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B Abstract Inferences about brain function, using neuroimaging data, rest on mod-
els of how the data were caused. These models can be quite diverse, ranging from con-
ceptual models of functional anatomy to nonlinear mathematical models of hemody-
namics. However, they all have to be internally consistent because they model the same
thing. This consistency encompasses many levels of description and places constraints
on the statistical models, adopted for data analysis, and the experimental designs they
embody. The aim of this review is to introduce the key models used in imaging neuro-
science and how they relate to each other. We start with anatomical models of functional
brain architectures, which motivate some of the fundaments of neuroimaging. We then
turn to basic statistical models (e.g., the general linear model) used for making classical
and Bayesian inferences about where neuronal responses are expressed. By incorpo-
rating biophysical constraints, these basic models can be finessed and, in a dynamic
setting, rendered causal. This allows us to infer how interactions among brain regions
are mediated.
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INTRODUCTION

Understanding the brain depends on conceptual, anatomical, statistical, and causal
models that link ideas about how it works to observations and experimental data.
The aim of this review is to highlight the relationships among the sorts of models
that are employed in imaging neuroscience. These relationships reflect an increas-
ing mechanistic finesse as one moves from simple statistical models used to identify
where evoked brain responses are expressed (cf. neo-phrenology) to models of how
neuronal responses are caused (e.g., causal modeling). In the near future, models of
representational inference and learning may be used as observation models to con-
firm some fundamental hypotheses about what the brain is doing (e.g., predictive
coding). We review a series of exemplar models that cover conceptual models, mo-
tivating experimental design, to detailed biophysical models of coupled neuronal
ensembles that enable questions to be asked at a physiological and computational
level.

Anatomical models of functional brain architectures motivate the fundaments
of neuroimaging. We start by reviewing the distinction between functional special-
ization and integration and how these principles serve as the basis for most analyses
of neuroimaging data. We then turn to simple statistical models (e.g., the general
linear model) used for making classical and Bayesian inferences about functional
specialization in terms of where neuronal responses are expressed. Characterizing
aregion-specific effect rests on estimation and inference. Inferences in neuroimag-
ing may be about differences expressed when comparing one group of subjects
to another or, within subjects, inferences may be about changes over a sequence
of observations. They may pertain to structural differences (e.g., in voxel-based
morphometry; Ashburner & Friston 2000) or neurophysiological indices of brain
functions (e.g., functional magnetic resonance imaging, or fMRI). The principles
of data analysis are very similar for all these applications. We focus on the analysis
of fMRI time-series because this covers most of the issues encountered in other
modalities. By incorporating biophysical constraints, simple observation models
can be rendered biologically more realistic and, in a dynamic framework, causal.
This allows us to infer how interactions among brain regions are mediated. This
sort of characterization speaks to functional integration and relies on the notions
of functional and effective connectivity.

ANATOMIC MODELS

Functional Specialization and Integration

The brain appears to adhere to two fundamental principles of functional organi-
zation, functional specialization and functional integration, where the integration
within and among specialized areas is mediated by effective connectivity. The dis-
tinction relates to that between “localizationism” and “[dis]connectionism” that
dominated thinking about cortical function in the nineteenth century. Since the
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early anatomic theories of Gall, the identification of a particular brain region with
a specific function has become a central theme in neuroscience. However, func-
tional localization per se was not easy to demonstrate: For example, a meeting that
took place on August 4, 1881, addressed the difficulties of attributing function to
a cortical area, given the dependence of cerebral activity on underlying connec-
tions (Phillips et al. 1984). This meeting was entitled “Localization of Function
in the Cortex Cerebri.” Goltz (1881), although accepting the results of electri-
cal stimulation in dog and monkey cortex, considered that the excitation method
was inconclusive, in that movements elicited might have originated in related
pathways, or current could have spread to distant centers. In short, the excitation
method could not be used to infer functional localization because localizationism
discounted interactions, or functional integration among different brain areas. It
was proposed that lesion studies could supplement excitation experiments. Iron-
ically, it was observations on patients with brain lesions some years later (see
Absher & Benson 1993) that led to the concept of “disconnection syndromes” and
the refutation of localizationism as a complete or sufficient explanation of cortical
organization. Functional localization implies that a function can be localized in
a cortical area, whereas specialization suggests that a cortical area is specialized
for some aspects of perceptual or motor processing, and that this specialization is
anatomically segregated within the cortex. The cortical infrastructure supporting a
single function may then involve many specialized areas whose union is mediated
by the functional integration among them. In this view, functional specialization
is only meaningful in the context of functional integration and vice versa.

Functional Specialization and Segregation

The functional role of any component (e.g., cortical area, subarea, or neuronal pop-
ulation) of the brain is defined largely by its connections (Passingham et al. 2002).
Certain patterns of cortical projections are so common that they could amount to
rules of cortical connectivity. “These rules revolve around one, apparently, over-
riding strategy that the cerebral cortex uses—that of functional segregation” (Zeki
1990). Functional segregation demands that cells with common functional prop-
erties be grouped together. This architectural constraint necessitates both conver-
gence and divergence of cortical connections. Extrinsic connections among cortical
regions are not continuous but occur in patches or clusters. This patchiness has,
in some instances, a clear relationship to functional segregation. For example, V2
has a distinctive cytochrome oxidase architecture consisting of thick stripes, thin
stripes, and interstripes. When recordings are made in V2, directionally selective
(but not wavelength or color-selective) cells are found exclusively in the thick
stripes. Retrograde (i.e., backward) labeling of cells in V5 is limited to these thick
stripes. All the available physiological evidence suggests that V5 is a functionally
homogeneous area that is specialized for visual motion. Evidence of this nature
supports the notion that patchy connectivity is the anatomical infrastructure that
mediates functional segregation and specialization. If it is the case that neurons
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in a given cortical area share a common responsiveness, by virtue of their extrin-
sic connectivity, to some sensorimotor or cognitive attribute, then this functional
segregation is also an anatomical one.

In summary, functional specialization suggests that challenging a subject with
the appropriate sensorimotor attribute or cognitive process should lead to activity
changes in, and only in, the specialized areas. This is the anatomical and physio-
logical model upon which the search for regionally specific effects is based. We
deal first with models of regionally specific responses and later return to models
of functional integration.

STATISTICAL MODELS OF REGIONAL RESPONSES

Statistical Parametric Mapping

Functional mapping studies are usually analyzed with some form of statistical
parametric mapping. Statistical parametric mapping entails the construction of
spatially extended statistical processes to test hypotheses about regionally specific
effects (Friston et al. 1991). Statistical parametric maps (SPMs) are image pro-
cesses with voxel values that, under the null hypothesis, are distributed according
to a known probability density function, usually the student’s T or F distributions.
These are known colloquially as T- or F-maps. The success of statistical para-
metric mapping is due largely to the simplicity of the idea. Namely, one analyzes
every voxel using any standard (univariate) statistical test, usually one testing for
activation or regression on some explanatory variable. The resulting statistical pa-
rameters are assembled into an image—the SPM. SPMs are interpreted as spatially
extended statistical processes by referring to the probabilistic behavior of random
fields (Adler 1981; Friston 1991; Worsley et al. 1992, 1996). Random fields model
both the univariate probabilistic characteristics of an SPM and any nonstationary
spatial covariance structure under the null hypothesis. “Unlikely” excursions of the
SPM are interpreted as regionally specific effects, attributable to the sensorimotor
or cognitive process that has been manipulated experimentally.

Over the years, statistical parametric mapping (Friston et al. 1995b) has come
to refer to the conjoint use of the general linear model (GLM) and Gaussian
random field (GRF) theory to analyze and make classical inferences about spatially
extended data through statistical parametric maps. The GLM is used to estimate
some parameters that could explain the spatially continuous data in exactly the
same way as in conventional analysis of discrete data. GRF theory is used to
resolve the multiple-comparisons problem that ensues when making inferences
over a volume of the brain. GRF theory provides a method for adjusting p values
for the search volume of an SPM to control false positive rates. It plays the same
role for continuous data (i.e., images or time-series) as the Bonferonni correction
for a family of discontinuous or discrete statistical tests.

Below we consider the Bayesian alternative to classical inference with SPMs.
This rests on conditional inferences about an effect, given the data, as opposed to
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classical inferences about the data, given the effect is zero. Bayesian inferences
about spatially extended effects use posterior probability maps (PPMs). Although
less established than SPMs, PPMs are potentially very useful, not least because
they do not have to contend with the multiple-comparisons problem induced by
classical inference (see Berry & Hochberg 1999). In contradistinction to SPM, this
means that inferences about a given regional response do not depend on inferences
about responses elsewhere. Before looking at the models underlying Bayesian
inference, we first consider estimation and classical inference in the context of the
GLM.

The General Linear Model

Statistical analysis of imaging data corresponds to (a) modeling the data to partition
observed neurophysiological responses into components of interest, confounds,
and error, and (b) making inferences about interesting effects using the variances
of the partitions. A brief review of the literature may give the impression that
there are numerous ways to analyze positron emission tomography (PET) and
fMRI time-series, with a diversity of statistical and conceptual approaches. This
is not the case. With very few exceptions (see Nichols & Holmes 2002 for an
overview), every analysis is a variant of the general linear model. These include
(a) simple T-tests on scans assigned to one condition or another, (b) correlation
coefficients between observed responses and boxcar stimulus functions in fMRI
(Bandettini et al. 1993), (c) inferences made using multiple linear regression,
(d) evoked responses estimated using linear time invariant models, and (e) selective
averaging to estimate event-related responses. Mathematically, all are identical and
can be implemented with the same equations and algorithms. The only thing that
distinguishes among them is the design matrix encoding the experimental design.
The general linear model is an equation,

y=Xp+e, (1)

expressing the observed response y in terms of a linear combination of explanatory
variables in the matrix X plus a well-behaved error term (i.e., an independently
and identically distributed Gaussian random variable). The general linear model
is variously known as “analysis of [co]variance” or “multiple regression” and sub-
sumes simpler variants, like the T-test for a difference in means, to more elaborate
linear convolution models such as finite impulse response (FIR) models. The ma-
trix X that contains the explanatory variables (e.g., designed effects or confounds)
is called the design matrix. Each column of the design matrix corresponds to some
effect one has built into the experiment or that may confound the results. These
are referred to as explanatory variables, covariates, or regressors. The example in
Figure 1 relates to an fMRI study of visual stimulation under four conditions. The
effects on the response variable are modeled in terms of functions of the presence
of these conditions (i.e., box or stick functions smoothed with components of a
hemodynamic response function; in Figure 1, two components were used for each
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of the four conditions, giving eight regressors in total). The relative contribution
of each of these columns to the response is controlled by the parameters 8. These
are estimated using standard least squares, and inferences about the parameter
estimates are made using T or F statistics, depending upon whether one is looking
at a particular linear combination (e.g., a subtraction), or all of them together.

The design matrix can contain covariates or indicator variables that take values
of Oor 1, to indicate the presence of a particular level of an experimental factor. Each
column of X has an associated but unknown parameter. Some of these parameters
will be of interest (e.g., the effect of a sensorimotor or cognitive condition or the
regression coefficient of hemodynamic responses on reaction time). The remaining
parameters will be of no interest and pertain to nuisance or confounding effects
(e.g., the effect of being a particular subject or the regression slope of regional
activity on global activity). Inferences about the parameter estimates are made
using their estimated variance. This allows one to test the null hypothesis that
some particular linear combination (e.g., a subtraction) of the estimates is zero
using an SPM{T}. The T statistic obtains by dividing a contrast or compound
(specified by contrast weights) of the parameter estimates by the standard error
of that compound. Sometimes, several contrasts of parameter estimates are jointly
interesting; for example, when using polynomial (Biichel et al. 1996) or basis
function expansions of some experimental factor. In these instances, the SPM{F}
is used and is specified with a matrix of contrast weights that can be thought of as
a collection of “T contrasts” that one wants to test together.

In most analyses, the design matrix contains indicator variables or parametric
variables encoding the experimental manipulations. These are formally identical
to classical analysis of [co]variance (i.e., AnCova) models. An important instance
of the GLM, from the perspective of fMRI, is the linear time invariant model.
Mathematically this is no different from any other GLM. However, it explicitly

Figurel The general linear model. This model is an equation expressing the response
variable Y in terms of a linear combination of explanatory variables in a design matrix
X and an error term with assumed or known autocorrelation X. In fMRI, the data can
be filtered with a convolution or residual-forming matrix (or a combination) S, leading
to a generalized linear model that includes (intrinsic) serial correlations and applied
(extrinsic) filtering. Different choices of S correspond to different estimation schemes
as indicated on the upper left. The parameter estimates obtain in a least squares sense
using the pseudoinverse (denoted by +) of the filtered design matrix. Generally, an
effect of interest is specified by a vector of contrast weights ¢ that give a weighted
sum or compound of parameter estimates referred to as a contrast. The T statistic is
simply this contrast divided by the estimated standard error (i.e., the square root of its
estimated variance). The ensuing T statistic is distributed with v degrees of freedom.
The equations for estimating the variance of the contrast and the degrees of freedom
are provided in the right-hand panel and accommodate the nonsphericity implied
by X.
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treats the data sequence as an ordered time-series and enables a signal processing
perspective that can be useful.

The equations summarized in Figure 1 can be used to implement a vast range
of statistical analyses. The issue is therefore not so much the mathematics but the
formulation of a design matrix X appropriate to the study design and inferences
that are sought. Before considering general linear models as biophysical or causal
models of brain responses, we focus on the design matrix as a device to specify
experimental design. Here the explanatory variables encode treatment effects that
we assume are expressed in a linear and instantaneous fashion in the data, without
reference to any particular mechanism.

Experimental Design

This section considers the different sorts of designs employed in neuroimaging
studies. Experimental designs can be classified as single factor or multifactorial
designs; within this classification, the levels of each factor can be categorical or
parametric.

CATEGORICAL DESIGNS, COGNITIVE SUBTRACTION, AND CONJUNCTIONS The tenet
of cognitive subtraction is that the difference between two tasks can be formulated
as a separable cognitive or sensorimotor component and that regionally specific
differences in hemodynamic responses, evoked by the two tasks, identify the cor-
responding functionally specialized area. Early applications of subtraction range
from the functional anatomy of word processing (Petersen et al. 1989) to func-
tional specialization in extrastriate cortex (Lueck et al. 1989). The latter studies
involved presenting visual stimuli with and without some sensory attribute (e.g.,
color and motion). The areas highlighted by subtraction were identified with ho-
mologous areas in monkeys that showed selective electrophysiological responses
to equivalent visual stimuli.

Cognitive conjunctions (Price & Friston 1997) can be thought of as an extension
of the subtraction technique, in the sense that they combine a series of subtractions.
In subtraction, one tests a single hypothesis pertaining to the activation in one
task relative to another. In conjunction analyses, several hypotheses are tested
to determine whether all the activations, in a series of task pairs, are expressed
conjointly. Consider the problem of identifying regionally specific activations due
to a particular cognitive component (e.g., object recognition). If one can identify a
series of task pairs whose differences have only that component in common, then
the region that activates, in all the corresponding subtractions, can be associated
with the common component. In short, conjunction analyses allow one to disclose
context-invariant regional responses.

PARAMETRIC DESIGNS The premise behind parametric designs is that regional
physiology will vary systematically with the degree of cognitive or sensorimo-
tor processing or deficits thereof. Examples of this approach include the PET



BRAIN FUNCTION MODELING 65

experiments of Grafton et al. (1992) that demonstrated significant correlations be-
tween hemodynamic responses and the performance of a visually guided motor
tracking task. On the sensory side, Price et al. (1992) demonstrated a remarkable
linear relationship between perfusion in periauditory regions and frequency of au-
ral word presentation. This correlation was not observed in Wernicke’s area, where
perfusion appeared to correlate, not with the discriminative attributes of the stim-
ulus, but with the presence or absence of semantic content. These relationships or
neurometric functions may be linear or nonlinear. Using polynomial regression, in
the context of the GLM, one can identify nonlinear relationships between stimulus
parameters (e.g., stimulus duration or presentation rate) and evoked responses. To
do this one usually uses a SPM{F} (see Biichel et al. 1996).

The example provided in Figure 2 illustrates both categorical and parametric
aspects of design and analysis. These data were obtained from an fMRI study of
visual motion processing using radially moving dots (Chawla et al. 1999). The
stimuli were presented over a range of speeds using isoluminant and isochromatic
stimuli. To identify areas involved in visual motion, a stationary dots condition
was subtracted from a moving dots conditions (see the contrast weights, upper
right). To ensure significant motion-sensitive responses, using color and luminance
stimuli, a conjunction of the equivalent subtractions was assessed under both view-
ing contexts. Areas V5 and V3a are seen in the ensuing SPM{T}. The T values in
this SPM are simply the minimum of the T values for each subtraction. Thresh-
olding this SPM ensures that all voxels survive a threshold in each subtraction
separately. This conjunction SPM has an equivalent interpretation; it represents
the intersection of the excursion sets, defined by the threshold of each component
SPM. This intersection is the essence of a conjunction.

The responses in left V5 are shown in the lower panel of Figure 2 and speak to
a compelling inverted “U” relationship between speed and evoked response that
peaks at around 8° per second. It is this sort of relationship that parametric designs
try to characterize. Interestingly, the form of these speed-dependent responses
was similar using both stimulus types, although luminance cues elicit a greater
response. From the point of view of a factorial design, there is a main effect of
stimulus (isoluminant versus isochromatic), a main (nonlinear) effect of speed, but
no speed by stimulus interaction.

MULTIFACTORIAL DESIGNS  Factorial designs are more prevalent than single-factor
designs because they enable inferences about interactions. At its simplest, an in-
teraction represents a change in a change. Interactions are associated with factorial
designs where two or more factors are combined in the same experiment. The in-
teraction term assesses the effect of one factor on the effect of the other. Factorial
designs have a wide range of applications. An early application, in neuroimaging,
examined physiological adaptation and plasticity during motor performance by
assessing time by condition interactions (Friston et al. 1992). Factorial designs
have an important role in the context of cognitive subtraction and additive factors
logic by virtue of being able to test for interactions, or context-sensitive activations
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Figure 2 (Top right): An image representation of the design matrix. The vectors
of contrast weights define the linear compounds of parameters tested. The contrast
weights are displayed over the column of the design matrix that corresponds to the
effects in question. The design matrix here includes condition-specific effects (boxcars
convolved with a hemodynamic response function). Odd columns correspond to stimuli
shown under isochromatic conditions and even columns model responses to isolumi-
nant stimuli. The first two columns are for stationary stimuli and the remaining columns
are for stimuli of increasing speed. The final column is a constant term. (Top left) A
maximum intensity projection of the SPM{T} conforming to the standard anatomical
space of Talairach & Tournoux (1988). The T values here are the minimum T val-
ues from both contrasts, thresholded at p = 0.001 uncorrected. The most significant
conjunction is seen in left V5. (Lower panel) Plot of the condition-specific parameter
estimates for this voxel. The T value was 9.25 (p < 0.001, corrected according to GRF
theory). This example is based on data from Chawla et al. 1999.
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(i.e., to demonstrate the fallacy of “pure insertion”; see Friston et al. 1996c). These
interaction effects can sometimes be interpreted as (a) the integration of the two
or more (cognitive) processes or (b) the modulation of one (perceptual) process
by another.

In summary, the design matrix encodes the causes of observed data and, in
particular, treatment effects caused by changes in the level of various experimental
factors. These factors can have categorical or parametric levels and most experi-
ments nowadays use multiple factors to test for both main effects and interactions.
Before turning to mechanistically more informed formulations of the general lin-
ear model we consider briefly the two sorts of inferences that can be made about
the parameter estimates.

Classical and Bayesian Inference

To date, inference in neuroimaging has been restricted largely to classical infer-
ences based upon statistical parametric maps. The statistics that comprise these
SPMs are essentially functions of the data. The probability distribution of the
chosen statistic, under the null hypothesis (i.e., the null distribution), is used to
compute a p value. This p value is the probability of obtaining the statistic, or
the data, given that the null hypothesis is true. If sufficiently small, the null hy-
pothesis can be rejected and an inference is made. The alternative approach is
to use Bayesian or conditional inference based upon the posterior distribution of
the activation given the data (Holmes & Ford 1993). This necessitates the spec-
ification of priors (i.e., the probability distribution of the activation). Bayesian
inference requires the posterior distribution and therefore rests upon a posterior
density analysis. A useful way to summarize this posterior density is to compute
the probability that the activation exceeds some threshold. This computation rep-
resents a Bayesian inference about the effect, in relation to the specified threshold.
By computing a posterior probability for each voxel, we can construct posterior
probability maps or PPMs that are a useful complement to classical SPMs (Friston
et al. 2002, Friston & Penny 2003).

The motivation for using conditional or Bayesian inference is that it has high face
validity. This is because the inference is about an effect, or activation, being greater
than some specified size that has some meaning in relation to underlying neuro-
physiology. This contrasts with classical inference, in which the inference is about
the effect being significantly different from zero. The problem for classical infer-
ence is that trivial departures from the null hypothesis can be declared significant,
with sufficient data or sensitivity. From the point of view of neuroimaging, pos-
terior inference is especially useful because it eschews the multiple-comparisons
problem. In classical inference, one tries to ensure that the probability of reject-
ing the null hypothesis incorrectly is maintained at a small rate, despite making
inferences over large volumes of the brain. This induces a multiple-comparisons
problem that, for continuous spatially extended data, requires an adjustment or
correction to the p value using GRF theory as mentioned above. This correction
means that classical inference becomes less sensitive or powerful with large search
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volumes. In contradistinction, posterior inference does not have to contend with
the multiple-comparisons problem because there are no false-positives. The prob-
ability that activation has occurred, given the data, at any particular voxel is the
same, irrespective of whether one has analyzed that voxel or the entire brain. For
this reason, posterior inference using PPMs represents a relatively more powerful
approach than classical inference in neuroimaging.

HIERARCHICAL MODELS AND EMPIRICAL BAYES PPMs require the posterior dis-
tribution or conditional distribution of the activation (a contrast of conditional pa-
rameter estimates) given the data. This posterior density can be computed, under
Gaussian assumptions, using Bayes’ rule. Bayes’ rule requires the specification of
a likelihood function and the prior density of the model’s parameters. The models
used to form PPMs and the likelihood functions are the same as in classical SPM
analyses, namely the GLM. The only extra bit of information that is required is the
prior probability distribution of the parameters. Although it would be possible to
specify them using independent data or some plausible physiological constraints,
there is an alternative to this fully Bayesian approach. The alternative is empirical
Bayes, in which the variances of the prior distributions are estimated directly from
the data. Empirical Bayes requires a hierarchical observation model where the
parameters and hyperparameters at any particular level can be treated as priors on
the level below. There are numerous examples of hierarchical observation models
in neuroimaging. For example, the distinction between fixed- and random/mixed-
effects analyses of multisubject studies relies upon a two-level hierarchical model
(Friston et al. 2002). However, in neuroimaging there is a natural hierarchical
observation model that is common to all brain mapping experiments. This is the
hierarchy induced by looking for the same effects at every voxel within the brain
(or gray matter). The first level of the hierarchy corresponds to the experimental
effects at any particular voxel and the second level of the hierarchy comprises the
effects over voxels. Put simply, the variation in a particular contrast, over voxels,
can be used as the prior variance of that contrast at any particular voxel. Generally,
hierarchical linear models have the following form:

— xWgM 4 ¢
B = x@B2 4 @
g = ... )

This is the same as Equation 1, but now the parameters of the first level are generated
by a supraordinate linear model and so on to any hierarchical depth required.
These hierarchical observation models are an important extension of the GLM and
are usually estimated using Expectation Maximization (Dempster et al. 1977). In
the present context, the response variables comprise the responses at all voxels and
B are the treatment effects about which we want to make an inference. Because
we have invoked a second level, the first-level parameters embody random effects
and are generated by a second-level linear model. At the second level, B is the
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average effect over voxels and £? is voxel-to-voxel variation. By estimating the
variance of ¢, one is implicitly estimating an empirical prior on the first-level
parameters at each voxel. This prior can then be used to estimate the posterior
probability of BV being greater than some threshold at each voxel. An example
of the ensuing PPM is provided in Figure 3 along with the classical SPM.

In this section we have seen how the GLM can be used to test hypotheses about
brain responses and how, in a hierarchical form, it enables empirical Bayesian or
conditional inference. In the next section, we deal with dynamic systems and how
they can be formulated as GLMs. These dynamic models take us closer to how
experimental manipulations actually cause brain responses, and represent the next
step in working toward causal models of brain responses.

Dynamic Models

CONVOLUTION MODELS AND TEMPORAL BASIS FUNCTIONS InFristonetal.(1994),
the form of the hemodynamic impulse response function (HRF) was estimated
using a least squares deconvolution and a time-invariant model, where evoked
neuronal responses are convolved or smoothed with an HRF to give the measured
hemodynamic response (see also Boynton et al. 1996). This simple linear convo-
lution model is the cornerstone for making statistical inferences about activations
in fMRI with the GLM. An impulse response function is the response to a single
impulse, measured at a series of times after the input. It characterizes the input-
output behavior of the system (i.e., voxel) and places important constraints on the
sorts of inputs that will excite a response.

Knowing the forms that the HRF can take is important for several reasons, not
least because it allows for better statistical models of the data. The HRF may vary
from voxel to voxel and this has to be accommodated in the GLM. To allow for
different HRFs in different brain regions, the notion of temporal basis functions, to
model evoked responses in fMRI, was introduced (Friston et al. 1995a) and applied
to event-related responses in Josephs et al. (1997) (see also Lange & Zeger 1997).
The basic idea behind temporal basis functions is that the hemodynamic response,
induced by any given trial type, can be expressed as the linear combination of
several (basis) functions of peristimulus time. The convolution model for fMRI re-
sponses takes a stimulus function encoding the neuronal responses and convolves
it with an HRF to give a regressor that enters the design matrix. When using basis
functions, the stimulus function is convolved with all the basis functions to give
a series of regressors (in Figure 1 we used four stimulus functions and two basis
functions to give eight regressors). Mathematically we can express this model as

yn)=Xp+e y(0) =u) Q@ h(r) + ¢

X; = Ti(t) ® u(t) W) = BT + b +...0 O

where ® means convolution. This equivalence illustrates how temporal basis func-
tions allow one to take any convolution model (right) and convert it into a GLM
(left). The parameter estimates j; are the coefficients or weights that determine the
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mixture of basis functions 7(¢) that best models A(7), the HRF for the trial type and
voxel in question. We find the most useful basis set to be a canonical HRF and its
derivatives with respect to the key parameters that determine its form (see below).
Temporal basis functions are important because they enable a graceful transition
between conventional multilinear regression models with one stimulus function per
condition and FIR models with a parameter for each time point following the onset
of a condition or trial type. Figure 4 illustrates this graphically. In short, temporal
basis functions offer useful constraints on the form of the estimated response that
retain the flexibility of FIR models and the efficiency of single regressor models.

Biophysical Models

INPUT-STATE-OUTPUT SYSTEMS By adopting a convolution model for brain re-
sponses in fMRI, we are implicitly positing some underlying dynamic system that
converts neuronal responses into observed hemodynamic responses. Our under-
standing of the biophysical and physiological mechanisms that underpin the HRF
has grown considerably in the past few years (e.g., Buxton & Frank 1997, Hoge
et al. 1999, Mandeville et al. 1999). Figure 5 shows some simulations based on
the hemodynamic model described in Friston et al. (2000). Here, neuronal activ-
ity induces some autoregulated vasoactive signal that causes transient increases
in regional cerebral blood flow (rCBF). The resulting flow increases lead to the
dilation of a venous balloon, increasing its volume (v) and diluting venous blood to
decrease deoxyhemoglobin content (g). The blood oxygenation level-dependent
(BOLD) signal is roughly proportional to the concentration of deoxyhemoglobin
(g/v) and follows the rCBF response with about a one-second delay. The model
is framed in terms of differential equations, examples of which are provided in
Figure 5.

Notice that we have introduced variables, like volume and deoxyhemoglobin
concentrations, that are not actually observed. These are referred to as the hidden
states of input-state-output models. The state and output equations of any analytic
dynamical system are

Figure 3 Statistical parametric map (SPM) and posterior probability map (PPM) for
a functional magnetic resonance imaging study of attention to visual motion (Biichel
& Friston 1997). The display format in the lower panel uses an axial slice through
extrastriate regions but the thresholds are the same as employed in maximum-intensity
projections (upper panels). (Upper right) The activation threshold for the PPM was
0.7 a.u., meaning that all voxels shown had a 90% chance of an activation of 0.7% or
more. (Upper left) The corresponding SPM using a corrected threshold at p = 0.05.
Note the bilateral foci of motion-related responses in the PPM that are not seen in the
SPM (gray arrows). As can be imputed from the design matrix (upper middle panel),
the statistical model of evoked responses comprised boxcar regressors convolved with
a canonical hemodynamic response function. The middle column corresponds to the
presentation of moving dots and was the stimulus property tested by the contrast.
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x(t) = f(x,u,0)
y(t) =glx,u,0)+e. 4@

The first line is an ordinary differential equation and expresses the rate of change of
the states as a parameterized function of the states and input. Typically, the inputs
u(t) correspond to designed experimental effects (e.g., the stimulus function in
fMRI). There is a fundamental and causal relationship (Fliess et al. 1983) between
the outputs and the history of the inputs in Equation 4. This relationship conforms
to a Volterra series, which expresses the output y(f) as a generalized convolution
of the input u(f), critically without reference to the hidden states x(7). This series
is simply a functional Taylor expansion of the outputs with respect to the inputs
(Bendat 1990). The reason it is a functional expansion is that the inputs are a
function of time!,

y(t):Z/.../Ki(ol,...,oi)u(t—01),...,u(t—ai)dol,...,doi
0 0

_ 3'y(t)
T u(t—oy), ..., 0ult —o;)

ki(op,...,0) )
wherex (o1, ...,0;)isthe ith-order kernel. In Equation 5, the integrals are restricted
to the past. This renders Equation 5 causal. The key thing here is that Equation
5 is simply a convolution and can be expressed as a GLM as in Equation 3. This
means that we can take a neurophysiologically realistic model of hemodynamic
responses and use it as an observation model to estimate parameters using observed
data. Here the model is parameterized in terms of kernels that have a direct analytic

"For simplicity, here and in Equation 7, we deal with only one experimental input.

Figure 4 Temporal basis functions offer useful constraints on the form of the esti-
mated response that retain (a) the flexibility of finite impulse response (FIR) models
and (b) the efficiency of single regressor models. The specification of these constrained
FIR models involves setting up stimulus functions u(#) that model expected neuronal
changes [e.g., boxcars of epoch-related responses or spikes (delta functions) at the
onset of specific events or trials]. These stimulus functions are then convolved with
a set of basis functions Tj(f) of peristimulus time that, in some linear combination,
model the hemodynamic impulse response function (HRF). The ensuing regressors
are assembled into the design matrix. The basis functions can be as simple as a single
canonical HRF (middle), through to a series of delayed delta functions (bottom). The
latter case corresponds to an FIR model and the coefficients constitute estimates of
the impulse response function at a finite number of discrete sampling times. Selective
averaging in event-related functional magnetic resonance imaging (Dale & Buckner
1997) is mathematically equivalent to this limiting case.
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BRAIN FUNCTION MODELING 75

relation to the original parameters 6 of the biophysical system (through Equation
5). The first-order kernel is simply the conventional HRF. High-order kernels
correspond to high-order HRFs and can be estimated using basis functions as
described above. In fact, by choosing basis functions according to

Ik (o)

T(o); =
(o) 30,

) (6)

one can estimate the biophysical parameters because, to a first-order approxima-
tion, B; =6,. The critical step we have taken here is to start with a causal dynamic
model of how responses are generated and construct a general linear observation
model that allows us to estimate and infer things about the parameters of that
model. This is in contrast to the conventional use of the GLM with design matrices
that are not informed by a forward model of how data are caused. This approach
to modeling brain responses has a much more direct connection with underlying
physiology and rests upon an understanding of the underlying system.

NONLINEAR SYSTEM IDENTIFICATION Once a suitable causal model has been es-
tablished (e.g., Figure 5), we can estimate second-order kernels. These kernels
represent a nonlinear characterization of the HRF that can model interactions
among stimuli in causing responses. One important manifestation of the nonlinear
effects, captured by the second-order kernels, is a modulation of stimulus-specific
responses by preceding stimuli that are proximate in time. This means that re-
sponses at high stimulus presentation rates saturate and, in some instances, show
an inverted U behavior. This behavior appears to be specific to BOLD effects (as
distinct from evoked changes in cerebral blood flow) and may represent a hemo-
dynamic refractoriness. This effect has important implications for event-related
fMRI, where one may want to present trials in quick succession.

The results of a typical nonlinear analysis are given in Figure 6. The results in
the right panel represent the average response, integrated over a 32-second train
of stimuli as a function of stimulus onset asynchrony (SOA). These responses
are based on the kernel estimates (left panels) using data from a voxel in the left
posterior temporal region of a subject obtained during the presentation of single
words at different rates. The solid line represents the estimated response and shows

Figure 5 (Right) Hemodynamics elicited by an impulse of neuronal activity as pre-
dicted by a dynamical biophysical model (leff). A burst of neuronal activity causes
an increase in flow-inducing signal that decays with first-order kinetics and is down-
regulated by local flow. This signal increases regional cerebral blood flow (rCBF),
which dilates the venous capillaries, increasing volume (v). Concurrently, venous
blood is expelled from the venous pool, decreasing deoxyhemoglobin content (g).
The resulting fall in deoxyhemoglobin concentration leads to a transient increase in
the blood oxygenation level-dependent (BOLD) signal and a subsequent undershoot.
(Left) Hemodynamic model on which these simulations were based (see Friston et al.
2000 for details).
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a clear maximum at just less than one second. The dots are responses based on
empirical data from the same experiment. The broken line shows the expected
response in the absence of nonlinear effects (i.e., that predicted by setting the
second-order kernel to zero). It is clear that nonlinearities become important at
around two seconds, leading to an actual diminution of the integrated response at
subsecond SOAs. The implication of this sort of result is that the assumptions of
the linear convolution models discussed above are violated with subsecond SOAs
(see also Buckner et al. 1996, Burock et al. 1998).

In summary, we started with models of regionally specific responses, framed
in terms of the general linear model, in which responses were modeled as linear
mixtures of designed changes in explanatory variables. Hierarchical extensions
to linear observation models enable random-effects analyses and, in particular,
an empirical Bayesian approach. The mechanistic utility of these models is real-
ized through forward models that embody causal dynamics. Simple variants of
these are the linear convolution models used to construct explanatory variables in
conventional analyses of fMRI data. These are a special case of generalized con-
volution models that are mathematically equivalent to input-state-output systems
comprising hidden states. Estimation and inference with these dynamic models
tells us something about how the response was caused, but only at the level of
single voxels. In the next section, we adopt the same perspective on models, but
in the context of distributed responses and functional integration.

MODELS OF FUNCTIONAL INTEGRATION

Functional and Effective Connectivity

Imaging neuroscience has firmly established functional specialization as a princi-
ple of brain organization in man. The integration of specialized areas has proven

Figure 6 (Left panels) Volterra kernels from a voxel in the left superior temporal
gyrus at —56, —28, and 12 mm. These kernel estimates were based on a single-subject
study of aural word presentation at different rates (from 0 to 90 words per minute) using
a second-order approximation to a Volterra series expansion modeling the observed
hemodynamic response to stimulus input (a delta function for each word). These kernels
can be thought of as a characterization of the second-order hemodynamic response
function. The first-order kernel « | (upper panel) represents the (first-order) component
usually presented in linear analyses. The second-order kernel (lower panel) is presented
in image format. The color scale is arbitrary; white is positive and black is negative.
The insert on the right represents /q/(lT , the second-order kernel predicted by a simple
model that involves a linear convolution with «; followed by some static nonlinearity.
(Right panel) Integrated responses over a 32-second stimulus train as a function of
stimulus onset asynchrony. Solid line: estimates based on the nonlinear convolution
model parameterized by the kernels on the left. Broken line: the responses expected
in the absence of second-order effects (i.e., in a truly linear system). Dots: empirical
averages based on the presentation of actual stimulus trains.
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more difficult to assess. Functional integration is usually inferred on the basis of
correlations among measurements of neuronal activity. Functional connectivity
has been defined as statistical dependencies or correlations among remote neu-
rophysiological events. However, correlations can arise in a variety of ways; for
example, in multiunit electrode recordings they can result from stimulus-locked
transients evoked by a common input or reflect stimulus-induced oscillations me-
diated by synaptic connections (Gerstein & Perkel 1969). Integration within a
distributed system is usually better understood in terms of effective connectivity:
Effective connectivity refers explicitly to the influence that one neural system ex-
erts over another, either at a synaptic (i.e., synaptic efficacy) or population level. It
has been proposed that “the [electrophysiological] notion of effective connectivity
should be understood as the experiment- and time-dependent, simplest possible
circuit diagram that would replicate the observed timing relationships between the
recorded neurons” (Aertsen & PreiBl 1991). This speaks to two important points:
(a) Effective connectivity is dynamic, i.e., activity- and time-dependent and (b) it
depends upon a model of the interactions. The estimation procedures employed in
functional neuroimaging can be divided into those based on (a) linear regression
models (e.g., McIntosh & Gonzalez-Lima 1994) or (b) nonlinear dynamic causal
models.

There is a necessary link between functional integration and multivariate anal-
yses because the latter are necessary to model interactions among brain regions.
Multivariate approaches can be divided into those that are inferential in nature and
those that are data-led or exploratory. We first consider multivariate approaches
that generally are based on functional connectivity or covariance patterns (and
generally are exploratory) and then turn to models of effective connectivity (that
allow for some form of inference).

EIGENIMAGE ANALYSIS AND RELATED APPROACHES In Friston et al. (1993), we
introduced voxel-based principal component analysis (PCA) of neuroimaging
time-series to characterize distributed brain systems implicated in sensorimotor,
perceptual, or cognitive processes. These distributed systems are identified with
principal components or eigenimages that correspond to spatial modes of co-
herent brain activity. This approach represents one of the simplest multivariate
characterizations of functional neuroimaging time-series and falls into the class
of exploratory analyses. Principal component or eigenimage analysis generally
uses singular value decomposition to identify a set of orthogonal spatial modes
that capture the greatest amount of variance expressed over time. As such, the
ensuing modes embody the most prominent aspects of the variance-covariance
structure of a given time-series. Noting that covariance among brain regions is
equivalent to functional connectivity renders eigenimage analysis particularly in-
teresting because it was among the first ways of addressing functional integration
(i.e., connectivity) with neuroimaging data. Subsequently, eigenimage analysis has
been elaborated in a number of ways. Notable among these is canonical variate
analysis and multidimensional scaling (Friston et al. 1996a,b). Canonical variate
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analysis was introduced in the context of ManCova (multiple analysis of covari-
ance) and uses the generalized eigenvector solution to maximize the variance that
can be explained by some explanatory variables relative to error. Canonical vari-
ate analysis can be thought of as an extension of eigenimage analysis that refers
explicitly to some explanatory variables and allows for statistical inference.

In fMRI, eigenimage analysis (e.g., Sychra et al. 1994) generally is used as an
exploratory device to characterize coherent brain activity. These variance compo-
nents may or may not be related to experimental design and endogenous coherent
dynamics that have been observed in the motor system (Biswal et al. 1995). De-
spite its exploratory power, eigenimage analysis is fundamentally limited for two
reasons. First, it offers only a linear decomposition of any set of neurophysiologi-
cal measurements, and second, the particular set of eigenimages or spatial modes
obtained is uniquely determined by constraints that are biologically implausible.
These aspects of PCA confer inherent limitations on the interpretability and use-
fulness of eigenimage analysis of biological time-series and have motivated the
exploration of nonlinear PCA and neural network approaches (e.g., Mgrch et al.
1995).

Two other important approaches deserve mention here. The first is independent
component analysis (ICA). ICA uses entropy maximization to find, using iterative
schemes, spatial modes or their dynamics that are approximately independent. This
is a stronger requirement than orthogonality in PCA and involves removing high-
order correlations among the modes (or dynamics). It was initially introduced as
spatial ICA (McKeown et al. 1998) in which the independence constraint was ap-
plied to the modes (with no constraints on their temporal expression). Approaches
that are more recent use, by analogy with magneto- and electrophysiological time-
series analysis, temporal ICA where the dynamics are enforced to be independent
(e.g., Calhoun et al. 2001). This requires an initial dimension reduction (usually
using conventional eigenimage analysis). Finally, there has been an interest in
cluster analysis (Baumgartner et al. 1997). Conceptually, this can be related to
eigenimage analysis through multidimensional scaling and principal coordinate
analysis.

All these approaches are interesting, but hardly anyone uses them. This is largely
because the approaches tell you nothing about how the brain works and don’t
allow one to ask specific questions. Simply demonstrating statistical dependencies
among regional brain responses (i.e., demonstrating functional connectivity) does
not address how these responses were caused. To address this, one needs explicit
models of integration, or more precisely, effective connectivity.

Dynamic Causal Modeling

This final section examines the modeling of interactions among neuronal popula-
tions, at a cortical level, using neuroimaging time-series. The aim of these models
is to estimate, and make inferences about, the coupling among brain areas and
how that coupling is influenced by changes in experimental context (e.g., time or
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cognitive set). The basic idea is to construct a reasonably realistic neuronal model
of interacting cortical regions or nodes. This model is then supplemented with
a forward model of how neuronal or synaptic activity translates into a measured
response (see previous section). This enables the parameters of the neuronal model
(i.e., effective connectivity) to be estimated from observed data.

Intuitively, this approach regards an experiment as a designed perturbation
of neuronal dynamics that are promulgated and distributed throughout a system
of coupled anatomical nodes to change region-specific neuronal activity. These
changes engender, through a measurement-specific forward model, responses that
are used to identify the architecture and time constants of the system at a neuronal
level. This represents a departure from conventional approaches (e.g., structural
equation modeling and autoregression models; Biichel & Friston 1997, Harrison
et al. 2003, McIntosh & Gonzalez-Lima 1994), in which one assumes the ob-
served responses are driven by endogenous or intrinsic noise (i.e., innovations).
In contradistinction, dynamic causal models assume the responses are driven by
designed changes in inputs. An important conceptual aspect of dynamic causal
models pertains to how the experimental inputs enter the model and cause neuronal
responses. Experimental variables can illicit responses in one of two ways. First,
they can elicit responses through direct influences on specific anatomical nodes.
This would be appropriate, for example, in modeling sensory evoked responses in
early visual cortices. The second class of input exerts its effect vicariously, through
a modulation of the coupling among nodes. These sorts of experimental variables
would normally be more enduring; for example, attention to a particular attribute
or the maintenance of some cognitive set. These distinctions are seen most clearly
in relation to particular forms of causal models used for estimation; for example,
the bilinear approximation

xX(1) = f(x,u)
= Ax +uBx + Cu

y=gx)+e
0 92 0

A:—f B = f C=—f. 7
0x dxdu ou

This is an approximation to any model of how changes in neuronal activity in
one region, x(f);, are caused by activity in the other regions. Here the output function
g(x) embodies a hemodynamic model, linking neuronal activity to BOLD, for each
region (e.g., that in Figure 5). The matrix A represents the connectivity among
the regions in the absence of input u(¢). Effective connectivity is the influence
that one neuronal system exerts over another in terms of inducing a response
dx/dx. This latent connectivity can be thought of as the intrinsic coupling in the
absence of experimental perturbations. The matrix B is effectively the change in
intrinsic coupling induced by the input. It encodes the input-sensitive changes
in A or, equivalently, the modulation of effective connectivity by experimental
manipulations. Because B is a second-order derivative, it is referred to as bilinear.
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Finally, the matrix C embodies the extrinsic influences of inputs on neuronal
activity. The parameters 6 = {A, B, C} are the connectivity or coupling matrices
that we wish to identify and that define the functional architecture and interactions
among brain regions at a neuronal level.

Because Equation 7 has exactly the same form as Equation 4, we can express
it as a GLM and estimate the parameters. Generally, estimation in the context of
highly parameterized models like DCMs requires constraints in the form of priors.
These priors enable conditional inference about the connectivity estimates. The
sorts of questions that can be addressed with DCMs are now illustrated by looking
at how attentional modulation might be mediated in sensory processing hierarchies
in the brain.

DCM AND ATTENTIONAL MODULATION It has been established that the superior
posterior parietal cortex (SPC) exerts a modulatory role on V5 responses using
Volterra-based regression models (Friston & Biichel 2000), and that the inferior
frontal gyrus (IFG) exerts a similar influence on SPC using structural equation
modeling (Biichel & Friston 1997). The example here shows that DCM leads to
the same conclusions but starting from a completely different construct (see Friston
et al. 2003 for details). The experimental paradigm and data acquisition parame-
ters are described in the Figure 7 legend. Figure 7 also shows the location of the
regions that entered into the DCM. These regions were based on maxima from
conventional SPMs testing for the effects of photic stimulation, motion, and atten-
tion. Regional time courses were taken as the first eigenvariate of 8§ mm spherical
volumes of interest centered on the maxima shown in the figure. The inputs, in
this example, comprise one sensory perturbation and two contextual inputs. The
sensory input was simply the presence of photic stimulation, and the first contex-
tual input was presence of motion in the visual field. The second contextual input,
encoding attentional set, was unity during attention to speed changes and zero
otherwise. The model parameters were fitted such that the regional outputs from
the model corresponded as closely as possible to the four regional eigenvariates
(Figure 7, left panel). The intrinsic connections were constrained to conform to a
hierarchical pattern in which each area was reciprocally connected to its supraor-
dinate area. Photic stimulation entered at, and only at, V1. The effect of motion
in the visual field was modeled as a bilinear modulation of the V1 to V5 connec-
tivity and attention was allowed to modulate the backward connections from IFG
and SPC.

The results of the DCM are shown in Figure 7 (right panel). Of primary interest
is the modulatory effect of attention that is expressed in terms of the bilinear
coupling parameters for this input. Analysis of the posterior densities of the bilinear
parameters shows that we can be highly confident that attention modulates the
backward connections from IFG to SPC and from SPC to V5. Indeed, the influences
of IFG on SPC are negligible in the absence of attention (dotted connection). It
is important to note that the only way attentional manipulation could effect brain
responses was through this bilinear effect. Attention-related responses are seen
throughout the system (attention epochs are marked with arrows in the plot of IFG
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responses in Figure 7). This attentional modulation is accounted for, sufficiently,
by changing just two connections. This change is, presumably, instantiated by an
instructional set at the beginning of each epoch.

The second idea this analysis illustrates is how DCM models functional segrega-
tion. Here one can regard V1 as “segregating” motion from other visual information
and distributing it to the motion-sensitive area V5. This segregation is modeled
as a bilinear “enabling” of V1 to V5 connections when, and only when, motion
is present. Note that in the absence of motion the intrinsic V1 to V5 connection
was trivially small (in fact the estimate was —0.04). The key advantage of entering
motion through a bilinear effect, as opposed to a direct effect on V5, is that we can
finesse the inference that V5 shows motion-selective responses with the assertion
that these responses are mediated by afferents from V1. The two bilinear effects
above represent two important aspects of functional integration that DCM is able
characterize.

Figure7 Results of a dynamic causal modeling (DCM) analysis of attention to visual
motion with functional magnetic resonance imaging. (Right panel) Functional archi-
tecture based upon the conditional estimates shown alongside their connections, with
the percent confidence that they exceeded threshold in brackets. The most interesting
aspects of this architecture involve the role of motion and attention in exerting bilin-
ear effects. Critically, the influence of motion is to enable connections from V1 to the
motion-sensitive area V5. The influence of attention is to enable backward connections
from the inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore,
attention increases the influence of SPC on the V5. Dotted arrows connecting regions
represent significant bilinear affects in the absence of a significant intrinsic coupling.
(Left panel) Fitted responses based upon the conditional estimates and the adjusted
data are shown for each region in the DCM. The insert (upper left) shows the location
of the regions.

The fMRI data were from a study in which subjects viewed identical stimuli (visual
motion subtended by radially moving dots) under different attentional manipulations
of the task (detection of velocity changes) (Biichel & Friston 1997). The data were
acquired from a normal subject at 2 Tesla, using a whole-body MRI system, equipped
with a head volume coil. Contiguous multislice T2*-weighted fMRI images were ob-
tained with a gradient echo-planar sequence (TE = 40 ms, TR = 3.22 s, matrix
size = 64 x 64 x 32, voxel size 3 x 3 x 3 mm). Each subject had four consecutive
100-scan sessions comprising a series of 10-scan blocks under five different condi-
tions DFAFNF A FN S. The first condition (D) was a dummy condition to allow
for magnetic saturation effects. F (fixation) corresponds to a low-level baseline where
the subjects viewed a fixation point at the center of a screen. In condition A (attention),
subjects viewed 250 dots moving radially from the center at 4.7° per second and were
asked to detect changes in radial velocity. In condition N (no attention), the subjects
were asked simply to view the moving dots. In condition S (stationary), subjects viewed
stationary dots. The order of A and N was swapped for the last two sessions. In all
conditions, subjects fixated the center of the screen. There were no speed changes
during scanning. No overt response was required in any condition.
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STRUCTURAL EQUATION MODELING The central ideal behind dynamic causal
modeling is to treat the brain as a deterministic nonlinear dynamic system that
is subject to inputs and produces outputs. Effective connectivity is parameter-
ized in terms of coupling among unobserved brain states (e.g., neuronal activity
in different regions). The objective is to estimate these parameters by perturbing
the system and measuring the response. This is in contradistinction to established
methods for estimating effective connectivity from neurophysiological time-series,
which include structural equation modeling (Biichel & Friston 1997, McIntosh &
Gonzalez-Lima 1994) and models based on multivariate auto-regressive processes
(Goebel et al. 2003, Harrison et al. 2003). In these models, there is no designed
perturbation and the inputs are treated as unknown and stochastic. Furthermore,
the inputs are assumed to express themselves instantaneously such that, at the point
of observation, the change in states will be zero. From Equation 7, in the absence
of bilinear effects, we have

i=0
=Ax+Cu
x=—-A""Cu. 8)

This is the regression equation used in SEM where A=A’ — [ and A’ contains
the off-diagonal connections among regions. The key point here is that A is esti-
mated by assuming u is some random innovation with known covariance. This is
not tenable for designed experiments when u represents carefully structured ex-
perimental inputs. Although SEM and related autoregressive techniques are useful
for establishing dependence among regional responses, these techniques are not a
surrogate for informed causal models based on the underlying dynamics of these
responses.

CONCLUSION

In this article, we reviewed the main models that underpin image analysis and
touched briefly on ways of assessing specialization and integration in the brain.
The key principles of functional brain architectures were used to motivate the
various models considered. These can be regarded as a succession of modeling
endeavors, drawing more and more on our understanding of how brain-imaging
signals are generated, both in terms of biophysics and the underlying neuronal
interactions. We have seen how hierarchical linear observation models encode the
treatments effects elicited by experimental design. General linear models based on
convolution models imply an underlying dynamic input-state-output system. The
form of these systems can be used to constrain convolution models and explore
some of their simpler nonlinear properties. By creating observation models based
on an explicit forward model of neuronal interactions, one can now start to model
and assess interactions among distributed cortical areas and make inferences about
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coupling at the neuronal level. The next few years will probably see an increasing
realism in the dynamic causal models introduced above (see Horwitz et al. 2001).
Attempts already have been made to use plausible models of neuronal ensemble
to estimate network parameters of evoked responses in EEG (David & Friston
2003). These endeavors are likely to encompass fMRI signals in the near future,
enabling the conjoint modeling, or fusion, of different modalities and the marriage
of computational neuroscience with the modeling of brain responses.
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