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Recently, a free-energy formulation of brain 
function was reviewed in relation to several 
other neurobiological theories (The free-
energy principle: a unified brain theory? 
Nature Rev. Neurosci. 11, 127–138 (2010))1. 
Fiorillo raises some interesting questions 
about the formulation from a neurocentric 
perspective (A neurocentric approach to 
Bayesian inference. Nature Rev. Neurosci.  
14 Jul 2010 (doi: 10.1038/nrn2787-c1))2: 

A primary function of the brain is 
to infer the state of the world … to 
determine which motor behaviours will 
best promote adaptive fitness.2

The free-energy principle generalizes this 
by assuming that any (biological) system that 
conserves its form must minimize ‘surprise’ 

(maximize adaptive fitness) through exchange 
with its environment. ‘Surprise’ is simply the 
improbability –ln p(s|m) of sensory data s, 
given a model m of the environment that is 
entailed by the form of the system. Exchange 
with the environment transcends motor 
behaviour and could cover phototropism 
in plants (which expect their foliage to be 
deployed in sunlight) to the elaboration of 
dendritic processes by a neuron sampling its 
afferents. In all cases the system tries to sample 
what it expects, under a model of its world. 

... the free energy approach is divorced 
from the biophysical reality of the 
nervous system2.

In fact, the approach is grounded explicitly 
on imperatives for biophysical systems. 

Furthermore, its neuronal implementation 
appeals to large bodies of neurophysiologi-
cal and anatomical facts that often have to 
be summarized in tables3,4 (TABLE 1). The 
premise of the free-energy principle is 
that an agent is a model of its world, and 
this model is determined by the agent’s 
biophysical form and states. Mathematically, 
minimizing average ‘surprise’ (also called 
entropy) then becomes the same as maxi-
mizing the evidence p(s|m) for its model 
(that is, itself).

... the brain does not need to perform 
any processing step to go from 
information to probabilities and 
inference2.

This assertion overlooks the fact that the 
mapping between environmental causes 
and sensory consequences is many-to-one 
(not bijective). This induces ambiguity — 
when inferring the causes of sensations5  
— that is resolved with (Bayesian) prob-
abilistic inference6. A simple example here 
is that 1 + 4 and 2 + 3 are both causes of 5. 
Alternative causes can only be  
represented probabilistically, with 
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Table 1 | Biophysical aspects of the brain that can be explained under a free-energy formulation 

Domain Features explained Predictions or motivation

Anatomy and 
connectivity

The hierarchical deployment 
of cortical areas;  recurrent 
architectures with 
functionally asymmetric 
forward and backward 
connections

Hierarchical cortical organisation

Distinct neuronal subpopulations that encode expected states of the world and prediction error

Extrinsic forward connections convey prediction error (from superficial pyramidal cells) and 
backward connections mediate predictions (from deep pyramidal cells)

Functional asymmetries in forwards (linear) and backwards (nonlinear) connections are 
mandated by nonlinearities in the generative model encoded by backward connections

Principal cells that elaborate predictions (for example, deep pyramidal cells) may show distinct 
(low-pass) dynamics relative to those that encode error (for example, superficial pyramidal cells)

Recurrent dynamics are intrinsically stable because they suppress prediction error (no  
strong loops)

Synaptic 
physiology

Both (short-term) 
neuromodulatory 
gain-control and (long-term) 
associative plasticity

Scaling of prediction errors, in proportion to their precision, affords the cortical bias or gain 
control that is seen in attention

Short-term modulation of synaptic gain encoding precision or uncertainty (which optimizes a 
path-integral) must be slower than neuronal dynamics (which optimize free-energy per se)

Long-term plasticity that is formally identical to Hebbian or associative plasticity

Neuromodulatory factors may have a dual role in the modulation of postsynaptic responsiveness 
(for example, through after-hyperpolarizing currents) and synaptic plasticity

Electrophysiology Classical and extra-classical 
receptive field effects and 
long-latency (endogenous) 
components of evoked 
cortical responses

Event-related responses are self-limiting transients, where late components rest on top-down 
suppression of prediction error

Sensory responses are greater for surprising, unpredictable or incoherent stimuli

The attenuation of responses that encode prediction error. Together with perceptual 
learning this explains repetition suppression (for example, mismatch negativity in 
electroencephalography)

Psychophysiology The behavioural correlates 
of some  physiological 
phenomena

For example, priming and global precedence. In cognitive terms, it furnishes a framework in 
which to model and understand things like perceptual categorisation, temporal sequencing  
and attention

See REF. 4 for a detailed discussion. Table is reproduced, with permission, from REF. 3 © (2009) Cell Press.
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 = arg min  F(s,  )µ µ µ

processing that integrates sensory evidence 
and prior expectations afforded by a  
(generative) model. 

Surprise … is essentially just the 
frequency of an event within an 
imaginary ensemble of states that could 
unfold over a long period of time.2

Figure 1 | The behaviour of an agent that learns to be a Lorenz attractor. The figure shows the 
behaviour of an agent that learns to be a Lorenz attractor in terms of equilibrium densities (left) and 
exemplar trajectories (right). The top panels show the dynamics of a supervised environment that 
offers control of the agent’s motion so that it can experience and learn itinerant (chaotic) behaviour. 
The middle panels show behaviour before learning, when the agent expects to be drawn to a point 
attractor. The lower panels show behaviour after learning, when prior expectations about the environ-
ment have been transcribed from the environment by learning under the free-energy principle. Here, 
learning means optimizing the expected parameters (synaptic connection strengths (μ)) of the agent’s 
equations of motion to minimize free-energy

 
F(s, μ). See REF. 8 for details. Figure is reproduced, with 

permission, from REF. 8 © (2010) Springer.

This is a common misconception: surprise 
(surprisal or self-information) is conditioned 
on a model and is not an attribute of a sam-
pled (frequentist) distribution. It is –ln p(s|m)  
not –ln p(s). Put simply, surprise depends on 
predictions, which depend on a model. Agents 
build models to predict sensations. The 
model of the world (or the form of an agent) 

is optimum when it minimizes surprise, at 
which point the agent’s model (or its form) 
stops changing and is conserved. The free-
energy principle is an information-theoretic 
treatment of systems that conserve themselves 
over time and is inherently Bayesian. 

... in apparent contradiction to his 
hypothesis animals tend to explore the 
least predictable sensory inputs ...2

Do they? If animals wanted unpredictable 
sensations they would subject themselves 
to unprecedented pain. I suspect the deeper 
question here is how to explain itinerant 
(wandering or searching) behaviour while 
minimizing surprise7. This is simple to 
explain: agents use dynamical models (cast 
mathematically as equations of motion). In 
other words, agents expect to move through 
their sensory state-space (because the world 
is itinerant). Indeed, we have used chaotic 
exploration to illustrate active inference 
using free energy8 (FIG. 1). 

A truly unified brain theory will need 
to bridge the gap between Bayesian 
principles and biophysical reality ...2

Absolutely. Hopefully, these responses 
affirm that the free-energy principle is 
fundamentally biocentric in that biophysical 
states encode probabilistic representations 
of causal structure in the world and should 
even apply to single neurons9.
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