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Abstract

We study dynamical synchronization in a model of a neural system constituted by local
networks of densely interconnected excitatory and inhibitory neurons. Neural dynamics are
determined by voltage- and ligand-gated ion channels. Coupling between the local networks is
introduced via sparse excitatory connectivity. With modulation of this long-range synaptic cou-
pling the system undergoes a transition from independent oscillations to chaotic synchronization.
Between these states exists a ’weakly’ stable state with epochs of synchronization and com-
plex intermittent desynchronization. This may facilitate adaptive brain function by engendering
a diverse repertoire of dynamics and contribute to the genesis of complexity in the EEG.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mechanisms and function of cooperative behavior in large-scale neuronal systems
is a very active area of research. Synchronous oscillations between neurons have been
proposed as a mechanism for perceptual ‘binding’ through the coupling of distinct
neuronal populations to form dynamic cell assemblies, each encoding various aspects
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of a perceived object [11]. Evidence of coherent oscillations has been demonstrated in
neurophysiological data [4] and computational models of the cortex [7]. However, in
much of this research, only linear measures of synergistic activity are employed. The
nonlinear properties of excitable membranes motivates the study of nonlinear aspects of
synchronicity in neural systems. In this paper, we study nonlinear interdependence in a
model neural system consisting of an array of coupled small-scale neural subsystems.
The types and stability of nonlinear synchronization are investigated and the possible
role of these behaviors in adaptive brain function is brieEy discussed.

2. Evolution equations

The approach adopted in this study is to consider the behavior of local ensembles
of neurons, with dynamical variables taken as ensemble averages. The scale of each
ensemble is taken as the extension of pyramidal cell dendritic arbors, approximately
300 �m (the size of cortical columns). The dynamical variables studied are the mean
membrane potential of pyramidal cells, V , and inhibitory interneurons, Z , and the
average number of ‘open’ potassium ion channels, W . The evolution equations are
adapted from a study of epileptic seizures in hippocampal slices [6] consisting of
coupled diGerential equations, which in turn are derived from the model of Morris and
Lecar [8]. The mean cell membrane potential of the pyramidal cells is governed by the
conductance of sodium, potassium and calcium ion through voltage- and ligand-gated
membrane channels,

dV
dt

=−(gCa + rNMDAaeeQV )mCa(V − VCa) − (gnamna + aeeQV )(V − Vna)

−gKW (V − VK) − gL(V − VL) + aieZQZ + aneI
; (1)

dZ
dt

= b(aniI
 + aeiVQV ); (2)

where gion is the maximum conductance of each population of ion species if all chan-
nels are open, mion is the fraction of channels open, Vion is the Nernst potential for
that ion species and QV (Z) is the Kring rate of the excitatory (inhibitory) neurons.
The fraction of open channels is determined by the sigmoid-shaped ‘neural activation
function’,

mion = 0:5
(

1 + tanh
(
V − VT

ion

))
; (3)

where 
ion incorporates the variance of this distribution. The fraction of open potassium
channels is slightly more complicated, being governed by W , with

dW
dt

=
�(mk −W )

�
; (4)
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where � is a temperature scaling factor and � is a ‘relaxation’ time constant. Cell Kring
rate is also determined by sigmoid activation functions,

QV = 0:5QV max

(
1 + tanh

(
V − VT

V

))
; (5)

where the Qmax are the maximum Kring rate. An analogous term is also introduced for
the inhibitory cells. The Kring of these cell populations feeds back onto the ensemble
through synaptic coupling to open ligand-gated channels and raise or lower the mem-
brane potential accordingly. In the case of excitatory-to-inhibitory and inhibitory-to-
excitatory connections, this is modeled as additional inputs to the Eow of ions across
the membrane channel, weighted by functional synaptic factors, aei and aie. In the case
of excitatory to excitatory connections, the rate of Kring QV , is assumed to lead to a
proportional release of glutamate neurotransmitter across the synapse, onto two classes
of ligand-gated ion channels: (1) AMPA channels, which open an additional population
of sodium channels, and (2) NMDA receptors, which open an additional population of
voltage-gated sodium and calcium channels. rNMDA incorporates the ratio of NMDA
to AMPA receptors.

Each of the set of Eqs. (1)–(5) govern the dynamics within each local cell assembly.
Coupling between N nodes is introduced as competitive agonist excitatory action at
the same populations of NMDA and AMPA receptors. Representing each node with a
superscript, this is incorporated by modifying Eq. (1) to

dV i

dt
=−(gCa + (1 − C)rNMDAaeeQiV + CrNMDAaee〈QV 〉)mCa(V i − VCa)

−gKW (V i − VK) − gL(V i − VL) − (gnamna + (1 − C)aeeQiV

+Caee〈QV 〉)(V i − Vna) + aieZQiZ + aneI
 (6)

for i; j= 1; : : : ; N . C parameterizes the strength of excitatory coupling between cortical
columns. If C=0 the systems evolve independently. C¿ 0 introduces interdependences
between consecutive columns. C=1 corresponds to maximum coupling, with excitatory
input from outside each column surpassing excitatory input from within each column.

All physiologically measurable parameters (conductances, threshold potentials and
Nernst potentials) are set to their accepted values [6], These are given in Table 1.

Table 1
Parameter values for the simulations pre-
sented in this paper

I 0.3
aee 0.4
aei 0.1
aie 1
ane 1
ani 0.4
rNMDA 0.2

 0.001
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3. Transition to chaotic synchronization

With no intercolumn coupling (C = 0), each of the systems exhibit aperiodic asyn-
chronous oscillations. Using a Gram–Schmidt orthonormalization procedure, we Knd
that the largest Lyapunov exponent for each system is approximately 0.018, indicative
of chaotic motion. As expected, further exponents were identically zero and negative.

With the introduction of coupling, C¿ 0, the systems show epochs of synchronized
behavior. At C ∼= 0:1, there is a transition to fully synchronized motion, as evident in
the time series, Fig. 1a where C = 0:13. Fig. 1b shows the concurrent values of V 1

and V 2, for a system that have become embedded in the low-dimensional ‘symmetry
manifold’ V 1 =V 2. In addition to calculating the Lyapunov exponents for each system
it is also possible to calculate the transverse Lyapunov exponents, which describe the
rate of separation of the coupled systems transverse to this manifold–in other words,
the time-average tendency for the two systems to synchronize or separate. For this
strength of coupling, the largest transverse exponent is negative (−0:005), indicating
that perturbations away from this state of identical synchronization decay and thus that
the state of identical chaotic synchronization is stable to noise. In Fig. 1(c) we present
the value of the 4 largest Lyapunov exponents. It can be seen that the largest transverse
Lyapunov exponent (�1) crosses zero at C ∼= 0:1. This represents the value at which
a ‘blowout’ bifurcation occurs—so called because the dynamics will ‘blow out’ from
the three-dimensional symmetry manifold into the full six dimensions [9].

We note two other observations. Increasing rNMDA, which corresponds to increasing
the population of NMDA receptors, decreases the coupling strength required to achieve
stable synchronization. On the other hand, increasing the overall excitatory-to-excitatory
synaptic connectivity (aee) has the opposite eGect. This is because the eGect of local
excitatory feedback, which tends to increase the local Lyapunov exponents, has the
eGect of ‘splitting’ the synchronization, over-riding the opposing eGect of increasing
inter-columnar coupling.

4. Chaotic phase synchronization

In the above simulations, all the parameters of both systems were equal. In real physi-
ological systems, such symmetry between systems is clearly impossible. To
incorporate this physiological variability, we introduced a random mismatch of be-
tween 0% and 10% for each of the physiological parameters. When the symmetry is
broken, the symmetry manifold is no longer an invariant of the governing equations
and hence identical synchronization between the coupled systems cannot be achieved.
However, other types of synchronization are possible. In this section, we brieEy illus-
trate an example of phase synchronization between subsystems in the neural model.

In Fig. 2(a) the time series for an example simulation with C = 0:2 is shown. It
can be seen that although the systems are not identical, the systems are not oscillating
independently. Close inspection reveals that the systems are phase-locked, half a cycle
out of phase. In panel (b), the concurrent values of V 1 and V 2 are plotted. It can
be seen that although the systems are not identical, their evolution is contained on



M. Breakspear et al. / Neurocomputing 52–54 (2003) 151–158 155

2000 2200 2400 2600 2800 3000
-0.5

0

0.5

2000 2200 2400 2600 2800 3000
-0.5

0

0.5

V
1

V
2

time(a)

V
2

(b)

-0.6
-0.6

-0.2

0.2

0.4

-0.4

-0.4 -0.2 0.2 0.4

0

0

V 1

0 0.05 0.1 0.15 0.2

C

-0.04

-0.03

-0.02

-0.01

0.01

0

0.02

0.03

�

Λ

Λ

�1

�2

(c)

Fig. 1. (a) Time series of identical chaotic synchronization. (b) Concurrent values of V 1 and V 2. (c) Largest
four Lyapunov exponents (�1 and �2 are the transverse exponents). Note the zero crossing at C = 0:1.
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Fig. 2. (a) Time series of chaotic phase synchronization. (b) Concurrent values of V 1 and V 2.

a highly structured low-dimensional ‘phase synchronization’ manifold. It is possible
to better quantify this aperiodic phase synchronization with the use of the Hilbert
transform [10].

5. Marginal stability and chaotic transients

When the coupling strength is set close to the threshold for stable chaotic synchro-
nization (i.e. �1∼0) one observes epochs of varying length interrupted by bursts of
desynchronization. An example of such a phenomenon is given in Fig. 3. At time ∼
1000, it can be seen that the two time series brieEy diverge from phase synchroniza-
tion. Whilst space constraints prohibit further illustration, use of the Hilbert transform
revealed two complete phase desynchronizations at this instance.

Such desynchronous bursts are known to be caused by transversely unstable periodic
orbits embedded within the synchronized chaotic attractor. Desycnhronization occurs
whenever the system passes close to such an unstable orbit [5]. We have previously
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Fig. 3. Time series of weakly coupled system, showing brief desynchronization at t ∼ 1000 s.

argued [1] that such ‘marginal stability’ may play a crucial role in normal brain func-
tion, permitting Eexible and adaptive jumps between regional coherent states.

Analysis of larger arrays (N¿2) reveals that at judicious coupling strengths, the
array breaks up into separate synchronized clusters of various sizes. In addition, it
is possible to ‘induce’ synchronization between selected subsystems by increasing the
coupling strength between them. This allows an extra level of complexity to be intro-
duced into the model. For example, it may allow targeted information transfer between
a partial network of the entire array.

6. Discussion

In this paper, we present a dynamical model for activity in an array of sparsely cou-
pled local neural systems. The model incorporates the fundamental principles governing
cell membrane potential, as determined by voltage and ligand-gated ion channels, and
basic principles of cortical connectivity. In this way, it allows a reasonable amount of
physiological complexity to be incorporated, including synaptic activation of receptor
subtypes. Numerical analysis of this model reveals a transition from independent os-
cillations to stable chaotic synchronization, depending on the balance of local versus
long-range connectivity. These functional excitatory couplings are subject to subcortical
neuromodulation. Chaotic phase synchronization occurs and is robust to system noise
and random parameter variations.

Behaviors observed in the regime of ‘marginal stability’—i.e. when the transverse
Lyapunov exponent is close to zero—are of particular interest, as they are character-
ized by a dynamic balance between synchronous and desynchronous dynamics in both
spatial and temporal domains. Such phenomenon may facilitate the formation and dis-
solution of separate clusters of dynamic cell assemblies, permitting optimal and Eexible
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adaptation to a changing external environment [3]. Whilst speculative, this conjecture
is supported by the Knding of occasional brief instances of nonlinear interdependence
in human scalp EEG data [1,2]. Further empirical investigations are required in order
to determine the cognitive correlates of these phenomena.
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