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Abstract

In this paper, we present a generic approach that can be used to infer how subjects make optimal decisions under
uncertainty. This approach induces a distinction between a subject’s perceptual model, which underlies the representation
of a hidden ‘‘state of affairs’’ and a response model, which predicts the ensuing behavioural (or neurophysiological)
responses to those inputs. We start with the premise that subjects continuously update a probabilistic representation of the
causes of their sensory inputs to optimise their behaviour. In addition, subjects have preferences or goals that guide
decisions about actions given the above uncertain representation of these hidden causes or state of affairs. From a Bayesian
decision theoretic perspective, uncertain representations are so-called ‘‘posterior’’ beliefs, which are influenced by
subjective ‘‘prior’’ beliefs. Preferences and goals are encoded through a ‘‘loss’’ (or ‘‘utility’’) function, which measures the
cost incurred by making any admissible decision for any given (hidden) state of affair. By assuming that subjects make
optimal decisions on the basis of updated (posterior) beliefs and utility (loss) functions, one can evaluate the likelihood of
observed behaviour. Critically, this enables one to ‘‘observe the observer’’, i.e. identify (context- or subject-dependent) prior
beliefs and utility-functions using psychophysical or neurophysiological measures. In this paper, we describe the main
theoretical components of this meta-Bayesian approach (i.e. a Bayesian treatment of Bayesian decision theoretic
predictions). In a companion paper (‘Observing the observer (II): deciding when to decide’), we describe a concrete
implementation of it and demonstrate its utility by applying it to simulated and real reaction time data from an associative
learning task.

Citation: Daunizeau J, den Ouden HEM, Pessiglione M, Kiebel SJ, Stephan KE, et al. (2010) Observing the Observer (I): Meta-Bayesian Models of Learning and
Decision-Making. PLoS ONE 5(12): e15554. doi:10.1371/journal.pone.0015554

Editor: Olaf Sporns, Indiana University, United States of America

Received August 5, 2010; Accepted November 12, 2010; Published December 14, 2010

Copyright: � 2010 Daunizeau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Wellcome Trust (HDO, KJF), SystemsX.ch (JD, KES) and NCCR ‘‘Neural Plasticity’’ (KES). The authors also gratefully
acknowledge support by the University Research Priority Program ‘‘Foundations of Human Social Behaviour’’ at the University of Zurich (JD, KES). Relevant URLs
are given below: SystemsX.ch: http://www.systemsx.ch/projects/systemsxch-projects/research-technology-and-development-projects-rtd/neurochoice/; NCCR:
‘‘Neural Plasticity’’: http://www.nccr-neuro.ethz.ch/; University Research Priority Program ‘‘Foundations of Human Social Behaviour’’ at the University of Zurich:
http://www.socialbehavior.uzh.ch/index.html. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.daunizeau@fil.ion.ucl.ac.uk

Introduction

This paper is about making inferences based on behavioural

data in decision-making experiments. Unlike the analysis of most

other types of data, behavioural responses made by subjects are

themselves based on (perceptual) inferences. This means we have

the special problem of making inferences about inferences (i.e.,

meta-inference). The basic idea we pursue is to embed perceptual

inference in a generative model of decision-making that enables us,

as experimenters, to infer the probabilistic representation of

sensory contingencies and outcomes used by subjects. In one sense

this is trivial; in that economic and computational models of

decision-making have been optimized for decades, particularly in

behavioural economics and neuroimaging (e.g. [1–3]). However,

we address the slightly deeper problem of how to incorporate

subjects’ inferences per se. This speaks to a growing interest in how

the brain represents uncertainty (e.g., probabilistic neuronal codes

([4]) and acts as an inference machine ([5–7]). Furthermore, we

are interested in a general framework that can be adapted to most

experimental paradigms. We hope to show that suitably

formulated models of perception and decision-making enable

inference on subjective beliefs, even when using data as simple as

reaction times. In a companion paper (‘Observing the observer

(II): deciding when to decide’, we illustrate the approach using

reaction times to make inferences about the prior beliefs subjects

bring to associative learning tasks and how these are expressed

behaviourally in the context of speed-accuracy trade-offs.

One may wonder: why the emphasis on perceptual inference?

We live in a world of uncertainty and this has led many to suggest

that probabilistic inference may be useful for describing how the

brain represents the world and optimises its decisions (e.g. [8] or

[9]). A growing body of psychophysical evidence suggests that we

behave as Bayesian observers; i.e. that we represent the causes of

sensory inputs by combining prior beliefs and sensory information

in a Bayes optimal fashion. This is manifest at many temporal and

processing scales; e.g., low-level visual processing ([10–16]),
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multimodal sensory integration ([17–21]), sensorimotor learning

([22–27]), conditioning in a volatile environment ([28–29]),

attention ([30–31]), and even reasoning ([32–33]). This Bayesian

observer assumption provides principled constraints on the compu-

tations that may underlie perceptual inference, learning and

decision-making.

In order to describe behavioural responses within a Bayesian

decision theoretic framework (see e.g. [34]) one has to consider

two levels of inference. Firstly, at the subject level: a Bayesian

subject or observer relies on a set of prior assumptions how

sensory inputs are caused by the environment. In the following,

we will call this mapping, from environmental causes to sensory

inputs, the perceptual model. Secondly, at the experimenter level: as

we observe the observer, we measure the consequences of their

posterior belief about sensory cues. In the following, we will call

this mapping, from sensory cues to observed responses, the

response model. Crucially, the response model subsumes the

perceptual model because the perceptual model determines the

subject’s beliefs and responses. This means inverting the response

model (to map from responses to their causes) necessarily

incorporates an inversion of the perceptual model (to map from

sensory cues to the beliefs that cause those responses). When

measuring explicit actions (i.e., the subject’s decisions), the

response model also invokes utility- or loss-functions, which

encode the subject’s goals and preferences.

The perceptual model predicts the subject’s sensory signals (i.e.

inputs arising from environmental causes), and the response model

predicts the subject’s responses in terms of behaviour (e.g.

decisions or reaction times) and/or neurophysiology (e.g. brain

activity). For example, in the context of an associative learning

paradigm, the unknown quantities in the perceptual model are

causal associations among stimuli; whereas the unknown variables

in the response model are the brain’s representations of these

associations (i.e. the brain states that encode posterior beliefs) and/

or the ensuing behavioural responses (depending on which

measurements are available). Critically, the response model

subsumes the perceptual model, how it is inverted and how the

ensuing posterior belief maps to measurable responses (Figure 1).

Figure 1. Conditional dependencies in perceptual and response models. The lines indicate conditional dependence among the variables in
each model (broken lines indicate probabilistic dependencies and solid lines indicate deterministic dependencies). Left: perceptual and response
models. Right: Implicit generative model, where the perceptual model is assumed to be inverted under ideal Bayesian assumptions to provide a
mapping (through recognition) from sensory input to observed subject responses.
doi:10.1371/journal.pone.0015554.g001
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The distinction between these two models is important. In

perceptual learning studies, the experimenter is interested in both

the perceptual model and the mechanics of its inversion. For

example, the computational processes underlying low-level vision

may rest on priors that finesse ambiguous perception (e.g. [16]).

The relevant variables (e.g. those encoding prior beliefs) are

hidden and can only be inferred through experimental observa-

tions using a response model. Conversely, in decision-making

studies, the experimenter is usually interested in the response

model, because it embodies the utility- or loss-functions and

policies employed by the subject (e.g., see [26] for an application to

the motor system). Note that the response model may (implicitly)

subsume the subject’s perceptual model of the world, under which

expected utility is evaluated. This dependency induces the Inverse

Bayesian Decision Theoretic (IBDT) problem: to determine a

subject’s prior beliefs and goals (i.e. loss-function), given their

observed behaviour to known sensory inputs.

The complete class theorem states that any admissible decision

rule is Bayes-optimal for at least one set of prior beliefs and loss-

function [34]. This means that there is always a solution to the

IBDT problem. It is also known from game theory that many

combinations of beliefs and preferences are consistent with the

same behaviour [35]. In other words, the solution to the IBDT

problem exists but is not unique; i.e. the problem is under-

determined or ill-posed [36]. This has led researchers to focus on

restricted classes of the general IBDT problem. These schemes

differ in terms of the constraints that are used to overcome its

indeterminacy; for example, inverse decision theory ([37,26]),

inverse game theory ([38]), inverse reinforcement learning ([39–

41]) or inverse optimal control ([42]). However, these schemes are

not optimally suited for the kind of experiments commonly used in

neuroscience, behavioural economics or experimental psychology,

which usually entail partial knowledge about the beliefs and losses

that might underlie observed behaviour.

This paper proposes an approximate solution to the IBDT

problem for these types of experimental paradigms. The approach

derives from a variational Bayesian perspective ([43]), which is used

both at the subject level (to model perceptual inference or learning)

and at the experimenter level (to model behavioural observations).

The approach allows one to estimate model parameters and

compare alternative models of perception and decision-making in

terms of their evidence. We will first recall the IBDT problem and

then describe the basic elements of the framework. Finally, we will

discuss the nature of this meta-Bayesian approach. A practical

implementation of it is demonstrated in a companion paper

(‘Observing the observer (II): deciding when to decide’).

Methods

In this section, we present the basic elements of the framework.

We first recall the prerequisites of Bayesian Decision Theory as

generically and simply as possible. We then describe the form of

perceptual models and their (variational) Bayesian inversion. This

inversion provides an implicit mapping from cues to internal

representations and describes recognition under the Bayesian

observer assumption. We then consider response models for

behaviourally observed decisions, which subsume Bayes optimal

recognition. Finally, we will cover the inversion of response

models, which furnishes an approximate (variational) Bayesian

solution to the IBDT problem.

Inverse Bayesian Decision Theory (IBDT)
We start with a perceptual model m(p) that specifies the subject’s

probabilistic assumptions about how sensory inputs are generated.

Sensory inputs u (experimental stimuli) are generated from hidden

causes x (experimental factors or states) and are expressed in terms

of two probability density functions: the observer’s (subject’s)

likelihood function p u x,m(p)
��� �

and prior beliefs about hidden

states of the world p x m(p)
��� �

. In the following, we will use ‘‘hidden

causes’’, ‘‘environmental states’’ or ‘‘states of affairs’’ as inter-

changeable terms. The hidden states are unknown to the subject

but might be under experimental control. For example, in the

context of associative learning, sensory information u could consist

of trial-wise cue-outcome pairings, and x might encode the

probabilistic association between cues and outcomes that is hidden

and has to be learnt.

The subject’s likelihood quantifies the probability of sensory

input given its hidden cause. The priors encode the subject’s belief

about the hidden states before any observations are made. The

likelihood and priors are combined to provide a probabilistic

model of the world:

pq u,x m(p)
��� �

~pq u x,m(p)
��� �

pq x m(p)
��� �

ð1Þ

where we have used the notation pq
:ð Þ to indicate a parameter-

ization of the likelihood and priors by some variables q. These

perceptual parameters encode assumptions about how states and

sensory inputs are generated. We assume that q have been

optimised by the subject (during ontogeny) but are unknown to the

experimenter.

Bayesian inversion of this perceptual model corresponds to

recognising states generating sensory input and learning their causal

structure. This recognition is encoded by the subject’s posterior

density; pq x u,m(p)
��� �

, which obtains from Bayes’ rule:

pq x u,m(p)
��� �

~
pq u,x m(p)

��� �
pq u m(p)jð Þ

pq u m(p)
��� �

~

ð
pq u,x m(p)

��� �
dx

ð2Þ

Here, pq u m(p)
��� �

is the marginal likelihood of sensory inputs u
under the perceptual model m(p), i.e. the (perceptual) model

evidence (where the perceptual parameters q have been integrated

out). Bayes’ rule allows the subject to update beliefs over hidden

states from the prior pq x m(p)
��� �

to the posterior pq x u,m(p)
��� �

on

the basis of sensory information (encoded by the likelihood

pq u x,m(p)
��� �

). Since the posterior represents information about the

hidden states given some sensory inputs, we will refer to it as a

representation.

We can describe recognition as a mapping from past sensory

inputs u?t: u1, . . . ,utf g to the current representation: u?t?
pq x u?t,m

(p)
��� �

, where t indexes time or trial. The form of Equa-

tions (1) and (2) mean that representations pq x u1,m(p)
��� �

, . . . ,
�

pq x u?t,m
(p)

��� �
g form a Markovian sequence, where pq x u?tj ,ð

m(p)Þ!pq ut xj ,m(p)
� �

pq x u?t{1,m(p)
��� �

. In other words, the cur-

rent belief depends only upon past beliefs and current sensory

input.

Subjects’ responses may be of a neurophysiological and/or

behavioural nature and may reflect perceptual representations or

explicit decisions. In the latter case, we need to model the mapping

from representations to action, pq x u,m(p)
��� �

?a, which we call the

response model. This entails specifying the mechanisms through

which representations are used to form decisions. Within a

Bayesian decision theoretic (BDT) framework, policies rely on

some form of rationality. Under rationality assumptions, the

subject’s policy (i.e. decision) is determined by a loss-function,

Observing The Observer: Theory
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‘h x,að Þ, which returns the cost incurred by taking action a while

the state of affairs is x. The loss-function is specified by some

parameters h that are unknown to the experimenter. In the

economics and reinforcement learning literature one usually refers

to utility, which is simply negative loss. BDT gives the rational

policy, under uncertainty about environmental states, in terms of

the optimal action a� : ~a� h,q,uð Þ that minimizes posterior risk

Qh að Þ; i.e. expected loss:

a�~arg min
a

Qh að Þ

Qh að Þ~
ð
‘h x,að Þpq x u,m(p)

��� �
dx

ð3Þ

where the expectation is with regard to the posterior density on the

hidden states. This renders optimal decisions dependent upon both

the perceptual model m(p) and the loss-function ‘.
The complete-class theorem ([34]) states that any given policy

or decision-rule is optimal for at least one pairing of model and

loss-function m(p),‘
� �

. Crucially, this pair is never unique; i.e. the

respective contribution of the two cannot be identified uniquely

from observed behaviour. This means that the inverse Bayesian

decision theoretic (IBDT) problem is ill-posed in a maximum

likelihood sense. Even when restricted to inference on the loss-

function (i.e., when treating the perceptual model as known) it can

be difficult to solve (e.g., see [39] or [40]). This is partly because

solving Equations 2 and 3 is analytically intractable for most

realistic perceptual models and loss-functions. However, this does

not mean that estimating the parameters q and h from observed

behaviour is necessarily ill-posed: if prior knowledge about the

structure of the perceptual and response models is available we can

place priors on the parameters. The ensuing regularisation

facilitates finding a unique solution.

In the following, we describe an approximate solution based upon

a variational Bayesian formulation of perceptual recognition. This

allows us to find an approximate solution to Equation 2 and simplify

the IBDT problem for inference on subject-specific cognitive

representations that underlie behaviourally observed responses.

Variational treatment of the perceptual model
Variational Bayesian inference furnishes an approximate

posterior density on the hidden states q x ljð Þ&pq x u?t,m
(p)

��� �
,

which we assume to be encoded by some variables l:l u,qð Þ in

the brain. These are the sufficient statistics (e.g., mean and

variance) of the subject’s posterior belief. They encode the

subject’s representation and depend on sensory inputs and

parameters of the perceptual model. Recognition now becomes

the mapping from sensory inputs to the sufficient statistics

lt u,qð Þ : u?t {?
q

lt. We will refer to lt as the representation at

time (or trial) t. In variational schemes, Bayes’ rule is implemented

by optimising a free-energy bound F
(p)
t on the log-evidence for a

model, where by Jensen’s inequality

lt(u,q)~ arg max
l

F
(p)
t

F
(p)
t ~

ð
q xt ljð Þ ln

p u?t,xt m(p)
��� �

q xt ljð Þ dxt ƒ ln p u?t m(p)
��� � ð4Þ

Maximizing the perceptual free-energy F
(p)
t minimizes the

Kullback-Leibler divergence between the exact pq x u?t,m
(p)

��� �
and approximate q x ltjð Þ posteriors. Strictly speaking, the free-

energy in this and subsequent equations of this paper should be

called ‘‘negative free-energy’’ due to its correspondence to

negative Helmholtz free-energy in statistical physics. For brevity,

we will only refer to ‘‘free-energy’’ throughout the paper and omit

‘‘negative’’ when relating recognition and inference to maximisa-

tion of free-energy. Under some simplifying assumptions about the

approximate posterior, this optimization is much easier than the

integration required by Bayes’ rule (Equation 2). Appendix S1 of

this document summarizes the typical (e.g. Laplace) approxima-

tions that are required to derive such an approximate but

analytical inversion of any generative model. In short, within a

variational Bayesian framework, recognition can be reduced to

optimizing the (free-energy) bound on the log-evidence with

respect to the sufficient statistics l of the approximate posterior

(e.g., first and second order moments of the density).

As a final note on the perceptual model, it is worth pointing out

that recognition, i.e. the sequence of representations,

l u,qð Þ~ l1,l2, . . .f g, has an explicit Markovian form:

lt~f lt{1,ut,qð Þ

f : lt{1? arg max
lt

F
(p)
t

Lf

Llt{1
~{

L2F
(p)
t

Ll2
t

" #{1
L2F

(p)
t

LltLlt{1

ð5Þ

where the evolution function f : lt{1 {?
q,ut

lt is analytical and

depends on the perceptual model through the perceptual free

energy. Note that the last line of equation 5 is obtained with the

use of implicit derivatives. In summary, recognition can be

formulated as a finite-dimensional analytical state-space model (c.f.

Equation 5), which, as shown below, affords a significant

simplification of the IBDT problem. Note that under the Laplace

approximation (see Appendix S1), the sufficient statistics l are

simply the mode of the approximate posterior, and the gradient of

the evolution function w.r.t. l writes:

Lf

Llt{1
~St

L2F
(p)
t

LltLlt{1
ð6Þ

where St is the second-order moment of the approximate posterior

(the covariance matrix), which measures how uncertain are

subjects about the object of recognition. This is important since

it means that learning effects (i.e. the influence of the previous

representation onto the current one) are linearly proportional to

perceptual uncertainty (as measured by the posterior variance).

The response model
To make inferences about the subject’s perceptual model we

need to embed it in a generative model of the subject’s responses.

This is because for the experimenter the perceptual representa-

tions are hidden states; they can only be inferred through the

measured physiological or behavioural responses y that they cause.

The response model m rð Þ can be specified in terms of its likelihood

(first equation) and priors (second equation)

p yjh,q,u,m(r)
� �

~P
t

p yt h,q,u,m(r)
��� �

p h,q m(r)
��� �

~p q m(r)
��� �

p h m(r)
��� � ð7Þ

Note that the observed trial-wise responses y1,y2, . . .f g are

conditionally independent, given the current representation. The

Observing The Observer: Theory

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15554



unknown parameters h of the response model determine how the

subject’s representations are expressed in measured responses (and

include the parameters of any loss-function used to optimise the

response; see below). The priors p h,q m(r)
��� �

cover the parameters

of both the response and perceptual models. The dependence of

the response model m(r) upon the perceptual model m(p) is implicit

in the form of the recognition process lt u,q,m(p)
� �

.

This paper deals with neuroscientific measurements of physio-

logical or behavioural responses. For this class of responses, the

form of the likelihood of the response model can be described by a

mapping g lt,hð Þ : lt {?
h

yt from the representation to the

measurement. For example, the response likelihood can be

expressed as the state-space model

yt~g lt,hð Þzet

lt~f lt{1,ut,qð Þ

)
[p yt h,q,u,m(r)

��� �
~N g lt u,qð Þ,hð Þ,Uð Þ ð8Þ

where h are response parameters that are required to specify the

mapping and ek is a zero-mean Gaussian residual error with

covariance U. The evolution function f models the time (or trial)

dependent recognition process (see Equation 5 above). The

observation mapping g could be a mapping between representa-

tions and neuronal activity as measured with EEG or fMRI (see

e.g. [7]), or between representations and behavioural responses

(e.g. [44]). In the context of IBDT, the measured response is an

action or decision that depends on the representation. Rationality

assumptions then provide a specific (and analytic) form for the

mapping to observed behaviour

g : lt? arg min
a

Qh a,ltð Þ

Lg

Llt

~{
L2Qh

La2

" #{1
L2Qh

LaLlt

Qh a,ltð Þ~Eq x ltjð Þ ‘h x,að Þ½ �

ð9Þ

where Qh a,ltð Þ is the posterior risk (Equation 3). In economics and

reinforcement learning decisions are sometimes considered as

being perturbed by noise (see, e.g. [23]) that scales with the

posterior risk of admissible decisions. The response likelihood that

encodes the ensuing policy then typically takes the form of a logit

or softmax (rather than max) function.

To invert the response model we need to specify the form of the

loss-function ‘h x,að Þ so that the subject’s posterior risk Qh a,ltð Þ
can be evaluated. We also need to specify the perceptual model

m pð Þ and the (variational Bayesian) inversion scheme that

determine the subject’s representations. Given the form of the

perceptual model (that includes priors) and the loss-function (that

encodes preferences and goals), the observed responses depend

only on the perceptual parameters q (that parameterize the

mapping of sensory cues to brain states) and response parameters h
(that parameterize the mapping of brain states to responses).

Having discussed the form of response models, we now turn to

their Bayesian selection and inversion.

Variational treatment of the response model
Having specified the response model in terms of its likelihood

and priors, we can recover the unknown parameters describing the

subject’s prior belief and loss structure, using the same variational

approach as for the perceptual model (see Appendix S1):

r(h,q)~ arg max
r

F (r)

F (r)~

ð
r(h,q) ln

p y,h,q u,m(r)
��� �

r(h,q)
dhdqƒln p y u,m(r),m(p)

��� �
p y,h,q u,m(r),m(p)

��� �
~p y h,q,u,m(r),m(p)

��� �
p h m(r)
��� �

p q m(p)
��� �

ð10Þ

This furnishes an approximate posterior density r h,qð Þ on the

response and perceptual parameters.

Furthermore, we can use the free-energy F (r) as a lower bound

approximation to the log-evidence for the i-th perceptual model,

under the j-th response model

F
(r)
ij &ln p y u,m

(r)
j ,m

(p)
i

���� �
ð11Þ

Note that F (r) as an approximation to the evidence of the

response model should not be confused with the perceptual free

energy F (p) in Equation 4. This bound can be evaluated for all

plausible pairs of perceptual and response models, which can then

be compared in terms of their evidence in the usual way. Crucially,

the free-energy F (r) accounts for any differences in the complexity

of the perceptual or response model [45]. Furthermore, this

variational treatment allows us to estimate the perceptual

parameters, which determine the sufficient statistics l of the

subject’s representation. This means we can also estimate the

subject’s posterior belief, while accounting for our (the experi-

menter’s) posterior uncertainty about the model parameters

q̂q x ljð Þ&q x Er q,hð Þ l½ �
��� �

ð12Þ

where r q,hð Þ&p q,h y,m(r)
��� �

is the variational approximation to

the marginal posterior of the perceptual parameters, obtained by

inverting the response model (see Equation 10). In general,

equation 12 means that our estimate of the subject’s uncertainty

may be ‘‘inflated’’ by our experimental uncertainty (c.f. equation

23 below and discussion section).

Lastly, the acute reader might have noticed that there is a link

between the response free energy and the perceptual free energy.

Under the Laplace approximation (see Appendix S1), it actually

becomes possible to write the former as an analytical function of

the latter:

F (r)~{
1

2
êeTU{1êe{

1

2
êeq

TSq
{1êeq{

1

2
êeh

TSh
{1êeh{

1

2
ln Uj j

{
1

2
ln Sqj j{

1

2
ln Shj jz

1

2
ln S(r)
�� ��z p{n

2
l

êe~y{g arg max
l

F (p) q̂q
� �

,ĥh

	 


êeq~q̂q{E q m(r)
��� �

êeh~ĥh{E h m(r)
��� �

ð13Þ

where the response model is of the form given in equation 8 and
we have both assumed that the residuals covariance U was known

Observing The Observer: Theory
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and dropped any time/trial index for simplicity. In equation 13, êe
is the estimated model residuals and êeq (respectively, êeh) is the

estimated deviations of the perceptual (respectively, response)

parameters to their prior expectations E q m(r)
��� �

(respectively,

E h m(r)
��� �

), under the response model. These prior expectations (as

well as any precision hyperparameters of the response model) can

be chosen arbitrarily in order to inform the solution of the IBDT

problem, or optimized in a hierarchical manner (see for example

companion paper). Note that S(r) is the second-order moment

(covariance matrix) of the approximate posterior r q,hð Þ over the

perceptual and response parameters (whose dimension is p), n is

the dimension of the data and e is the response model residuals (see

equation 8). The posterior covariance S(r) quantifies how well

information about perceptual and response model parameters can

be retrieved from the (behavioural) data:

S(r)~

Lg

Lh

����
T

ĥh

U{1Lg

Lh

����
ĥh

zS{1
h

Lg

Lh

����
T

ĥh

U{1Lg

Lq

����
q̂q

Lg

Lq

����
T

q̂q

U{1Lg

Lh

����
ĥh

Lg

Lq

����
T

q̂q

U{1Lg

Lq

����
q̂q

zS{1
q

2
66664

3
77775

{1

Lg

Lh
~{

L2Qh

La2

" #{1
L2Qh

LaLh

Lg

Lq
~

L2Qh

La2

" #{1
L2Qh

LaLl

L2F (p)

Ll2

" #{1
L2F (p)

LlLq

ð14Þ

where Sh (respectively, Sq) is the prior covariance matrix of the

response (respectively, perceptual) parameters. Equation 14 is

important, since it allows one to analyze potential non-identifia-

bility issues, which would be expressed as strong non-diagonal

elements in the posterior covariance matrix S(r).

It can be seen from equation 14 that, under the Laplace

approximation, the second-order moment S(r) of the approximate

posterior density r q,hð Þ over perceptual and response model

parameters is generally dependent upon its first-order moment

q̂q,ĥh
� �

. The latter, however, is simply found by minimizing a

regularized sum-of-squared error:

q̂q,ĥh
� �

~ arg min
q,hð Þ

eTU{1ezeT
qS

{1
q eqzeT

hS
{1
h eh ð15Þ

Note that equation 15 does not hold for inference on

hyperparameters (e.g., residual variance U). In this case,

variational Bayesian under the Laplace approximation iterates

between the optimization of parameters and hyperparameters,

where the latter basically maximize a regularized quadratic

approximation to Equation 13. We refer the interested reader to

the Appendix S1 of this manuscript, as well as to [46].

Results

A simple perception example
Consider the following toy example: subjects are asked to

identify the mean of a signal u using the fewest samples of it as

possible. We might consider that their perceptual model m(p) is of

the following form:

m(p) :
p us x,m(p)

��� �
~N x,1ð Þ Vs~1,:::,n

p x m(p)
��� �

~N 0,q{1
� �

(
ð16Þ

where x is the unknown mean of the signal us, s indexes the

samples (s~1, . . . ,n), q is the prior precision of the mean signal

(unknown to us) and we have assumed that subjects know the

(unitary) variance of the signal. In this example, q is our only

perceptual parameter, which will be shown to modulate the

subject’s observed responses. The loss function of this task is a

trade-off between accuracy and number of samples and could be

written as:

‘h x,x,nð Þ~ x{xð Þ2zhn ð17Þ

where x is the subject’s estimator of the mean of the signal and h
balances the accuracy term with the (linear) cost of sampling size n.

Subjects have to choose both a sampling size n and an estimator x
of the mean signal, which are partly determined by our response

parameter h. We now ask the question: what can we say about the

subject’s belief upon the signal mean, given its observed

behaviour?

Under the perceptual model given in equation 16, it can be

shown that the perceptual free energy, having observed n samples

of the signal, has the following form:

F (p)
n ~{

1

2

Xn

s~1

us{mð Þ2{qm2z 1{nð Þln 2pzln q{ln C

 !
ð18Þ

where the optimal sufficient statistics l~ m,Cð Þ of the subject’s

(Gaussian) posterior density q x ljð Þ~p x u?n,m(p)
��� �

of the mean

signal are given by:

q x ljð Þ~N m,Cð Þ :

m:m nð Þ~C nð Þ
Pn
s~1

us

C:C nð Þ~ 1

qzn

8>><
>>: ð19Þ

Equation 19 shows that the posterior precision grows linearly

with the number of samples.

Under the loss function given in equation 17, it is trivial to show

that the posterior risk, having observed n samples of the signal, can

then be written as:

Qh l,x,nð Þ~ x{m nð Þð Þ2zC nð Þzhn ð20Þ

From equation 19, it can be seen that the optimal estimator of

the mean signal is always equal to the its posterior mean, i.e.:

x �~m n�ð Þ, where n� is the optimal sample size:

n�~ arg min
n

Qh l,x � ,nð Þ

~h{1
2{q

ð21Þ

We consider that both the chosen mean signal estimator and the

sample size are experimentally measured, i.e. the response model

has the following form:
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m(r) :

p y h,q,m(r)
��� �

~N g h,l qð Þð Þ,Uð Þ

g h,l qð Þð Þ~
x �~h

1
2
P

s

us

n �~h{1
2{q

2
64

3
75

p h,q m(r)
��� �

!1

8>>>>>>>><
>>>>>>>>:

ð22Þ

where U is the variance of the response model residuals, g is the

mapping from the representation of the mean signal (as

parameterized by the sufficient statistics l) to the observed choices

and we have used non informative priors on both perceptual and

response parameters. Following equation 14, it can be shown that,

under the Laplace approximation, the experimenter’s posterior

covariance on the perceptual and response parameters is given by:

S(r)~
UP

s

us

	 
2

4ĥh {2ĥh{1
2

{2ĥh{1
2

P
s

us

	 
2

zĥh{2

2
64

3
75 ð23Þ

where ĥh,q̂q
� �

is the first-order moment of r h,qð Þ&p h,q y,m(r)
��� �

,

the approximate posterior density on the model parameters. These

estimates are found by maximizing their variational energy (c.f.

equation 15). The covariance matrix S(r) in equation 23 should

not be confused with C nð Þ in equation 19, which is the second-

order moment (variance) of the subject’s posterior density over the

mean signal x. The latter is an explicit function of the prior

precision q over the mean. The former measures the precision

with which one can experimentally estimate q, given behavioural

measures y. Following equations 12 and 23, the experimenter

estimate of the subject’s belief about the signal mean can then be

approximated (to first order) as:

q̂q x ljð Þ&N ĥh
1
2
X

s

us , ĥh
1
2 1z4U

X
s

us

 !{2
0
@

1
A

0
@

1
A ð24Þ

It can be seen from equation 24 that the variance U of the

response model residuals linearly scales our estimate of the

subject’s uncertainty about the signal mean x. This is because we

accounted for our (the experimenter’s) uncertainty about the

model parameters.

A number of additional comments can be made at this point.

First, the optimal sample size given in equation 21 can be

related to evidence accumulation models (e.g. [47–49]). This is

because the sample size n plays the role of artificial time in our

example. As n increases, the posterior variance C nð Þ decreases (see

equation 19) until it reaches a threshold that is determined by h.

This threshold is such that the gain in evidence (as quantified by

the decrease of C nð Þ) just compensates for the sample size cost hn.

It should be noted that there would be no such optimal threshold if

there was no cost to sensory sampling.

Second, it can be seen from equation 23 that our posterior

uncertainty about the model (response and perceptual) parameters

decreases with the power of the sensory signals u. This means that,

from an experimental design perspective, one might want to

expose the subjects with sensory signals with high magnitude.

More generally, the experimenter’s posterior covariance matrix

will always depend onto the sensory signals, through the

recognition process. This means that it will always be possible to

optimize the experimental design with respect to the sensory

signals u, provided that a set of perceptual and response models

are specified prior to the experiment.

Summary
In summary, by assuming that subjects optimise a bound on the

evidence or marginal likelihood p u m(p)
��� �

for their perceptual

model, we can identify a sequence of unique brain states or

representations l encoding their posterior beliefs q x ljð Þ&p x ujð Þ.
This representation, which is conditional upon a perceptual model

m(p), then enters a response model m(r) of measured behavioural

responses y. This is summarised in Figure 1. Solving the IBDT

problem, or observing the observer, then reduces to inverting the

response model, given experimentally observed behaviour. This

meta-Bayesian approach provides an approximate solution to the

IBDT problem; in terms of model comparison for any combina-

tions of perceptual and response models and inference on the

parameters of those models. This is important, since comparing

different perceptual models m
(p)
i (respectively response models) in

the light of behavioural responses means we can distinguish

between qualitatively different prior beliefs (respectively utility/loss

functions) that the subject might use. We illustrate this approach

on an application to associative learning in a companion paper

‘Observing the observer (II): deciding when to decide’.

Discussion

We have described a variational framework for solving the

Inverse Bayesian Decision Theory (IBDT) problem in the context

of perception, learning and decision-making. This rests on

formulating a generative model of observed subject responses in

terms of a perceptual-response model pair (Figure 1): Ideal

Bayesian observer assumptions map experimental stimuli to

perceptual representations, under a perceptual model;

m(p) : x {q?u; while representations determine subject responses,

under a response model; m(r) : l {
h?y. The central idea of our

approach is to make inversion of the perceptual model (i.e.

recognition: u {q?l) part of the response model. This provides a

complete mapping m(r) : u {q?l {h?y from experimental stimuli

to observed responses.

We have used the term ‘meta-Bayesian’ to describe our

approach because, as they observe the observer, experimenters make

(Bayesian) statistical inferences about subject’s (Bayesian) percep-

tual inferences (i.e., an inference about an inference). In other

words, we solve the inverse problem of how subjects solve theirs.

The subject’s inverse problem is to recognize (estimate) the hidden

causes of their sensory signals, under some prior assumptions (the

perceptual model) about these causes. In contrast, the experi-

menter’s inverse problem is to identify both the subject’s prior

beliefs (which influence their recognition process) and their

preferences (which maps their recognition process to decisions

expressed by observed actions). This is closely related to, but

distinct from, ‘meta-cognition’, where subjects make inferences

about their own inferences (for example, when rating one’s

confidence about a decision). Having said this, some forms of

meta-cognition could be modelled using the proposed meta-

Bayesian framework. For example, theory of mind [50]; i.e. the

ability to identify the beliefs and intentions of others, could also be

framed as solving the inverse problem of how others have solved

theirs (see [51] for a discussion of related issues about bounded

rationality in the context of game theory).

Note that the recognition process u {
q?l is expected to

(strongly?) depend on the subject’s priors about the hidden state
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of affairs, which is shaped by their previous sensory experiences.

This means that we expect the subject’s behaviour to vary

according to their subjective prior beliefs. The latitude afforded by

a dependence on priors is a consequence of optimal perception;

and the nature of perceptual illusions has provided very useful

insights into the structure of priors the brain might use (see e.g.,

[16] or [14]). These experiments can be thought of as having

disclosed ‘effective’ (context-dependent) priors of the brain, in the

sense that they revealed a specific aspect of the highly complex

perceptual model that underlies the brain’s perceptual and

learning machinery. According to the complete class theorem

(see e.g., [34]), there is always at least a set of priors and loss

functions that can explain any observed behaviour. This means

that one might not be able to experimentally refute the hypothesis

that the brain acts as a Bayesian observer. However, one might be

able to experimentally identify the effective priors of this virtual

brain, which should prove useful in robustly predicting behav-

ioural trends.

It is possible (in principle) to use the current framework with

experimental measures of neurophysiological responses (c.f. section

‘The response model’). To do this, one would need to specify the

response model in terms of how neural activity encodes subjective

representations and how brain connectivity subtends recognition

and learning. Such principles have already been proposed as part

of the ‘Bayesian brain’ hypothesis (see, e.g., [7,52,53,13]). In brief,

the perceptual model is assumed to be hierarchically deployed in

sensory cortex. Recognition is mapped onto this anatomical

hierarchy through top-down predictions and bottom-up prediction

error messages between different levels of a hierarchical perceptual

model, to provide a Bayesian variant of predictive coding [6]. Note

that these theories also consider the role of neuromodulators [54–

55] and the nature of motor outputs; i.e. behavioural responses

([22,56,57,58,59]). However, there is an ongoing debate about the

‘‘site’’ of decision-making in the cortex (e.g. [60]) and so far no

comprehensive theory exists that describes, in precise terms, the

neural and computational substrates of high-level decisions and

associated processes, such as the affective value of choices.

Experimental measures of decisions or choices deserve an

additional comment. This is because in this case, care has to be

taken with approximations to the optimal policy, when closed-

form solutions are not available. This might be an acute problem

in control theoretic problems, where actions influence the (hidden)

states of the environment. In this case, the posterior risk becomes a

function of action (which is itself a function of time). Minimizing

the posterior risk then involves solving the famous Bellman

equation (see e.g. [61]), which does not have closed-form solutions

for non-trivial loss-functions. The situation is similar in game

theory, when a subject’s loss depends on the decisions of the other

players. So far, game theory has mainly focussed on deriving

equilibria (e.g. Pareto and Nash equilibria, see [62]), where the

minimization of posterior risk can be a difficult problem.

Nevertheless, for both control and game theoretical cases, a

potential remedy for the lack of analytically tractable optimal

policies could be to compare different (closed-form) approxima-

tions in terms of their model evidence, given observed decisions.

Fortunately, there are many approximate solutions to the Bellman

equation in the reinforcement learning literature; e.g.: dynamic

programming, temporal difference learning and Q-learning ([63–

65]).

The complete class theorem states that there is always a pair of

prior and loss functions, for which observed decisions are optimal

in a Bayesian sense. This means it is always possible to interpret

observed behaviour within a BDT framework (i.e., there is always

a solution to the IBDT problem). Having said this, the proposed

framework could be adapted to deal with the treatment of non-

Bayesian models of learning and decision making. For example,

frequentist models could be employed, in which equation 3 would

be replaced by a minimax decision rule: a �~arg min
a

max
x
‘ x,að Þ.

In this frequentist case, generic statistical assumptions about the

response model residuals (see equations 7 and 8) would enable one

to evaluate, as in the Bayesian case, the response model evidence

(see equations 10 and 11). Since the comparison of any competing

models (including Bayesian vs. non-Bayesian models) is valid

whenever these models are compared in terms of their respective

model evidence with regard to the same experimental data, our

framework should support formal answers to questions about

whether aspects of human learning and decision-making are of a

non-Bayesian nature (cf. [66]).

Strictly speaking, there is no interaction between the perceptual

and the response model, because the former is an attribute of the

subject and the latter pertains to the (post hoc) analysis of

behavioural data. However, this does not mean that neurophys-

iological or behavioural responses cannot feedback to the

recognition process. For example, whenever the observer’s

responses influence the (evolution of the) state of the environment,

this induces a change in sensory signals. This, in turn, affects the

observer’s representation of the environmental states. The subtlety

here is that such feedback is necessarily delayed in time. This means

that at a given instant, only previous decisions can affect the

observer’s representation (e.g., through current sensory signals).

Another instance of meta-Bayesian inference (which we have not

explored here) that could couple the perceptual model to the

response model is when the subject is observing his or herself (cf.

meta-cognition).

The proposed meta-Bayesian procedure furnishes a generic

statistical framework for (i) comparing different combinations of

perceptual and response models and (ii) estimating the posterior

distributions of their parameters. Effectively this allows us to make

(approximate) Bayesian inferences about subject’s Bayesian

inferences. As stated in the introduction, the general IBDT

problem is ill-posed; i.e. there are an infinite number of priors and

loss-function pairs that could explain observed decisions. However,

restricting the IBDT problem to estimating the parameters of a

specific perceptual model (i.e. priors) and loss-function pair is not

necessarily ill-posed. This is because the restricted IBDT problem

can be framed as an inverse problem and finessed with priors (i.e.,

prior beliefs as an experimenter on the prior beliefs and loss-

functions of a subject). As with all inverse problems, the

identifiability of the BDT model parameters depends upon both

the form of the model and the experimental design. This speaks to

the utility of generative models for decision-making: the impact

that their form and parameterisation has on posterior correlations

can be identified before any data are acquired. Put simply, if two

parameters affect the prediction of data in a similar way, their

unique estimation will be less efficient.

Above, we noted (equation 12) that estimates of the subject’s

uncertainty might be inflated by experimental uncertainty. This

may seem undesirable, as it implies a failure of veridical inference

about subjects’ beliefs (uncertainty). However, this non-trivial

property is a direct consequence of optimal meta-Bayesian

inference. The following example may illustrate how experimental

uncertainty induces uncertainty about the subject’s representation:

Say we know that the subject has a posterior belief that, with

90% confidence, some hidden state x lies within an interval

l1+
ffiffiffiffiffi
l2

p
, where l1~E x uj½ � is their representation of x, and

l2~Var x uj½ � is the perceptual uncertainty. Now, we perform an

experiment, measure behavioural responses y, and estimate l1 to

lie within the credible interval l̂l1+
ffiffiffiffi
S
p

, where l̂l1~E l1 yj½ � is our
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experimental estimate of l1 and S~Var m yj½ � measures our

experimental uncertainty about it. Then, our estimate of the

subject’s credible interval, when accounting for our experimental

uncertainty about l1, is m̂m+
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2zS
p

. In general, this means that

estimates of the subject’s uncertainty are upper bounds on their

actual uncertainty and these bounds become tighter with more

precise empirical measures.

Finally, it is worth highlighting the importance of experimental

design for identifying (Bayesian decision theoretic) models. This is

because perceptual inference results from interplay between the

history of inputs and the subject’s priors. This means that an

experimenter can manipulate the belief of the observer (e.g.,

creating illusions or placebo effects) and ensure the model

parameters can be quantified efficiently. In our example, the

identifiability of the perceptual and response parameters is

determined by the magnitude of the sensory signals. This can

then be optimized as part of the experimental design. More

generally, the experimental design could itself be optimized in the

sense of maximising sensitivity to the class of priors to be disclosed.

In general, one may think of this as optimizing the experimental

design for model comparison, which can be done by maximizing

the discriminability of different candidate models ([67]).

In summary, the approach outlined in this paper provides a

principled way to compare different priors and loss-functions

through model selection and to assess how they might influence

perception, learning and decision-making empirically. In a

companion paper [68], we describe a concrete implementation

of it and demonstrate its utility by applying it to simulated and real

reaction time data from an associative learning task.

Supporting Information

Appendix S1 Appendix S1 (‘the variational Bayesian approach’) is

included as ‘supplementary material’. It summarizes the mathe-

matical details of variational approximation to Bayesian inference

under the Laplace approximation.

(DOC)
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