
ln 2π

)

+L(ϕ) +
1
2

ln

∣

∣

∣

∣

∣

∑

t

P(ϕ,t)

∣

∣

∣

∣

∣

,

SV =
∑

t

(

L(u,t) +
1
2

ln
∣

∣

∣P(u,t)
∣

∣

∣ −
p

2
ln 2π

)

+
∑

t

(

L(ϕ) +
1
2

ln
∣

∣

∣P(ϕ,t)
∣

∣

∣

)

,

L(u,t) =
1
2
ε̃
(v)T
t
˜Π(v)ε̃

(v)
t − 1

2
ln
∣

∣

∣

˜Π(v)
∣

∣

∣ +
1
2
ε̃
(x)T
t
˜Π(x)ε̃

(x)
t − 1

2
ln
∣

∣

∣

˜Π(x)
∣

∣

∣,

L(ϕ) =
1
2
ε̃ (ϕ)T ˜Π(ϕ)ε̃ (ϕ) − 1

2
ln
∣

∣

∣

˜Π(ϕ)
∣

∣

∣,

P(u,t) = L(u,t)
uu +L(ϕ)

uu ,

P(ϕ,t) = L(u,t)
ϕϕ +L(ϕ)

ϕϕ .

(B.2)

Note that (under flat priors on the parameters) the key difference between free-energy and
action lies in the contribution from conditional uncertainty (precision) about the parameters.
The free-energy contains the log-determinant of the sum of precisions (cf. the precision of
the Bayesian parameter average in (2.11)), while the free-action contains the sum of the log-
determinant of precisions.
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C. Integrating Recognition Dynamics (Filtering)

Filtering involves integrating the ordinary differential equations (2.7) and (2.9) to optimise
the conditional means. We can simplify the numerics for hierarchical dynamic models by first
collapsing the hierarchy and then collapsing over causal and hidden states
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⎢
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This gives a simple form for the Gibbs energy that comprises a log-likelihood and log-prior
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with the following integration (Generalised Filtering) scheme:
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This system can be solved (integrated) using a local linearisation [30] with updates
Δy = (exp(ΔtI) − I)I(t)−1ẏ over time steps Δt, where I(t) the filter’s Jacobian. Note that we
have omitted terms that mediate changes in the motion of state estimates due to changes in
parameter estimates. This is because changes in parameter estimates are negligible at the time
scale of changes in state estimates. The requisite gradients (evaluated at the conditional
expectation) are, with a slight abuse of notion when dealing with derivatives w.r.t. vectors

Fũ =
1
2
ε̃ (u)T ˜Π(u)
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The corresponding curvatures are (neglecting second-order terms involving states and
parameters and second-order derivatives of the conditional entropy)
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Finally, the conditional precision and its derivatives are given by the curvature of
Gibb’s energy

C−1 = P = Lμμ ≈

⎡

⎢

⎢

⎣

Lũũ Lũθ 0
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Note that we have simplified the numerics here by neglecting conditional dependen-
cies between the precisions and the states or parameters. This is easy to motivate because
one is not interested in the conditional precision of the precisions but in the (conditional
expectation of the) precisions per se; cf. the mean-field approximation implicit in variational
approximations. We have also ignored terms due to state-dependent noise, which are not
called on in this paper. Finally, we find that the integration of (C.3) is much more stable (in the
first few iterations) if we make Pũ = 0. Again, this rests on a mean-field like approximation,
where we ignore the effects of rapid fluctuations in the states on the entropy of the parameters
(but not vice versa).

These equations may look complicated but can be evaluated automatically
using numerical derivatives. All the simulations in this paper used just one routine—
spm LAP.m. All the user has to supply are equations defining the generative
model. Demonstrations of this scheme are available as part of the SPM software
(http://www.fil.ion.ion.ucl.ac.uk.com/spm; DEM demo.m) and reproduce the examples in
the main text.

D. Optimising Smoothness Hyperparameters

When including a hyperparameterisation of the smoothness of the random fluctuations,
encoded by the precision matrix on generalised motion R(u)(γ) : u ∈ v, x, one needs
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the following derivatives:
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where d(u) = rank(R(u)) is the order of generalised motion. We have not included these
derivatives above, because we used assumed values for smoothness in this paper. However,
our software implementation of this scheme estimates smoothness by default.

Software Note

The schemes described in this paper are implemented in Matlab code and are available freely
http://www.fil.ion.ucl.ac.uk.com/spm. A DEM toolbox provides several demonstrations
from a graphical user interface. These demonstrations reproduce the figures of this paper
(see spm LAP.m and ancillary routines).
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