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Large-scale neural models and dynamic causal modelling
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Dynamic causal modelling (DCM) is a method for estimating and

making inferences about the coupling among small numbers of brain

areas, and the influence of experimental manipulations on that

coupling [Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal

modelling. Neuroimage 19, 1273–1302]. Large-scale neural modelling

aims to construct neurobiologically grounded computational models

with emergent behaviours that inform our understanding of neuronal

systems. One such model has been used to simulate region-specific

BOLD time-series [Horwitz, B., Friston, K.J., Taylor, J.G., 2000.

Neural modeling and functional brain imaging: an overview. Neural

Netw. 13, 829–846]. DCM was used to make inferences about effective

connectivity using data generated by a model implementing a visual

delayed match-to-sample task [Tagamets, M.A., Horwitz, B., 1998.

Integrating electrophysiological and anatomical experimental data to

create a large-scale model that simulates a delayed match-to-sample

human brain imaging study. Cereb. Cortex 8, 310–320]. The aim was

to explore the validity of inferences made using DCM about the

connectivity structure and task-dependent modulatory effects, in a

system with a known connectivity structure. We also examined the

effects of misspecifying regions of interest. Models with hierarchical

connectivity and reciprocal connections were examined using DCM

and Bayesian Model Comparison [Penny, W.D., Stephan, K.E.,

Mechelli, A., Friston, K.J., 2004. Comparing dynamic causal models.

Neuroimage 22, 1157–1172]. This approach revealed strong evidence

for those models with correctly specified anatomical connectivity.

Furthermore, Bayesian model comparison favoured those models when

bilinear effects corresponded to their implementation in the neural

model. These findings generalised to an extended model with two

additional areas and reentrant circuits. The conditional uncertainty of

coupling parameter estimates increased in proportion to the number of

incorrectly specified regions. These results highlight the role of neural

models in establishing the validity of estimation and inference schemes.

Specifically, Bayesian model comparison confirms the validity of DCM

in relation to a well-characterised and comprehensive neuronal model.
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Introduction

The organisation of the brain follows two principles:

functional specialisation and functional integration. Functional

specialisation implies that anatomically distinct cortical (and

subcortical) areas are specialised to perform certain aspects of

perceptual, cognitive or motor processing. Given a high degree of

functional specialisation, no cortical area can perform a mean-

ingful function in isolation. In order to support even a simple

perceptual or motor function, it is necessary for these anatom-

ically distinct functionally specialised areas to interact, via

extrinsic connections among cortical areas. Functional integration

describes the pattern of connections, established between cortical

areas, which is unique to a particular function. Traditionally, the

high spatial resolution available with functional neuroimaging

data has lent itself to analyses of functional specialisation (Zeki et

al., 1991). Analyses of neural activity based solely on this

principle provide a limited account of the neuronal substrate of

the process under investigation. Therefore, alternative approaches

have been developed to investigate task-dependent changes in the

integration of functionally specific areas. For a review of three

methods of analysing functional integration, see Ramnani et al.

(2004); for a discussion of some conceptual issues associated

with connectivity analysis, see Lee et al. (2003) and Horwitz

(2003).

Dynamic causal modelling (DCM) is a method for estimating

and making inferences about the coupling among a small number

of specified brain areas, and the influence of experimental

manipulations on that coupling (Friston et al., 2003) that has been

developed specifically to work with functional neuroimaging data.

It is used to test specific null hypotheses about the coupling

between cortical areas. It does not attempt to provide a realistic

model of how the brain actually works. DCM treats the brain as a

dynamic, deterministic input-state-output system where the inputs

are conventional stimulus functions describing experimental

manipulations. The state variables describe regional neuronal

activity and biophysical states specify the haemodynamic response

in each region, given its neuronal activity. The outputs are the

measured regional blood oxygenation-dependent (BOLD) signal.

Within the framework of DCM, the neurodynamics of any given
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region are treated as deterministic: changes in neuronal activity in a

region can only be caused by direct inputs to that area (if

specified), intrinsic activity in the area (via self-connections) and

activity in other connected regions. Any of the connections can be

modulated by experimental variables. The modeller chooses the

regions of interest, specifies which connections are present and

indicates where the experimental manipulations are expected to act,

either as direct inputs to a region or by modulating the strength of

connections between regions.

There are a number of issues associated with DCMs (Penny

et al., 2004). Of particular importance is the problem of

specifying the latent (interregional) connectivity structure be-

cause detailed knowledge of the anatomical connectivity of the

human brain is unknown (Passingham et al., 2002). Another

important issue is the specification of those connections that are

modulated by experimentally controlled variables, which reflects

the hypotheses under examination. When working with exper-

imental data, these are empirical questions. Using simulated data

based on simple neuronal models, Penny et al. demonstrated

that Bayesian model comparison can be used to distinguish

between competing models.

This paper aims to provide a validation of DCM by using

synthetic fMRI time-series data simulated by a neurobiologically

informed computational model (see Horwitz et al., 2000 for an

overview of employing computational neural modelling in

conjunction with functional neuroimaging). One such model

has been used to simulate region-specific BOLD time-series

(Horwitz and Tagamets, 1999). Large-scale neural models can

be used to partially validate techniques such as DCM because

the underlying anatomical structure and neuronal physiology are

fully known. As such, their use can permit an examination of

the neural substrates underlying the interpretation of DCMs. Our

aim was to establish the face validity of inferences made using

DCM in relation to a known (model) architecture. This is

clearly not possible using data from the brain, whose
Fig. 1. Network diagram of the visual object processing model. The regions for

excitatory (excitatory to excitatory neuronal populations: solid lines) and others

prefrontal (PFC) region, FS contains stimulus sensitive units, D1 and D2 contain u

activity increases if there is a match between the first and second stimuli of a trial.

grey arrow shows the site of action of attention.
connectivity structure and mechanisms, mediating phenomena

like attention, are unknown.
Neuronal model

Neuronal model

A neurobiologically grounded computational model was used

to simulate region-specific BOLD fMRI time-series data. This

previously published large-scale model (Tagamets and Horwitz,

1998) simulates the ventral visual processing stream during a

delayed match to sample (DMS) task for object shape (an

analogous model for processing auditory objects was developed

by Husain et al., 2004). The model contains four major brain

regions: primary visual cortex (V1/V2), occipitotemporal cortex

(V4), inferior temporal cortex (IT) and prefrontal cortex (PFC)

(Fig. 1). Each region is composed of one or more arrays of 9 �
9 neuronal assemblies of basic units, representing a simplified

cortical column. The basic unit underlying all regions in the

model consists of a coupled inhibitory and excitatory element

with the excitatory element providing a greater contribution to

the overall synaptic activity by virtue of a larger synaptic

weight. The excitatory element provides interarea connections.

Spontaneous low-level random activity occurs in all units at all

times. This model was able to perform a DMS task for object

shape; the simulated electrical activities of the excitatory units

in each region were similar to experimental electrical recordings

from nonhuman primates and the simulated summed synaptic

activities in each region matched human functional brain

imaging data obtained during visual DMS tasks (Tagamets

and Horwitz, 1998). For details of the parameters used in the

model and a thorough discussion of the assumptions employed,

see Tagamets and Horwitz (1998) and Horwitz and Tagamets

(1999).
m a network with forward and backward connections, some of which are

are inhibitory (excitatory to inhibitory populations: dashed lines). In the

nits active during the delay period of the task and FR contains units whose

The solid grey arrow shows the site of action of the visual stimuli, the dotted
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Delayed match to sample task

The DMS task involves presentation of a shape, a variable

duration delay period, followed by presentation of a second

stimulus (same or different). The task requires the model to decide

if the second stimulus matches the first. The stimulus shapes used

are shown in Fig. 2.

The arrival of a stimulus activates orientation selective (e.g.,

horizontal and vertical) units in V1/V2 which respond best to small

sections of horizontal or vertical lines. The next stage in the visual

processing stream (V4) contains units that respond to longer

horizontal and vertical lines, and to corners. The third stage (IT)

contains units that respond to integrated information from V4, i.e.,

they form a Fpercept_ of the entire stimulus. This representation is

then transmitted to the first of four distinct types of PFC units. The

cue arrives at cue-selective units (FS), which are active only during

stimulus presentation. Information is then passed to two types of

delay units: type D2 is active during the initial presentation and the

delay period; type D1 is only active during the delay. The D2 units

provide feedback to earlier areas. The fourth type of PFC module

consists of response units (FR), whose activity increase when the

second cue matches the first. The PFC units become more active

during stimulus presentation and maintain a representation of the

stimulus when it is no longer present. An additional experimental

factor (attention) is implemented via a low-level, diffuse increase in

activity in the D2 units. This modulates how the delay units respond

to a given stimulus: the higher the attention, the better the

representation that is maintained during the delay. The effect of

attention of other areas is mediated via connections from D2.

Although the various neurons that comprise the PFC are likely to be

intermixed in the same anatomical area in the brain (Funahashi et al.,

1993), these modules are treated as if there were separate regions in

this paper because the anatomical connections between these

modules are different from the other components of the model.

The connectivity of the network and site of action of inputs are

shown in Fig. 1. A detailed discussion of the development of the

original model is provided in Tagamets and Horwitz (1998).

A recent upgrade of the model (Horwitz et al., 2005) is used in

this work. This incorporates a group of nonspecific neurons in each

region, which are connected to each other in the same way as are

the task-specific neurons. The input to the nonspecific neurons
Fig. 2. Schematic of the delayed match to sample (DMS) task. The shape stimuli

stimuli, presented during the control condition, are shown at the foot of the figur

intertrial interval) is 6 s, and the delay period is 1.5 s, 3 s or 6 s.
consists of noise patterns that are presented asynchronously and

randomly relative to the presentation times of the stimuli to the

task-specific elements. The net effect of this arrangement is that the

task-specific neurons in each module receive random neural

activity from the nonspecific neurons that varies for each trial.

Study design

The parameters used to simulate the fMRI data conform to a 2�
2 factorial design. The two factors are FTask_ and FAttention_. The
FTask_ factor had two levels: visual inputs were either coherent

shapes (active condition) or scrambled shapes (control condition).

The FAttention_ factor had three levels (low, medium and high).

Additional variability between trials was induced by setting the

duration of the delay period to 1.5 s, 3 s or 6 s. This variability in the

delay between presentation of the first and second visual stimuli

makes it possible to disambiguate between activity in the prefrontal

regions in response to visual stimuli, and the sustained prefrontal

activity in the absence of visual input that enables the model to

perform the Fmatch_ element of the task.

Simulation of fMRI time-series

The haemodynamic fMRI data were obtained by integrating the

absolute values of the synaptic activities within the different

regions over time. The total synaptic activity in a region is the total

sum of absolute values of the inputs to the inhibitory and excitatory

units (inter- and intraregional inputs) at each point in time. The

window of integration was 50 ms, following which the resulting

values were convolved with a Poisson function representing a

haemodynamic delay of 6 s, and down-sampled to simulate a

repetition time (TR) of 2 s. Details of this approach can be found in

Husain et al. (2004).
Dynamic causal modelling

DCM was used to make inferences about effective connectivity

using data generated by this large-scale neural model while

implementing a visual delayed match-to-sample task (Tagamets

and Horwitz, 1998). DCM relies on the specification of a simple
presented during the task are shown at the top of the figure. The degraded

e. Each shape is presented for 1 s, the response period (which includes the
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but reasonably realistic neuronal model of interacting regions. The

neuronal states can be described by Eq. (1)

żz ¼ F z;u;hð Þ ð1Þ

F is a nonlinear function describing the influences among the brain

regions included in the model on their mean synaptic activity (z)

and the experimental inputs (u). h are the parameters of the model.

A bilinear approximation of this equation provides a reparameter-

isation in terms of the effective connectivity encoded by the

matrices A, B and C:

żz,Azþ RujB
jzþ Cu ¼ Aþ RujB

j
� �

zþ Cu ð2Þ

The matrix A represents first-order or latent connectivity i.e.,

coupling among regions in the absence of experimental inputs or

perturbations. This is the first term of a Taylor Expansion of the

system equation (Eq. (2)). Put simply, this quantifies how the rate

of change in activity in a target region depends on the activity of a

source region. Constraints on these connections can embed

knowledge of anatomical connections (if available) to create a

plausible network. The matrix C specifies the direct influence of

extrinsic inputs (u) on regions. The matrix B specifies the changes

in first order or latent connections (self-connections or connections

between regions) induced by the jth input (u). The parameters of

the neuronal state equation are therefore the coupling matrices A,

Bj and C. Priors on the coupling parameters ensure that the system

remains dissipative, i.e., returns to a steady state in the absence of

input.

The haemodynamic model comprises state variables describing

the translation of regional neuronal activity into regional haemo-

dynamic responses. These include a vasodilatory signal (s),

normalised flow (f), normalised venous volume (v) and normalised

deoxyhaemoglobin content (q) (Friston et al., 2000; Mechelli et al.,
Fig. 3. Schematic of the dynamic causal model (DCM) architectures that correctly r

simulate the fMRI time-series data. Not all areas of the computational model are inc

are shown in dotted grey.
2001). Empirically determined priors for the biophysical parame-

ters are based on previous data (Friston et al., 2000).

Combining the neuronal and biophysical states gives a full

forward model, whose parameters are estimated using a fully

Bayesian approach to derive maximum a posteriori (MAP) estimates

and conditional covariances. The units of the coupling parameters

are per unit time; a strong connection corresponds to an influence

that is expressed quickly with a small time constant. The conditional

density of a variable is the posterior probability density of that

variable having observed another, e.g., the posterior probability

density of the model parameters given the data. Mathematically

speaking, this density is conditioned on the data. The conditional

densities can be used (i) to make inferences about coupling given a

particular model, M i using p(h|y, Mi) (the probability of the

parameters, given the data and the model) or (ii) used to compute

the evidence for that model p( y|Mi). The evidence for several

models can then be used to compute Bayes Factors, for Bayesian

model comparison. Following Penny et al. (2004), we approximated

p( y|Mi) with the Bayesian and Akaike’s Information Criterion (AIC

and BIC). This renders model comparison less dependent on priors.

DCM uses a bilinear reparameterisation of nonlinear neuronal

dynamics to enable inferences about effective connectivity. The

bilinear approximation reduces any nonlinear model to the same

form. It could be applied to the differential equations used to

generate data in the large-scale neural model, or to the (unknown)

analytic equations governing real neuronal dynamics and the

generation of fMRI or ERP data in vivo. This approximation is

particularly useful because it parameterises effective connectivity

into components that are context-invariant (latent part) and those

that are input or context-sensitive (the bilinear part). The key issue

is whether the bilinear approximation is sufficient to capture

features of interest. This is an empirical issue. If the DCM models

the data well, then conditional inferences will be significant,
epresent part of the underlying structure of the computational model used to

luded in the DCM. Direct inputs are shown in solid grey; modulatory inputs
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otherwise they will not. Similarly, in comparing DCMs, a

significant difference in their relative log-evidence is evidence

that the difference between the DCMs is supported by the data.

In short, DCM is not used to emulate neuronal dynamics to

explore emergent behaviours (this is the goal of the neuro-

biologically inspired computational model); rather, it is designed

to test hypotheses specified operationally by the DCMs. Using one

DCM, it is only possible to address quantitative questions about a

specific model. For example, in this paper, we required a 90%

confidence that a contrast of parameters was greater than zero.

However, Bayesian model comparison also allows us to answer

qualitative questions that are framed in terms of competing models.

Heuristically, instead of asking Fgiven this model, what do the data

tell us about its parameters?_, we can now ask Fgiven two models

(descriptions of the system), do the data support one model

significantly more than the alternative?_ The criterion for this is the

difference in log-evidence, as described by Penny et al. (2004) in

terms of Bayes factors. In this paper, we required Fstrong_ evidence
for one model relative another (i.e., a relative probability of 20 or

more).

Two models were used to explore the validity of inferences

made using DCM: a simple three-area model consisting of V1/2,

V4 and IT and a five-area model extended to explain responses in

areas FS and D2 (see Fig. 1). The reduced model does not

incorporate all the regions used to derive the data. This is likely to
Fig. 4. Inputs to the DCMs. The plots show the driving input (visual) (4.1)

and the modulatory inputs (task (4.2) and attention (4.3)). The latter enters

only the extended five-area DCM. The stimuli used as driving inputs to the

large-scale neural model are in Fig. 2.

Fig. 5. Outputs of the DCM (grey) and the simulated fMRI time-series data

derived from the large-scale computational model (black) for three regions:

V1 (5.1), IT (5.2) and D2 (5.3). It can be seen that the output of the DCM is

not a perfect fit for the data from the large-scale model, which is noisier due to

the activity of the nonselective neuronal populations. However, the DCM

output does capture the major changes in the simulated fMRI data.
reflect the situation using in vivo fMRI data where it is unlikely

that all the nodes of a network will be known.

The Fcorrect_ DCMs can be seen in Fig. 3. For both models, the

direct sensory inputs comprise a series of events with duration of 1 s

occurring every time a visual stimulus was Fpresented_. In both

models, the factor Ftask_ (specific vs. nonspecific shapes) modulated

the strength of connections from V4 to IT, because in the

computational model, there is very little activity in IT when noise

patterns are presented and significant neural activity when shapes

are used as the input stimuli. In the five-areamodel, the second factor

Fattention_, which had three levels (high, medium, low), entered as

an additional modulatory variable on the self-connections of the

prefrontal D2 area. The format of the inputs is shown in Fig. 4. The

output of the DCMs (predicted fMRI time-series) and the simulated

fMRI time-series data derived from the large-scale computational

model are shown in Fig. 5.
Simulations

Determining latent connectivity

For the simple model, three possible connectivity structures

were compared: the correct connectivity, a complete hierarchical

connectivity specification and full latent connectivity. The models

used can be seen in Fig. 6. In each case, visual inputs entered

directly to V1 and the factor Ftask_ modulated the connections from



Fig. 6. (6.1) Coupling parameters for the simple model, with interarea connectivity and modulatory input specified correctly with respect to the underlying large-

scale neural model. The conditional density (expectations and variances) of the coupling parameters were computed using Expectation Maximisation (EM) as

described in Friston et al. (2003). The conditional expectations correspond to the posterior estimates of coupling strength, while the conditional variances were

used to compute the confidence that the parameters were greater than threshold (this is simply the appropriate area under the Gaussian conditional density). The

posterior parameter estimates for the coupling parameters are shown in black and grey; the values in brackets are the confidence that these values exceed a

threshold of ln2/4 Hz. Coupling parameters exceeding threshold with a confidence of greater than 90% are shown in black. The posterior parameter estimates for

the coupling parameters for direct visual inputs are shown next to the solid grey arrows. The posterior parameter estimates for the coupling parameters for

modulatory effect of task (shapes vs. degraded stimuli) are shown next to the dotted grey markers. The values in brackets are the percentage confidence that these

values are greater than zero. (6.2) Coupling parameters for the simple model, specified with full interarea connectivity. Inputs are specified and displayed as in

panel 6.1. (6.3) Coupling parameters for the simple model, specified as a hierarchy. Inputs are specified and displayed as in panel 6.1.
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V4 to IT. The latent connectivity was assessed in two ways (see

Penny et al. (2004) for a complete discussion of how these

comparisons are performed): (1) Conditional on each model we

asked, do the coupling parameters exceed a threshold of ln2/4 per

second (i.e., the influence of one region on another is expressed

within a time frame of 4 s) with 90% confidence? (2) Using

Bayesian model comparison, does one of the models provide a

substantially better explanation of the observed responses?

The same approach was adopted for the extended model. The

three connectivity specifications were: the correct connectivity, a

hierarchical connectivity and full connectivity structure (see Fig. 7).

Determining modulatory connectivity

The validity of inferences made using DCM, regarding the site

of action of modulatory inputs, was examined using the three-area

model. Using a model with correctly specified latent connectivity,

the modulatory input Ftask_ was allowed to act on each interarea
connection and the self-connections of V4 and IT. The models are

shown in Fig. 8. Bayesian model comparison was then used to

determine if one of the models provided a substantially better

explanation of the observed responses.

Examining the impact of misspecified regions of interest

The third aim of this validation was to examine the impact of

using Finvalid_ region of interest (ROI) data when estimating

DCMs. This would be equivalent to including fMRI data in a DCM

analysis from a region of the brain that was misspecified, or where

the signal was dominated by nonspecific responses (noise or

artefact). This is possible using the simulated fMRI times-series

data because the ROI data comprise a mixture of activity from

Fspecific_ and Fnonspecific_ neurons. The valid ROI time-series

data were derived from the average activity in the specific and

nonspecific neurons; the invalid time-series data were derived

using just the nonspecific neuronal activity. Two potential effects



Fig. 7. (7.1) Extended model, with correctly specified interarea connections. Two sets of bilinear effects are specified: shapes vs. scrambled images as in the 3-

area model, and the effects of different levels of attention influencing the connections from D2 to D2, IT and V4. Self-connections, direct inputs and

modulatory effects of task are displayed as described in Fig. 6. Posterior parameter estimates for the modulatory effect of attention are shown next to dashed

grey markers; the values in brackets are the percentage confidence that these values are greater than zero. (7.2) Extended model, results of specifying full

interarea connections. Only posterior parameter estimates that exceed criterion are displayed. (7.3) Extended model, results of specifying a hierarchical

connection structure.
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of misspecified data were examined: (1) the differential impact of

misspecifying different regions, and (2) the effects of increasing

the proportion of corrupted regions. Bayesian model comparison
cannot be used to compare models using different data; therefore, a

measure of the conditional uncertainty of the model fit (the trace of

the posterior covariance was used). This is the sum of the posterior



Fig. 8. (8.1–8.5) Simple models, with interarea connections specified correctly. The site of action of modulatory, bilinear effects varies over panels 8.1–8.5. The

effect of misspecification of bilinear effects on the strengths of the intrinsic connections can be seen. In all models, DCM suggests that there is a significant bilinear

effect.
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variance, which increases as the precision of the parameter

estimates decreases.
Results

Determining latent connectivity

The combination of DCM and Bayesian model comparison re-

vealed strong evidence for those models with correctly specified

connections. Figs. 6.1–6.3 show the three patterns of connectivity

specified for the simple three-area model. It can be seen that all the

coupling parameters in Fig. 6.1 (correctly specified model) exceed

threshold with greater than 90% confidence. In Figs. 6.1 and 6.3, the

posterior probability of correctly specified connections exceeded 90%

confidence, whereas the incorrect connections do not. The model

shown in Fig. 6.2 reduces to the correct model when the coupling
parameters that do not exceed threshold are excluded. Bayesian

model comparison suggested that there was positive evidence for the

Fcorrect_ model (model 1) over the two alternatives (Fig. 9.1).

Figs. 7.1–7.3 shows the patterns of connectivity specified for

the more comprehensive five-area model. As with the three-area

model, it can be seen that the values of the coupling parameters in

the correctly specified model (Fig. 7.1) exceed threshold with

greater than 90% confidence or, in the case of the backwards

connections from D2 to IT and V4, are significantly modulated by

the factor Fattention_. The results shown in Fig. 7.2 are derived

from a DCM in which full connectivity was specified. A number of

connections were inferred incorrectly: D2 to FS, IT to D2 and V4

to V1. All of the connections present in the computational model

either exceed threshold or were significantly modulated by the

factors task and attention. Fig. 7.3 shows the estimated coupling

parameters when a simple but incorrect hierarchical structure was

specified. Bayesian model comparison of the three models



Fig. 9. (9.1) Bayesian model comparison of the three-area models with differently specified intrinsic connectivity. Akaike’s Information Criterion (black) and

Bayesian Information Criterion (grey) values were used to compute Bayes Factors (BF) for the comparison of the models shown in Figs. 6.1–6.3. The bars

represent the log-BF with negative values indicating the first model is more likely. When both AIC and BIC Bayes Factors are greater than e = 2.7183, this is

considered consistent evidence in favour of one model. (9.2) BF for the comparison of the five-area models in Figs. 7.1–7.3. (9.3) BF for the comparison of

modulatory inputs shown in Figs. 8.1–8.5 and described in Simulations.
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provided convincing evidence that the correct model (Fig. 7.1)

provides the best explanation of the observed responses (Fig. 9.2).

Determining modulatory connectivity

The effects of incorrectly specifying the site of action of the

modulatory input Ftask_ were explored using the simple three area
model. Figs. 8.1–8.5 show the site of action of the factor Ftask_,
and the coupling parameters estimated for these models. In each

case, the effect of Ftask_ is greater than zero (at 90% confidence).

The results of Bayesian model comparison are shown in Fig. 9.3. It

can be seen that models 1 and 5 (Figs. 8.1 and 8.5) provide the best

explanation of the observed responses, but cannot be distinguished

from each other. Model 1 was the correct model.



Fig. 11. Linear regression of the effects of increasing the proportion of
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Incorrectly specified regional data

Figs. 10 and 11 show the effects of substituting the simulated

fMRI times-series data with invalid time-series data derived from

nonspecific neuronal activity. From Figs. 10.1 and 10.2, it can be

seen that the overall effect of substituting increasing numbers of

corrupted areas increases the conditional uncertainty, as indexed

by the posterior covariance. For both the three-area model and the

extended five-area model, the precision of the posterior estimates

of the coupling parameters tended to decrease as the proportion

of ROIs containing nonspecific neuronal activity increased.

Effectively, this means that corrupted data or misspecified

regional activity increases conditional uncertainty and, by virtue

of the shrinkage priors used in DCM (see Penny et al., 2004, p.

1160), decreases the MAP estimates of coupling. This means that

one is less likely to infer a connection is present. This is shown

in Fig. 11, where increasing the proportion of corrupted regions

(relative to the total number of regions) reduces the proportion of
Fig. 10. (10.1) Results of comparing Posterior Covariance as a measure of

the effects of substituting corrupted data into the three-area DCM. The

heights of the bars represent the trace of the Posterior Covariance. The

effects of increasing the number of misspecified areas can be seen. (10.2)

As above, but for the extended five-area model, showing the effects of

increasing the number of misspecified areas.

corrupted regions (relative to the total number of regions) on the proportion

of latent connections (black line and dots) and bilinear effects (grey line,

asterisks) that are inferred to be present. The correlation coefficients are

�0.56 for the latent connections and �0.68 for the bilinear effects.
latent connections and bilinear effects that are inferred to be

present.
Discussion

Penny et al. (2004) have previously described the use of

Bayesian inference procedures in the context of dynamic causal

models. With a single DCM, the posterior distribution can be used to

make inferences about changes in coupling produced by experi-

mental manipulations. These inferences are contingent on the

model: which regions are connected, and where the modulatory

inputs act. Penny et al. established the use of Bayes factors to inform

decisions regarding the connectivity of DCMs and as a means to

compare models with different structures.

The results presented in this paper extend the findings of Penny

et al. and provide further support for the use of AIC and BIC

approximations to the model evidence as described previously

(Penny et al., 2004). In the present work, synthetic fMRI time-

series data generated from a neurobiologically inspired computa-

tional model were analysed using DCM. Using inference based on

the confidence that the rate of change of effects mediated via

coupling parameters exceeded plausible thresholds and Bayesian

model comparison, DCM analysis was generally able to correctly

identify the connectivity of the computational model (Figs. 6, 7 and

8). In the three-area model, the connectivity structure was detected

using the posterior distributions for the coupling parameters alone,

with Bayes factors confirming that the correct model provided the

best explanation of the data. With the extended five-area model, the

posterior estimates of the coupling parameters were less discrim-

inating, but the model comparison procedure provided conclusive

evidence in favour of the model with correctly specified

connectivity as this provided the most accurate and parsimonious

explanation of the data.

Furthermore, Bayesian model comparison favoured those

models when the bilinear (modulatory) effects corresponded to their

actual implementation in the large-scale neural model. This can be

seen in Figs. 8 and 9.3. Models 1 and 5 provide equally good
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explanations of the observed responses. These models are the closest

to the architecture of the computational model. In the model, activity

in area IT varies as a function of the input stimuli (shapes vs.

scrambled images) whose effects arrive at IT via activity in V4. In

the DCM, the factor Ftask_ either increases the activity in area V4 via
the V4 to V4 self-connections (model 5) or increases the influence of

activity in V4 on IT by strengthening the connection (model 1). It is

interesting to note that models 1 and 5 are similar in that both speak

to a task-dependent interaction between the activity in Areas V4 and

IT. In model 1, this is mediated by changes in the connections from

V4 and IT. In model 5, the self-connections to V4 are modulated

directly. Bayesian model selection was unable to disambiguate these

twomodels because they provide equally accurate and parsimonious

explanations of the data. Models 2 and 4 fail to capture the direction

of the interaction fromV4 to IT because the effect of task is mediated

by IT to IT connections or IT to V4 connections, respectively. This

has important implications for the interpretation of experimental

data: with unreliable a priori knowledge of the anatomical

connectivity (frequently the case in human studies), it would be

impossible to decide if models 1 or 5 were correct. This would not

prevent the experimenter from inferring correctly that the factor

Ftask_ had a nontrivial effect on the interaction between regions V4

and IT.

Fig. 7.1 shows that the magnitude of the changes in effective

connectivity, induced by changes in the level of attention, is less than

those induced by the factor Ftask_. This reflects differences in the

magnitude of the effects of attention and task on the neuronal activity

within the computational model. Inference about bilinear effects on

the coupling parameters was based on a threshold of zero. Bilinear

effects represent a change in the coupling which can be negative or

positive. Quantitatively small bilinear effects are always interesting,

provided we can be confident they are not zero. For example, a 10%

change in the strength of a connection with an initial rate of 1 s�1

corresponds to a bilinear effect of 0.1%. Although this appears to be

a very small effect, it represents a 10% difference in the effective

connectivity between the two regions. Hence, it is appropriate to use

a threshold of zero for inference about the bilinear (modulatory)

effects of experimental manipulations.

Bayesian model comparison provides a means of deciding which

of several models provides the best explanation of the observed data;

therefore, it is not possible to compare models of different data. With

increasing nonspecific activity, the posterior covariance (covariance

of the posterior probability distribution) increases, i.e., the precision

of the parameter estimates falls. The effects of misspecifying the

region of interest data are clearly demonstrated in Fig. 11 where it

can be seen that the ability of DCM to properly estimate the coupling

parameters and the effects of modulatory inputs decreases as the

proportion of incorrectly specified regions increases.

It is important to note that, in both DCMs, even the 5-region

model, crucial brain areas that make important contributions to task

performance were not included (see Fig. 1). Nevertheless, DCMwas

usually able to determine the simplified model that corresponded

most closely to the actual configuration of regions mediating the

task. This is important because it is likely the case for experimental

data that the network of brain areas crucial for task performance will

contain more regions than DCM or similar methods can handle.

Therefore, it is reassuring that good approximations to the actual

networks were obtained when using a subset of regions and

constrained hypotheses about the interactions between the areas.

It should be noted that although model selection and

comparison allow one to adjudicate among different models (i.e.,
architectures), it does not ensure that the best model is the true

model. In other words, model selection with DCM only allows

relative statements about some specified models, it does not

explore model space exhaustively to find the best of all models

and, even if it did, the best model may or may not be the true

model; it is simply the most accurate and parsimonious model.

In summary, these findings confirm that DCM can be used at the

level of a single model to interrogate data with respect to a particular

set of connection strengths or changes in coupling. The use of

thresholds, based on posterior densities, provides a means of

deciding which connections are expressed functionally or are

significantly modulated. These quantitative inferences are condi-

tional on the DCM in question. The architectures of qualitatively

different models can be compared using Bayesian model selection.

This comparison does not depend on the quantitative parameter

estimates for any particular model because the log-evidence is not a

function of the parameters. Model selection can be used to

disambiguate two models based on their respective evidence, given

the data. This is useful in cases where a priori knowledge of the

anatomical connectivity and/or site of action of experimental

manipulations is imprecise.

Conclusions

These results highlight the essential role of neural models in

establishing the validity of estimation and inference schemes,

providing further support for the use of DCM as a method of

analysis for fMRI data that is able to discern latent connectivity and

the modulatory effects of designed experimental manipulations on

the strength of connections between brain regions. Specifically,

Bayesian model comparison confirms the validity of DCM in

relation to a well-characterised and comprehensive model. These

findings also speak to the importance of using informed and

complicated neural models to test methods of data analysis because

in the model, unlike the brain, everything is known. Hence, the

results obtained by an analysis technique can be checked for

accuracy, completeness and interpretability.
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