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Abstract

Shannon’s information theory provides a principled framework for the quantitative analysis of brain responses during the encoding and

representation of event streams. In particular, entropy measures the expected uncertainty of events in a given context. This contextual

uncertainty or unpredictability may, itself, be important for balancing [bottom-up] sensory information and [top-down] prior expectations

during perceptual synthesis. Using event-related functional magnetic resonance imaging (fMRI), we found that the anterior hippocampus is

sensitive to the entropy of a visual stimulus stream. In contrast, activity in an extensive bilateral cortico-thalamic network was dictated by the

surprise or information associated with each particular stimulus. In short, we show that the probabilistic structure or context in which events

occur is an important predictor of hippocampal activity.

q 2005 Elsevier Ltd. All rights reserved.
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Current notions of representational learning and infer-

ence in the brain rest on an interplay between bottom-up

sensory information and prior expectations, mediated by

lateral and top-down influences (Friston, 2002; Hinton,

Dayan, Frey, & Neal, 1995; Kawato, Hayakawa, & Inui,

1993; Mumford, 1992). Irrespective of the precise mechan-

isms employed by the brain, the relative weight afforded

these two sources of information is a generic and important

issue. For example, a specific neuronal mechanism has been

proposed for balancing the evidence from sensory inputs

and prior expectations according to their predictability

(Yu & Dayan, 2002). We therefore addressed the hypothesis

that the hippocampus is sensitive to the probabilistic context

established by event streams. This sensitivity would enable

the hippocampus, or related systems, to regulate the balance
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between top-down and bottom-up effects in sensory cortical

hierarchies.

To formulate our hypothesis in a quantitative way we

used information to measure the stimulus-bound ‘surprise’

of a particular event, and ‘entropy’ to measure the context in

terms of the average predictability of a sequence (Jones,

1979; Shannon, 1948). We hoped to show that entropy could

explain variations in hippocampal responses, even after

accounting for responses induced by event-bound surprise.

The distinction between entropy and surprise is critical.

Surprise is unique to a particular event and measures its

improbability (e.g. a small p-value is informative in

classical inference in rejecting the null hypothesis).

Conversely, entropy measures the expected or average

surprise over all events, reflecting the predictability of an

outcome before it occurs.

IðxiÞ ZKln pðxiÞ; HðXÞ Z
X

i

KpðxiÞln pðxiÞ Z hIðxiÞi

Surprise I(xi) quantifies the information conveyed by the

occurrence of event xi, whereas entropy H(X) quantifies the

expected information of events sampled from X.

Hippocampal damage impairs episodic memory (Scoville

& Milner, 1957) and it has been observed that hippocampal
Neural Networks 18 (2005) 225–230
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet


B.A. Strange et al. / Neural Networks 18 (2005) 225–230226
activity reflects regularities embedded in an environment or

task (Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila,

1999). Information theory posits that these regularities depend

upon the entropy. Using event-related functional MRI and

carefully constructed sequences of visual stimuli, we tested the

hypothesis that (i) hippocampal responses are sensitive to

the entropy established by sequential events whereas

(ii) responses in sensory areas reflect the surprise of each

event. Areas that respond more vigorously to surprising

stimuli can be regarded as exhibiting more prediction error

from a predictive coding perspective (Rao & Ballard, 1999).

As entropy is effectively the running average surprise

(see below), we were able to manipulate entropy and

surprise independently and dissociate their neurophysiolo-

gical correlates. Briefly, we varied the entropy of the stimuli

over blocks of trials. This allowed us to look for brain

responses that covaried with entropy over blocks. Because

each block comprised likely and unlikely events we were

also able to assess correlates of surprise within-block. The

analysis proceeded by modeling entropy and surprise-

related responses in a subject-specific first-level analysis.

The results of this analysis were taken to a second-level

analysis to implement random effects inferences about these

responses over subjects.

During fMRI, 12 subjects were presented with 12 blocks

of 40 trials. Each trial comprised a brief presentation of a

colored shape (stimulus duration: 500 ms; stimulus onset

asynchrony: 2.2 s). In all trials within a block, two colors

and two shapes were combined to form four possible

outcomes, with different stimuli presented in the different

blocks. The stimuli appeared in miniature for 5 s before the

beginning of a block and remained in a row at the bottom of

the screen throughout the block. Subjects were required to

respond to the sampled item by pressing a key to identify
Fig. 1. Task design. (a) The choice reaction time paradigm. Subjects were required

key to indicate the position of that item in the row of alternative coloured shapes

Entropy, mean entropy (averaged across all blocks) and surprise are plotted (units

presented for 20 s between blocks. (c) Behavioral data. Increase in reaction time p

across all trials: 550.2 (G15.0) ms.
the target’s position in the row. A schematic of a trial is

shown in Fig. 1a.

Each trial used an independent sample from a distri-

bution that remained constant within a block, but that varied

over blocks. Note that there was no underlying sequence

governing stimulus presentation, only the relative pro-

portions of stimuli were varied from block to block.

Subjects were asked to consider each block as a ‘hat’

containing a large number of objects of four distinct types

with each hat containing a different set. They were also told

that each trial would be equivalent to sampling an object and

then returning it to the hat. Subjects were informed that the

proportion of objects in a particular hat was completely

unpredictable, and independent of the other hats sampled.

From the point of view of the subject, the suprise of each

trial depended on the history of previous trials within a

block. In these circumstances allocation of neuronal

resources is based on the subjective probabilities inherent

in the modeling process, not on the objective frequencies of

the events (Sinkkonnen, 2000). The information or

‘surprise’ inherent in an event is based on the probability

of that event. Clearly for a system to encode events

efficiently it must know these probabilities or infer them on

the basis of experience (i.e. how frequently they occur).

The brain may embody these probabilistic regularities

through plastic changes in development (e.g. language) or in

a context-specific form (e.g. the ‘oddball’ paradigm). Our

study represents an example of the latter. To compute

surprise and entropy we treated each subject as an ideal

observer and used the Bayesian posterior probability of an

event, given the history of trials within a block. Entropy and

surprise were calculated from posterior or conditional

probabilities on a trial-by-trial basis and used to predict

neuronal responses. These metrics are ‘inferred’ on the basis
to respond to the sampled item (in this case a purple triangle) by pressing the

(below). (b) Information theoretic quantities for a typical scanning session.

: bits). Dotted vertical lines divide successive blocks. A fixation cross was

er bit of entropy and surprise (GSE of the mean of 12 subjects). Mean RT
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of exposure to stimulus streams and change systematically

as more samples are seen (a typical experimental session is

plotted in Fig. 1b).
Table 1

Functional double dissociation between cortico-thalamic coding of surprise

and hippocampal sensitivity to entropy

Brain region x, y, z co-ordinates Z score

surprise

Z score entropy

L hippocampus K26, K10, K14 !1.6 ns 3.32*

L thalamus K8, K16, 10 4.74* !1.6 ns

R thalamus 10, K12, 8 4.41* !1.6 ns

L posterior

fusiform cortex

K36, K72, K22 4.87* !1.6 ns

R posterior

fusiform cortex

28, K76, K16 4.18* !1.6 ns

Posterior fusiform activity is presented as an example of cortical responses.

*p!0.05 corrected for search volume (see Section 1). ns, not significant.
1. Materials and methods

1.1. Subjects

Informed consent was obtained from 12 right-handed

subjects (7 male; age range 19–39 years; mean age 27.2).

Ethics approval was obtained from the local Ethics

Committee.

1.2. Bayesian learning

For the four outcomes, where jZ1–4, we denote the total

number of occurrences of outcome j up to observation i by

ni
j. Our estimate of the probability of outcome j in the next

observation is then

pðxiÞ Z
ni

j C1P
k ni

k C1

where k is for all four outcomes, and hence the lower term of

the equation is equivalent to the number of completed (past)

trials in the block plus one. This estimate is the mean value

of a ‘Dirichlet’ distribution whose parameters have been

updated using Bayesian learning (Bernardo & Smith, 1994).

The prior distribution, i.e. before any outcomes have been

observed, is a Dirichlet with parameters identically equal to

1 (hence the 1 s in the above equation). These prior values

act as ‘pseudo-counts’ such that before seeing any outcomes

we imagine having seen 1 of each (the value 1 is chosen to

give the weakest influence of the prior). Hence, the Dirichlet

parameters characterise the knowledge of an ideal observer

of the sequence.

1.3. Imaging

A 2T Siemens VISION system (Siemens, Erlangen) was

used to acquire T1-weighted anatomical images and

gradient-echo echo-planar T2*-weighted MRI image

volumes with blood oxygenation level dependent (BOLD)

contrast. For each subject, 552 volumes were acquired plus

6 ‘dummy’ volumes (to allow for T1 equilibration effects).

Volumes were acquired continuously every 2506 ms. Each

volume comprised 33 3.3 mm axial slices, with an in-plane

resolution of 3!3 mm, positioned to cover the cerebrum.

The imaging time series was realigned, slice-time corrected,

normalized into standard Talaraich and Tournoux anatom-

ical space, and smoothed with a Gaussian kernel of 6 mm

full width half maximum as described previously (Friston

et al., 1995a).

Imaging data were analyzed using Statistical Para-

metric Mapping (SPM99) employing an event-related
model with a two-stage random effects procedure. Trial-

specific responses were modeled by convolving a ‘stick’

function, modeling trial onsets, with a canonical

hemodynamic response function (HRF). To characterize

responses in terms of information theoretic measures, we

specified two parametric modulators of the trial-specific

response: entropy and surprise. The surprise covariate

modeled the event-related response components explained

by the information of the event that could not be

explained by the entropy, and vice versa, by virtue of the

orthogonalisation implicit to the general linear model.

For each subject, the mean entropy for the ith trial over

blocks was included as a nuisance covariate to model

non-specific time effects within blocks (Fig. 1b). Other

nuisance variables included residual reaction times (that

could not be explained by the information and entropy),

response errors, low frequency drifts in signal (cut-off

62 s) and movement parameters, determined during

realignment. A 5-second cue period preceding each

block was also modeled. Subject-specific parameter

estimates pertaining to the height of the HRF for each

regressor were calculated for each voxel (Friston et al.,

1995b). In the second stage of the random effects

analysis, each subject’s parameter estimate image for

surprise and entropy were entered into two one-sample

t-tests across the 12 subjects. We report medial temporal

responses to entropy at a threshold of p!0.05, corrected

for the volume of hippocampus searched (a sphere of

16 mm diameter centred on x, y, z co-ordinates K26,

K10, K14). The term hippocampus is used here to refer

to dentate gyrus, CA subfields and subiculum. Surprise

effects are reported at p!0.05 corrected for search

volumes (thalamus: two spheres of 30 mm diameter

centred on K8, K16, 10 and 10, K12, 8; posterior

fusiform: two spheres of 30 mm diameter centred on

K36, K72, K22 and 28, K76, K16; see Table 1).

A similar two-stage random effects procedure was also

employed in the analysis of reaction time data (in the

reaction time General Linear Model the only nuisance

variable modeled response errors).
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2. Results

Consistent with previous observations (Hick, 1952;

Hyman, 1953), entropy and surprise both modulated

reaction times significantly (Fig. 1c). Fig. 2 demonstrates

that activation in left anterior hippocampus was modulated

by the entropy of the sampling distribution. Greater

activation was observed for unpredictable stimulus streams,

i.e. blocks with more even sampling distributions, evident in

the plot of response estimates. The parameter estimates also

demonstrate that the anterior hippocampus did not show a

significant mean response to all stimuli, nor was the

response modulated by surprise (see Table 1). Activation

in right anterior hippocampus was also observed in relation

to entropy, but failed to reach corrected significance.

Similar results have been observed during a sequence
Fig. 2. Anterior hippocampus is sensitive to the entropy of a sequence. (a)

The SPM (threshold p!0.005 for illustration; extent threshold 5 voxels) is

overlaid on sagittal (xZK26), coronal (yZK10) and transverse (zZK14)

sections of the T1 MNI reference brain to demonstrate activation in left

anterior hippocampus (x, y, z co-ordinates K26, K10, K14; ZZ3.32; p!
0.05 corrected). The parameter estimates (GSE) for the extent to which the

height of the modeled HRF in left anterior hippocampus is modulated by

entropy (E) and surprise (S) are plotted, as well as the parameter estimate

for mean response to all trials (Epoch). Weaker activation in right anterior

hippocampus (36, K14, K20; ZZ2.72; p!0.005 uncorrected) is evident in

transverse section. The colored bar indicates the T statistic of the activation.

(b) Anterior hippocampal activation in two subjects (s1, s2; single-subject

SPM threshold p!0.001) is overlaid on sagittal and coronal sections of that

subject’s mean functional T2* image (colour contrast of T2* images

inverted for illustration; position of sections indicated by the white

rectangles in (a). These sections indicate that entropy-evoked activation is

in anterior hippocampus and not surrounding medial temporal cortices.
learning task where greater anterior hippocampal activation

was evoked by random (high entropy) than by ordered

(low entropy) sequences (Katz Sakai and Richard Passing-

ham, personal communication).

In contrast to hippocampal sensitivity to entropy,

surprise modulated responses in an extensive bilateral

network (Fig. 3). Surprise-related activations were observed

in bilateral fusiform, parietal, premotor and inferior frontal

cortices, as well as in bilateral thalamus (Fig. 3). Activation

in these regions conforms to efficient coding of both visual

stimuli and subsequent motor responses (i.e. less activation

with more frequent events, or more prediction error with

less frequent events). This network is co-extensive with

the classical visual attention network (Mesulam, 1990;

Rees & Lavie, 2001). Thus, our findings demonstrate a

functional double dissociation between regions encoding

entropy and surprise (Table 1). Hippocampal activity was

determined by the predictability of events before they

occurred, whereas activation in a cortico-thalamic network

was dictated by the probability of each event.
Fig. 3. Efficient encoding of visual stimuli in cortical and subcortical

structures. Surface rendering of regional cortical responses that covaried

with surprise (SPM threshold p!0.005 uncorrected; extent threshold 5

voxels). Responses in left (L) and right (R) posterior fusiform (Fus) and

premotor (PreM) cortices and intraparietal sulcus (IPS) are indicated (/).

Below, the same SPM is overlaid on a coronal section of the T1 reference

brain (yZK12) to demonstrate bilateral activation in the thalamus (Th; see

Table 1). The extent to which responses in these regions are modulated by

surprise are plotted (GSE) along with the response to surprise in the left

anterior hippocampal (H) region shown in Fig. 2a.
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3. Discussion

Our study addresses the role of the hippocampus from a

particular (information theoretic) perspective that is closely

related to novelty detection. Functional neuroimaging

studies have consistently demonstrated novelty-dependent

activation of anterior hippocampus (Dolan & Fletcher,

1997; Strange, Fletcher, Henson, Friston, & Dolan, 1999;

Tulving, Markowitsch, Craik, Habib, & Houle, 1996). More

recent evidence, however, suggests that the hippocampal

role in novelty detection reflects a more general role in

detecting mismatches between expectation and experience

(Hasselmo, Wyble, & Wallenstein, 1996; Ploghaus et al.,

2000; Strange & Dolan, 2001). Hippocampal sensitivity to

improbable events evoking ‘mismatch’ (i.e. oddballs

(Halgren et al., 1980)) would suggest augmented responses

to surprising events. This was not observed (Table 1), nor

have fMRI studies of oddball responses demonstrated

hippocampal activation (Downar, Crawley, Mikulis, &

Davis, 2000; McCarthy, Luby, Gore, & Goldman-Rakic,

1997; but see Strange & Dolan, 2001). Hippocampal

sensitivity to entropy, however, suggests that a hippocampal

role in processing improbable events may reflect learning

that oddballs can occur, as opposed to the encoding of their

actual occurrence. This proposal is consistent with our

previous finding (Strange & Dolan, 2001) that oddball-

evoked activation in anterior hippocampus adapts with

repeated presentations of oddballs. In a previous fMRI study

(Bischoff-Grethe, Proper, Mao, Daniels, & Berns, 2000)

that manipulated entropy in a blocked design, the anterior

medial temporal region was not included in the field of

view. This study demonstrated responses in Wernicke’s area

that covaried with entropy, a finding not reproduced in our

study.

Our current results suggest that hippocampal processing

may reflect a more generic context-sensitivity to the

stochastic or probabilistic structure of observed events.

The key point is that the hippocampus represents the

expected information or novelty of any event before it

occurs. This is in contradistinction to other brain areas,

usually at lower hierarchical levels, that encode the novelty

per se (Brown & Xiang, 1998; Miller, Li, & Desimone,

1991). Representing the entropy or predictability of sensory

input may play a fundamental role in perceptual synthesis.

If one accepts that neuronal representations are constructed

on the basis of bottom-up evidence from early sensory

cortices and top-down influences that mediate prior

expectations (c.f. predictive coding (Rao & Ballard, 1999)

and related schemes using generative models), then the

relative balance of bottom-up and top-down effects depends

upon the veracity of the priors (Courtney & Ungerleider,

1997). In situations with high entropy, in which inputs are

unpredictable, more weight should be given to the bottom-

up forward connections. It is possible that this balance is

mediated by modulation of synaptic connections by systems

that are sensitive to the entropy. The hippocampal formation
has the necessary supraordinate position in cortical sensory

hierarchies and the requisite reciprocal connectivity to play

this role.

The precise relationship between this putative hippo-

campal role in perceptual synthesis and its critical role in

episodic memory remains to be determined. However, a

deficit in balancing top-down priors and bottom-up effects

may explain hippocampal lesion-induced deficits in any task

in which the probabilistic structure of the environment (i.e.

entropy) is manipulated experimentally (e.g. the Morris

water maze task (Morris, Garrud, Rawlins, & O’Keefe,

1982) or transitivity (Eichenbaum et al., 1999)). Impor-

tantly, several forms of non-declarative learning (e.g.

sequence learning, delay classical conditioning, probabil-

istic learning (Stadler & Frensch, 1998)), which are intact

following hippocampal lesions, involve learning regularities

in the context of low entropy (e.g. the US–CS relationship in

conditioning is, of course, highly predictable).

The model used to explain our neurophysiological

observations was based upon an ideal Bayesian observer.

This enabled some interesting inferences about how

probability and uncertainty are encoded in the brain.

However, such a simple model precludes any comment

about whether the probability learning was explicit or

implicit and, furthermore, does not address motivational

factors or the influence of cognitive set. These sorts of issues

may be usefully addressed using paradigms similar to the

one employed here in the context of reward learning.

Functional neuroimaging studies have generally used

psychological manipulations, such as encoding and retrieval

tasks, to explore the hippocampal role in episodic memory

(Lepage, Habib, & Tulving, 1998; Schacter & Wagner,

1999). The approach adopted here differs in that we

employed functional imaging to test quantitative, infor-

mation theoretic predictions that speak to a computational

role of the hippocampus. Our data suggest that hippocampal

neuronal activity is dictated by the probabilistic structure of

the environment with activity in this region representing the

expected information or novelty of an event before it occurs.
Acknowledgements

BAS is supported by the Mary Kinross Trust. AD, WP,

RJD and KJF are supported by the Wellcome Trust. We

thank R. Frackowiak and N. Burgess for internal review of

this manuscript.
References

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian theory. New York:

Wiley.

Bischoff-Grethe, A., Proper, S. M., Mao, H., Daniels, K. A., & Berns, G. S.

(2000). Conscious and unconscious processing of nonverbal predict-

ability in Wernicke’s area. Journal of Neuroscience, 20, 1975–1981.



B.A. Strange et al. / Neural Networks 18 (2005) 225–230230
Brown, M. W., & Xiang, J.-Z. (1998). Recognition memory: Neuronal

substrates of the judgement of prior occurrence. Progress in

Neurobiology, 55, 149–189.

Courtney, S. M., & Ungerleider, L. G. (1997). What has fMRI taught us

about human vision? Current Opinion in Neurobiology, 7, 554–561.

Dolan, R. J., & Fletcher, P. C. (1997). Dissociating prefrontal and

hippocampal function in episodic memory encoding. Nature, 388,

582–585.

Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2000). A

multimodal cortical network for detecting changes in the sensory

environment. Nature Neuroscience, 3, 277–283.

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H.

(1999). The hippocampus, memory, and place cells: Is it spatial

memory or a memory space? Neuron, 23, 209–226.

Friston, K. J. (2002). Functional integration and inference in the brain.

Progress in Neurobiology, 68, 113–143.

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., &

Frackowiak, R. S. J. (1995a). Spatial registration and normalisation of

images. Human Brain Mapping, 2, 165–189.

Friston, K. J., Homes, A. P., Worsely, K. J., Poline, J.-B., Frith, C. D., &

Frackowiak, R. S. J. (1995b). Statistical parametric maps in functional

imaging: A general linear approach. Human Brain Mapping, 2,

189–210.

Halgren, E., Squires, N. K., Wilson, C. L., Rohrbaugh, J. W., Babb, T. L., &

Crandall, P. H. (1980). Endogenous potentials generated in the human

hippocampal formation and amygdala by infrequent events. Science,

210, 803–805.

Hasselmo, M. E., Wyble, B. P., & Wallenstein, G. V. (1996). Encoding and

retrieval of episodic memories: Role of cholinergic and GABAergic

modulation in the hippocampus. Hippocampus, 6, 693–708.

Hick, W. E. (1952). On the rate of gain of information. Quartenary Journal

of Experimental Psychology, 4, 11–26.

Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The “wake-

sleep” algorithm for unsupervised neural networks. Science, 268,

1158–1161.

Hyman, R. (1953). Stimulus information as a determinant of reaction time.

Journal of Experimental Psychology, 45, 175–182.

Jones, D. S. (1979). Elementary information theory. Oxford: Oxford

University Press.

Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward-inverse optics

model of reciprocal connections between visual areas. Network:

Computation in Neural Systems, 4, 415–422.

Lepage, M., Habib, R., & Tulving, E. (1998). Hippocampal PET activations

of memory encoding and retrieval: The HIPER model. Hippocampus, 8,

313–322.

McCarthy, G., Luby, M., Gore, J., & Goldman-Rakic, P. (1997). Infrequent

events transiently activate human prefrontal and parietal cortex as
measured by functional MRI. Journal of Neurophysiology, 77,

1630–1634.

Mesulam, M. M. (1990). Large-scale neurocognitive networks and

distributed processing for attention, language, and memory. Annals of

Neurology, 28, 597–613.

Miller, E. K., Li, L., & Desimone, R. (1991). A neural mechanism for

working and recognition memory in inferior temporal cortex. Science,

254, 1377–1379.

Morris, R. G. M., Garrud, P., Rawlins, J. P., & O’Keefe, J. (1982). Place

navigation impaired in rats with hippocampal lesions. Nature, 297,

681–683.

Mumford, D. (1992). On the computational architecture of the neocortex.

II. The role of cortico-cortical loops. Biological Cybernetics, 66,

241–251.

Ploghaus, A., Tracey, I., Clare, S., Gati, J. S., Rawlins, J. N. P., &

Matthews, P. M. (2000). Learning about pain: the neural substrate of the

prediction error for aversive events. Proceedings of the National

Academy of Science USA, 97, 9281–9286.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex:

A functional interpretation of some extra-classical receptive-field

effects. Nature Neuroscience, 2, 79–87.

Rees, G., & Lavie, N. (2001). What can functional imaging reveal about the

role of attention in visual awareness? Neuropsychologia, 39,

1343–1353.

Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations

in fMRI and PET studies of episodic encoding and retrieval.

Hippocampus, 9, 7–24.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral

hippocampal lesions. Journal of Neurosurgery and Psychiatry, 20,

11–21.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell

System Technical Journal, 27, 379–423.

Sinkkonnen, J. (2000). Information and resource allocation. In R. Baddeley,
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