Neuronal transients
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SUMMARY

A recent letter to Nature (Vaadia et al. Nature, Lond. 373, 515-518 (1995)) presented compelling results
concerning neuronal interactions in monkey cortex. Vaadia et al. made two fundamental points: (i) it is
possible that cortical function is mediated by dynamic modulation of coherent firing among neurons; and
(ii) these time-dependent changes in correlations can emerge without modulation of firing rates. These
observations have severe implications for models of neural coding and empirical approaches that are
based on firing rates (e.g. neuroimaging). This communication presents a simpler explanation for the
results presented in Vaadia et al., by noting they are consistent with the correlated expression of
stereotyped neuronal transients following (or preceding) a salient event. This re-formulation is important
because: (i) correlations measured in terms of transients are not time-dependent, allowing prevailing
models of neural coding to be ‘reinstated’; and (ii) it suggests a powerful analysis based on singular value

decomposition of firing rates.

1. INTRODUCTION

A fundamental phenomenon observed by Vaadia et al.
(1995) is that, following behaviourally salient events,
the degree of coherent firing between two neurons can
change profoundly and systematically over the ensuing
second or so. Furthermore, the mean firing rate
(averaged over epochs) does not necessarily show any
systematic change. One implication is that a ‘better’
metric of neuronal interactions could be framed in
terms of dynamic changes in correlations, modulated
on timescales of 100-1000 ms. This possibility touches
on the distinction between temporal coding and rate
coding as substrates of a putative neural code. This
distinction, and the related debate (see, for example,
Shadlen & Newsome 1995) centres on whether the
precise timing of individual spikes can represent
sufficient information to facilitate information transfer
in the brain. The position adopted by Vaadia et al.
adds an extra dimension to this debate: while accepting
that spike trains can be considered as stochastic
processes (i.e. the exact time of spiking is not vital),
they suggest that temporal coding may be important in
terms of dynamic time-dependent and behaviourally
specific changes in the probability that two or more
neurons will fire together. This dynamic modulation of
coherent firing does not necessarily involve sustained
changes in mean firing rate. In short they are
proposing, very sensibly, a (second order) temporal
coding model that is consistent with the stochastic
behaviour of spike trains.

Although the above perspective appeals to our
appreciation of the brain as a complex, highly non-
linear dynamical system, it poses a problem for many
useful models of neuronal interactions, for example:
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associative plasticity, self-organizing maps, feature
detection and information theoretic accounts of neuro-
nal activity and connectivity (for examples, see
Willshaw et al. 1979; Kohonen 1982; Linsker 1988;
Doldiak 1990; Gally et al. 1990; Lopez et al. 1990;
Rubner & Schulten 1990; Miller 1992), where these
models are expressed in terms of firing rates. This is
because the temporal coding, implicit in a dynamic
modulation of coherence, de-emphasizes the role of
mean firing rates in mediating neuronal interactions.
One resolution of this problem is provided by a simple
explanation of temporally modulated coherence, that
is based on the notion of neuronal transients. The aim
of this paper is to describe this explanation and an
analysis of separable or multiunit spike trains that
ensues.

2. AN ALTERNATIVE VIEW

Imagine that two neurons respond to an event with
a similar transient (a short-lived stereotyped time-
dependent change in the propensity to fire); although
the normalization procedures adopted in Vaadia et al.
(1995) remove correlations induced by the mean
expression of this transient, they will not remove
correlations because of the covariation about this
mean. For example, if two neurons respond to an event
with decreased firing for 400 ms, and this decrease was
correlated over epochs, then positive correlations
between the two firing rates would be seen for the first
400 ms of the epoch, and then fade away, therein
emulating a dynamic modulation of coherence.

This phenomenon can be made clear using a simple
model: let x,(f) represent firing in unit 7, at time ¢,
following the onset of an event. Let ¢(¢) be an event-
specific transient where its expression is modulated by

xi(t) = a;. 4,(8) +e,(0), (1)
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a, simply represents the degree to which the transient
t,(t) is expressed and is therefore a characterization of
the event-related, short-term changes in the pattern of
firing. ¢;(¢) is a term reflecting non-specific activity,
that is uncorrelated with the expression of the transient
ie. Cov(a, ¢(tf)) =0 over many events. The non-
specific cross-covariance between neurons ¢ and j is
given by Cov(e(t), ¢(¢t+h)). If these covariances are
stationary, this reduces to the cross-covariance function
2; (k). By direct calculation:

Cov(x,(1), x,(t+h)) = Cov(a, a;).t,(8). t;(t+h) +g,(h),
(2)

This equation states that the covariance pattern can be
expressed as the sum of non-specific covariances g;(#)
and a term that can be factorized into the covariance
in the expression of the transients Cov(g;, ;) and the
transients themselves #,(¢).4(¢+#%). The key thing to
note is that the stimulus-related interaction between
the two units is expressed as the covariance Cov(a;, a;)
that is not a function of time. In other words dynamic
modulation of covariances can be equivalently formu-
lated as fixed covariances of dynamic transients. This
alternative perspective essentially replaces the spike (a
depolarization transient) with a neuronal transient. In
terms of neuronal transients there is no dynamic
modulation of correlations, or implicit temporal
coding.

The firing rates averaged over epochs are:

E(x, () = Ela,) - t,(1) + (e, (1)), (3)

and can, if £(g;) = 0, show no modulation of mean
firing rates following a stimulus event. In summary a
highly structured fine-scale temporal pattern of corre-
lations (shaped by the form of the underlying transi-
ents) can be observed even without modulation of
mean firing rates (averaged over epochs). Of course in
reality there is likely to be both a dynamic modulation
of mean firing rate and of correlations. The point being
made by Vaadia et al. is that one does not necessarily
imply the other; and in some cases dynamic modu-
lation of correlations can be expressed in the absence of
changes in mean firing rate. In terms of neuronal
transients this is equivalent to saying that the ex-
pression of transients is highly correlated in two
neurons but the transients can be expressed as both
increases and decreases in firing, such that their effect
on mean firing rate cancels out (over a sufficient
number of epochs).

The importance, of this perspective on dynamic
correlations, is that conceptual and mathematical
models that have proved themselves in application to
firing rates, or the expression of depolarization events
(i.e. x; above) can be applied to the expression of
higher-order transients (i.e. ¢, above). In other words
the rules that apply to x; may also be applicable to g,
where x; can be thought of as the degree to which a
depolarization transient is expressed and, on a longer
timescale, a, reflects the degree to which a neuronal
transient is expressed (the neuronal transient being
composed of many depolarization transients). For
example, associative plasticity (an increase in synaptic
efficacy given the conjoint occurrence of pre and post-
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synaptic transients) would be manifest as the increased
probability of some neuronal transient in V5, in
response to a sensory transient in V2, only if the
conjoint expression of both occurred more often than
chance would predict. These sorts of hypotheses are
amenable to empirical analysis using the techniques
described in the next section. The forgoing may
represent a ‘revision of prevailing models’ called for in
Vaadia et al.

3. AMATHEMATICAL PERSPECTIVE

This section generalizes the above analysis and
introduces singular value decomposition (svD) as a
technique that can characterize dynamics in terms of
transients: in short it is shown that any (event-
referenced) cross-covariance matrix ;' x;, embodying
dynamic modulations of coherent firing, can be
expressed in terms of correlated transients. The
generality of the arguments in the previous section can
be established using svb. Consider the matrix equiva-
lent of equation 2.

T e oy T T T
x; x;=a; a;.t] t,+e/ e, (4)

xrepresents a (mean corrected) matrix of firing rate
data from neuron 7, with one row for each epoch, and
one column for each time bin. a, is a column vector of
coeflicients representing the relative expressions of ¢, in
each epoch. ¢, is a row vector describing the transient
and e] e, is the cross-covariance matrix observed in the
absence of any stimuli. By noting the existence of the
singular value decomposition of x; x;,—e/ e;,

xf x,—el e =1't]" ', + P G+ PET 6+ (5)

one observes that any cross-covariance structure
x; x;, corrected for non-specific components e e;, can
be expressed as the sum of covariances resulting from
the expression of paired transients (¢ and ¢}). The
expression of these transient (af and af) covaries
according to the singular values [* where af” af = [
and af = (x,—e;).#". In this more general model any
observed neural transient is described by a linear
combination of the # (or ¢). This can be regarded
as a multivariate extension of the single transient
model in the previous section. svD is similar to principal
components analysis (pca) in the sense that it finds
linear combinations of the components (time bins) of
the observation (i.e. singular vectors) that have the
greatest covariance. pca finds the linear combination
(i.e. eigenvectors or principal components) that has the
greatest covariance with its self (i.e. variance). Indeed
if one applied svD to data matrices from the same
neuron this would be identical to a pca, however in this
application svb is being used to find the linear
combination of time bins from one neuron that has the
greatest covariance with a second linear combination
from the other neuron. svb is a ubiquitous math-
ematical device that will found in most high level
software packages. Some simulation results are used
below to suggest that svb could be used to characterize
the form and expression of transients embedded in
empirical data.



4. SIMULATIONS

In this section an analysis of simulated spike trains
is presented to show that the transient model is a
sufficient explanation for the results described in
Vaadia et al. (1995) and secondly to illustrate the
potential power of svD in characterizing these transi-
ents.

(a) Cross correlations produced by neural
transients

Two processes x,(t) and x,(f) were simulated using
equation (1) and an assumed form for the transients.
x,(f) and x;(¢) were used to determine the probability
that the simulated neurons would fire. Spike-train
processes were simulated for 221 epochs. Each epoch
lasted 3500 ms with a total of 3649 spikes for neuron ¢
and 9862 spikes for neuron j. These values were chosen
to reproduce the parameters described in Vaadia et al.
(1995). For simplicity the same transient was used for
both neurons and corresponds to ¢(t) above (see figure
la). This transient represents a phasic evolution in the
propensity to fire following the stimulus event. x,(¢) and
x;(t) were taken to reflect the relative firing propensity
of neurons ¢ and j. These processes (see figure 15) were
the sum of: (i) The transient multiplied by coefficients
(a; and g;) selected from a normal bivariate distribution
with zero mean and correlation 0.7 (i.e. Cov(a;, 4;) =
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0.7 and E(a;) = E(a;)) =0). (ii) Residual processes
obtained by convolving two random Gaussian inno-
vations with a Gaussian kernel of full width at half
maximum of 256 ms and taking a linear combination
to introduce non-specific correlations between neurons
i and j. These components correspond to ¢,(¢) and ¢,(¢)
in the previous section. This sum was constrained to lie
in the range (0, 1) using a suitably scaled error
function. Simulated spike-trains were obtained by
modulating the probability of firing according the
above curves (see figure 1¢).

The simulated spike trains were time-averaged in
bins of 70 ms and subject to jpsTH analysis as described
in Vaadia e al. (1995). The results of this analysis are
seen in figure 2 and should be compared with figure 24
in Vaadia et al. (1995). The data corresponding to a
conventional peri-stimulus time histogram (psSTH)
shows little modulation (side panels). The main panel
is an image representation of the cross-correlation
matrix (referred to the stimulus event at 1000 ms) and
reproduces the generic features reported in Vaadia et
al.; namely a highly structured cross-correlation matrix
with negligible modulation of mean firing rates.

(b) Singular value decomposition

The ability of svb to ‘recover’ the underlying
transients was demonstrated by applying svb to the
simulated data of the previous section. The estimated
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Figure 1. Details of the simulated spike-trains. Spike-train processes were simulated for 221 epochs. An example from
one epoch is shown. (a) The transient used in the simulations, corresponding to £,() in the main text. (b) Processes
x,(¢) and x,(¢) : the relative propensity to fire for neurons ¢ and j (solid and broken lines respectively). These processes
are the sum of: (i) the transient in (2) multiplied by coefficients (¢, and g, in the main text); and (ii) residual processes
obtained by convolving random Gaussian innovations with a Gaussian kernel. These components correspond to ¢;(f)
and ¢,(t) in the main text. This sum was constrained to lie in the range (0, 1) using a suitably scaled error function.
(¢) Simulated spike-trains obtained by modulating the probability of firing according the above curves.
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Figure 2. Joint peri-stimulus time histogram (JpsTH) based on the simulated data described in figure 1. The simulated
spike trains were time-averaged in bins of 70 ms and subject to JpsTH analysis. The results of this analysis are seen
above and should be compared with figure 24 in Vaadia e/ al. Left: mean firing rate (per second) averaged over
epochs (side panels). These data correspond to a conventional peri-stimulus time histogram (pstH) and show little
modulation when referred to the stimulus events. The main panel is an image representation of the cross-correlation
matrix (referred to the stimulus event at 1000 ms). Right: coincidence-time histogram (main diagonal) showing the
time-dependent nature of the correlations (referred to the stimulus event) and conventional time-averaged cross-

correlogram (upper right).

transients were taken to be the first singular vectors of
x] x;—e/ e, where x, and «x; correspond to mean
corrected matrices of binned firing rates with one row
for each epoch and a column for each bin. e; and e;
represent the firing rates obtained in the absence
of simulated transients (in an experimental situation
these data would be taken from epochs that did
not include the stimulus event). Note the similarity
between the actual (see figure 14) and the first singular
vectors or estimated form for the transients (see figure
3a). Unlike the jpsTH analysis, the svp technique
described here explicitly discounts non-specific corre-
lations (i.c. e/ e;). The importance of these non-
specific effects can be noted in the jpstHs in Vaadia
et al. that show marked correlations before the stimulus
arrives.

5. DISCUSSION

The biological mechanisms underlying the variable
expression of transients could, as suggested (Vaadia et
al. 1995), be explained in terms of population
dynamics. Another explanation might relate to the
modulation of prefrontal neurons by ascending neuro-
modulatory afferents. The phasic and transient re-
sponses of dopaminergic and cholinergic neurons to
behaviourally salient stimuli (e.g. those predicting
appetitive reward) have time courses on the order of
100200 ms (for examples, see DeLong et al. 1983;
Richardson & DeLong 1986; Ljungberg e/ al. 1992).
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This modulatory afferentation could contribute to the
observed patterns of correlations. The relative con-
tribution of dopaminergic and other modulatory inputs
is clearly open to pharmacological study.

An important contribution made by Vaadia et al.
was that the dynamic modulation of correlations was
specific to the behavioural context (compare their
figure 2a and 24). In the present framework this
corresponds to the expression of behaviourally specific
or stimulus specific transients.

Itis important to realize that the transients obtained
with svD are not necessarily the true underlying
transients. This is because svp finds a series of
orthogonal (uncorrelated) transients and yet multiple
and coincident transients expressed by neurons could
be correlated both over epochs and over time within an
epoch. It can be said that the underlying transients can
be expressed in terms of a linear combination of the
transients identified by svp. If there is only one
transient (i.e. one singular value is substantially larger
than the rest) then the real and estimated transients
could be assumed to be the same. A limitation of svD is
that it can only be applied to two spike trains and in
this sense it is not as useful as alternative multivariate
approaches.

One problem with svp is that it does not provide for
statistical inference about which transients arc signifi-
cant. For example, if the data were very noisy the
spectrum of singular values would suggest that many
transients were required to model the observed (event-



-0.6
0 2000 4000
time / ms
(b)
4 i :
2 ) ": s .
.............. :."..’.!‘.c.., e
- "ﬁ}o f..
.. 4 '.a: 4 . .
°? o"‘.‘ . ¢ .
Opb---vrne ';....$ o....'.,..,. ......
'L o &8¢ .
) .
. -o‘..“:; .
. ..." ‘. .; .
2 b - ..0. . .,.& 5,‘, ...............
-4
-5 0 5
neuron j

Figure 3. Singular value decomposition (svD) of time-
averaged (over 70 ms bins) firing rates. (a) The first singular
vectors (estimated transients) following svp of x]" x;,—e[ e;.
%, and x; correspond to mean corrected matrices of binned
firing rates with one row for each epoch and a column for
each bin. e, and e, represent the equivalent firing rates
obtained in the absence of simulated transients. (4) The
correlated expression of the transients are depicted by
plotting af against a}. a} and a] represent the epoch by
epoch event-related expression of £} and #] respectively and
are given by a; = (x,—e,).t; (similarly for a}).

referenced) cross-correlation matrix. However, it
would not be possible to infer which of the estimated
transients were the result of true neuronal transients
and which were simply caused by noise. Clearly one
would like an analytic approach that had the strengths
of svb and could be applied to more than two spike
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trains while allowing for statistical inference. Such an
approach will be the subject of collaborative work
between our unit and Vaadia et al.

In conclusion this paper puts forward an alternative,
or indeed complementary, perspective on the rich
temporal structure of event-related neuronal inter-
actions. It has been shown that dynamic changes in
coherence are equivalent to the coherent expression of
neural transients. This may be important for charac-
terizing neuronal interactions, because the expression
of these transients may themselves show systematic
time-dependent changes; for example over time scales
pertinent to learning and plasticity.

I thank Ray Dolan for help during the development of these
ideas. K.J.F. is funded by the Wellcome Trust.
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Figure 2. Joint peri-stimulus time histogram (jpsTH) based on the simulated data described in figure 1. The simulated
spike trains were time-averaged in bins of 70 ms and subject to jpsTH analysis. The results of this analysis are seen
above and should be compared with figure 24 in Vaadia et al. Left: mean firing rate (per second) averaged over
epochs (side panels). These data correspond to a conventional peri-stimulus time histogram (psTH) and show little
modulation when referred to the stimulus events. The main panel is an image representation of the cross-correlation
matrix (referred to the stimulus event at 1000 ms). Right: coincidence-time histogram (main diagonal) showing the
time-dependent nature of the correlations (referred to the stimulus event) and conventional time-averaged cross-
correlogram (upper right).



