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SUMMARY

The biological relevance of principal component analysis (Pca) learning algorithms is addressed by: (i)
describing a plausible biological mechanism which accounts for the changes in synaptic efficacy implicit
in Oja’s ‘Subspace’ algorithm (Int. J. neural Syst. 1, 61 (1989)); and (ii) establishing a potential role for
pcA-like mechanisms in the development of functional segregation. pca learning algorithms comprise an
associative Hebbian term and a decay term which interact to find the principal patterns of correlations
in the inputs shared by a group of units. We propose that the presynaptic component of this decay could
be regulated by retrograde signals that are translocated from the terminal arbors of presynaptic neurons
to their cell bodies. This proposal is based on reported studies of structural plasticity in the nervous system.
By using simulations we demonstrate that Pca-like mechanisms can eliminate afferent connections whose
signals are unrelated to the prevalent pattern of afferent activity. This elimination may be instrumental
in refining extrinsic cortico-cortical connections that underlie functional segregation.

I. INTRODUCTION

An important class of learning algorithms, in un-
supervised learning, are the principal component
analysis (Pca) algorithms (Hornik & Kuan 1992;
Hertz et al. 1991). These algorithms were originally
developed from a theoretical perspective, with little
reference to neurobiological implementation or impli-
cations. This article: (i) describes a plausible biological
mechanism which could account for the synaptic
changes implicit in Pca-learning algorithms; and (ii)
illustrates a putative contribution of pca-like behaviour
to functional segregation in the sensory cortex.

(a) Pca learning algorithms

pcA learning algorithms are rules which govern
changes in synaptic efficacy by using an associative
Hebbian term in conjunction with a decay or forgetting
term. The decay term minimizes the correlations
among the outputs, or the connection strengths, and
extracts the principal components (or some linear
combination) of the input sequence. This behaviour
emulates Pcas used in statistics to extract the principal
dimensions or components embedded in some data.
Extracting these principal components from sensory
input is important from two points of view: feature
detection (Oja 1989; Foldiak 1989, 1990; Rubner &
Schulten 1990) and information theory (Linsker 1988;
Friston et al. 1992).

PcA learning algorithms provide a partial solution to
the problem of feature detection and perceptual
categorization. The task of a recognition system has
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been described as dividing ‘a set of high dimensional
pattern vectors, such as images or sounds, into a finite
number of classes’, where the selection of features relies
only on regularities in the input sequence (Foldiak
1989). Good features reduce dimensionality with a
minimal loss of information (or maximal information
transfer). Given certain assumptions, the eigenvector
solution or principal components of the input co-
variances have these optimal properties.

(b) Functional segregation

One fundamental principle of cortical organization
is functional segregation. This empirical phenomenon
places constraints on any putative learning algorithms
that may be implemented by the brain. pca-like
algorithms satisfy many of these constraints. The
connections between cortical regions are not con-
tinuous but occur in patches or clusters. This patchi-
ness, defined by extrinisic connections, has, in some
instances, a clear relation to functional segregation.
For example, V2 has a distinctive cytochrome oxidase
architecture, consisting of thick stripes, thin stripes and
interstripes. When anatomically identified recordings
are made in V2, and then correlated with the
cytochrome oxidase pattern, directionally selective
(but not wavelength- or colour-selective) cells are
found exclusively in thick stripes. Retrograde labelling
of cells in V5 is limited to these thick stripes. All the
available physiological evidence suggests that V5 is a
functionally homogeneous area specialized for motion.
Evidence of this nature supports the notion that patchy
connectivity is the anatomical correlate of functional
segregation and specialization (see Zeki (1990) for a
full discussion).

Functional segregation assembles functionally dis-
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tinct sets of signals into specialized areas, subareas and
patches. This requires correlated activity in the
convergent afferents which mediate this assembly.
Conversely uncorrelated or orthogonal activity in
divergent efferents is required to segregate and
redistribute signals from a functionally heterogeneous
area to a series of more functionally specialized areas.
Functional segregation therefore suggests: (i) activity
in convergent afferents is correlated; and (ii) activity
in divergent efferents is uncorrelated or orthogonal. An
anti-symmetrical arrangement, of this sort, satisfies
both the requirements of functional segregation (Zeki
1990) and those predicted by the principle of maximum
information transfer (Linsker 1988). See Friston et al.
(1992) for a complete discussion. This commonsense
analysis of functional segregation predicts that inputs
to a small cortical region will show correlated activity.
In other words, any inputs that arise (e.g. develop-
mentally) and are not correlated with the prevalent
pattern of incoming activity will be selectively elimin-
ated.

We describe a pca learning algorithm and: (i)
develop a possible biological mechanism which
depends on retrograde signalling from the terminal
arbors to the cell body of the presynaptic neuron; and
(ii) show that the algorithm can account for the
elimination of uncorrelated inputs implied by func-
tional segregation.

2. THEORY
(a) The algorithm

The pca-like algorithm considered is one of the
simplest and is known as Oja’s ‘Subspace’ algorithm
(Hornik & Kuan 1992):

AQ ={(Cx @ —Q-Cy), (1)

(our notation) where @ is the connection strength
matrix and AQ its change. Cx and Cy are the input and
output covariance matrices, respectively, and { is a
constant. The algorithm has an associative Hebbian
term (Cx Q) and a decay term (@-Cy). Computer
simulations of this equation show that, with time, @
tends to have orthonormal columns which span the
same subspace as the eigenvectors of Cx with the largest
eigenvalues (Oja 1989). This observation simply
confirms that the network is extracting the largest
principal components of the inputs.

Equation (1) is related to a number of rules and
architectures which show a similar behaviour. Mixed
networks, combining associative Hebbian connections
and decorrelating anti-Hebbian feedback (lateral) pro-
jections (Foldiak 1989, 1990; Rubner & Schulten
1990), also find the output space described by the
eigenvectors and render the outputs uncorrelated. A
rigorous convergence analysis of this class of learning
algorithms is found in Hornik & Kuan (1992).

We propose that equation (1) may be implemented
in the brain by: (i) a peripheral associative mechanism
which reflects the conjunction of local pre- and
postsynaptic depolarization; and (ii) a decay term that
represents the local interaction between central signals,
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integrated over all the peripheral extensions of the pre-
and postsynaptic neuron. For the postsynaptic neuron,
this signal is the total anterograde influence of all
presynaptic inputs to the dendritic tree. Similarly, for
the presynaptic neuron, this signal would reflect the
total retrograde influence of all the postsynaptic targets
on the terminal arbors. This integration, in the
postsynaptic neuron, could be the same as that
subtending action potentials at the initial segment (e.g.
electrotonic communication). In other words, the
postsynaptic associative and decay terms share the
same dependence on overall presynaptic input, but
their intracellular mechanisms and timecourses may be
very different. For the presynaptic neuron, integration
over presynaptic terminals depends explicitly on
retrograde axonal signals which converge on the cell
body. The symmetry of these proposed associative and
decay terms is apparent in figure 1, and they are
expressed as:

AQU oC <x1 yj> _€< (cpre ® Z Qik ylc) ’ (cpost ® yj)>7 <2>

where y, is the postsynaptic activity in unit j and is
2 Q. Xy; x; 1s the input activity of afferent ¢, and @, is
the connection strength; () is an averaging operator,
® denotes convolution, and € is a constant; ¢, and
¢post are functions of time which model the delay and
dispersion of weakening intracellular signals. These
delay and dispersion affects may differ markedly in the
pre- and postsynaptic cells. Equation (1) can be shown
to be a special, but important, case of equation (2) (see
Appendix 1).

(b) Biological evidence for centrally mediated synaptic
weakening

Equation (2) predicts something a little counter-
intuitive, namely, synaptic weakening, following post-
synaptic depolarization, in the context of no pre-
synaptic activity. This phenomenon has been observed
in electrophysiological studies of the ipsi- and contra-
lateral synapses formed by bilateral entorhinal pro-
jections to the dentate gyrus (Lopez et al. 1990). How
is the presynaptic component of this enduring synaptic
change mediated?

In synaptic systems that have been studied in detail,
an individual afferent makes contact with postsynaptic
cells through complex pre-terminal arborizations,
ending in multiple en passant and terminal boutons
(Burke 1987). These multiple synaptic connections
provide a rich repertoire for functional modulation of
each terminal (Gustafsson & Wigstrom 1988), tran-
sitions between different structural configurations
(Desmond & Levy 1990) or structural remodelling of
the terminal arbor (Mattson 1988). An equivalence
between functional and structural plasticity is implicit.
If valid, it follows that observations on axonal
remodelling, development and regeneration also apply
to functional plasticity. The lines of evidence sup-
porting an equivalence between structural and func-
tional plasticity are: (i) many intracellular systems act
as both mediators of neural outgrowth and mor-
phological responses to altered input; (ii) bidirectional
transition between presynaptic terminal and growth
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Figure 1. Schematic illustration of signalling between neurons
responsible for associative strengthening of synaptic efficacy
and its decay. The variables are defined in the text. Solid
line, dendrites; broken lines, axons.

cone; (iii) ultrastructural neuronal changes associated
with learning and memory; (iv) cytoarchitectural
response to changes in sensory input (impoverished or
enriched); (v) in vivo monitoring of neuronal cyto-
architecture; and (vi) structural responses to lesions.
See Mattson (1988) for a review of this evidence in the
context of neurotransmitter regulation of neuronal
remodelling. Rotshenker (1988) suggests that neurons
are in dynamic equilibrium with regards to axonal
growth. The processes leading to neurite extension
depend on growth promoting steps that involve either
a stimulus for growth or a removal of inhibitory
influences. It is proposed that growth-promoting
mechanisms are peripheral, in the sense that they
act directly on peripheral extensions (axons and ter-
minals). Motor axons can be induced to sprout and
form functional synapses while separated from the cell
body (before dying). Conversely, inhibitory central
mechanisms implicate the somata as sites of growth
regulation. Target-derived signals may be translocated
to the cell body where they exert inhibitory influences
on growth. A central inhibitory mechanism is based on
the following evidence: (i) motorneurons that are
partly or totally deprived (with the myotoxin carbo-
caine) of their target muscle fibres respond with
sprouting and synapse formation; (ii) axotomized frog
motorneurons regenerate their axons into areas that
lack any obvious source of growth factors; and (iii)
developing sensory neurons innervate the skin before
nerve growth factor (NGF) synthesis or synthesis of
NGF receptors on the nerve (Rotshenker 1988). This,
and other, evidence suggests that the cell body of the
presynaptic neuron is capable of mediating a weaken-
ing of its peripheral extensions in developmental,
regenerative and, by implication, functional plasticity.
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The proposed interaction between associative
strengthening and centrally mediated weakening
results in a pleasing dialectic. Dendrites will sample
afferents with highly correlated activity, whereas
axonal arbors will resist driving correlated dendrites.
The latter is a consequence of the weakening term. An
axon strongly and multiply connected to a series of
dendrites with correlated postsynaptic depolarization
will be subject to a substantial weakening of its
synapses. This resistance to driving correlated post-
synaptic neurons prevents convergence among outputs
that are connected to the same axon, and segregation
can thus ensue.

3. SIMULATIONS

By using simulations we tested the hypothesis that
the ‘Subspace’ algorithm (and implicitly all pca
algorithms) could account for the elimination of
afferent connections whose signals are uncorrelated
with the dominant input patterns. We present: (a) an
idealized simulation to demonstrate this behaviour is a
solid and clear way; and (b) a more realistic (but still
simple) simulation addressing functional segregation in
terms of ocular dominance.

(a) An idealized simulation

A network with 64 inputs and 8 outputs was
simulated on a slow timescale by using a stationary
input pattern described by Cx and using equation (1)
to update the connection strengths (with = 0.05).
Figure 1 shows the assumed covariance matrix of the
inputs (Cx). The first 16 inputs were mutually
orthogonal (the corresponding 16 x 16 subpartition
was the identity matrix). The remaining inputs were
substantially intercorrelated (see the figure legend for
details of how Cx was generated). The first 16 inputs
represent afferentation which bore no relation to the
prevalent pattern of input activity. They could be
thought of as afferents from wavelength-selective units
in V2 which have found themselves impinging,
inappropriately, on V5.

Equation (1) has the effect of driving the sum of
squares of @, over a dendritic tree to unity (cf.
Theorem 3 in Hornik & Kuan (1992)) and conse-
quently |@y] < 1 for all 7, 5. However, this conservation
does not apply to the @; which correspond to a
terminal arbor. It is possible for an input to develop
Qs which are all zero. In this case the afferent does not
contribute to any output, and has been eliminated. We
predicted the first 16 afferents would suffer this fate.

|Q,;| was interpreted as the probability of a func-
tionally active connection between units ¢ and j. As the
Q,; develop over time, different permutations of the
afferents will constitute the input sampled. Each input
is, at any time, functionally connected to one or more
outputs, with a probability p,, which is simply one
minus the probability that input ¢ is not connected to
any outputs, p; =1—II(1—]Q,l). We examined p,
over 100 iterations, starting with a random con-
nectivity matrix @ (elements were selected from a
Gaussian distribution and Euclidean normalized
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covariance matrix {Cx}

before
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Q

Figure 2. Cx: the (64 x 64) input covariance matrix Cx used in the first simulation. The last 48 units are substantially
intercorrelated, whereas the first 16 were mutually independent (orthogonal). The 48 x 48 subpartition of Cx was a
Toeplitz (autocorrelation) matrix of a Gaussian function of parameter 2. The 16 x 16 subpartition was the identity
matrix. : connection strengths mapping the (64) inputs to the (8) outputs before and after 100 iterations. Note that
the connection strengths from the first 16 inputs (top portion), to the outputs, have been eliminated. The orderly and
structured connections to the remaining 48 units have segregated in such a way as to render the outputs largely
uncorrelated. Cy: covariance matrix of the (8) outputs. At the end of the simulation the outputs were more
orthogonal. The grey scale is scaled to the maximum of each matrix.
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Figure 3. (a) The time-dependent probability (p,) that an input is connected to one or more outputs over 100
iterations (time). In accord with figure 1, (@ —after) the last 48 inputs have been ‘selected’ by the outputs and the
first 16 eliminated. () The eigenvalues associated with the eigenvectors of Cx. The broken line separates the first 8
eigenvalues from the rest. The flat portion of the curve corresponds to the eigenvector patterns due to the first 16

inputs.

(2 Q% = 1, sum over 7)). Simulations were done using
MATLAB (MathWorks Inc., Sherborn, Massachusetts,
U.S.A).

Figure 2 shows the idealized Cx, the connection
strengths (@), and output covariance matrices Cy,
before and after 100 iterations. The two effects, which
bear directly on functional segregation, are evident: (i)
orthogonalization of the outputs, reflected in the
prominent leading diagonal of Cy (however, note that
output decorrelation is not necessarily a convergent
property of the ‘Subspace’ algorithm); and (ii) the
elimination of afferent connections with orthogonal
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signals (top portion of ). This elimination preserves
specialization of the simulated region for the prevalent
stimulus attribute(s). Figure 3a shows the probabilities
(p;) that each afferent is connected to one or more
outputs. As predicted, the first 16 afferents were
selectively eliminated. Figure 3 b shows the distribution
of the eigenvalues associated with Cx. Note that the
eigenvalues corresponding to the first 16 inputs (flat
portion of the curve) are smaller than the eigenvalues
of the eight most prominent eigenvectors represented
in the outputs (broken line). This is why they were
eliminated.
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Figure 4. (a) The MRI images used to generate an input sequence. This 256 x 256 pixel mid-sagittal section of the
human brain was sampled independently (1000 times) by two square arrays of simulated receptors spaced 1 pixel
apart. The larger (10 x 10) array modelled right-eye input (right), and the smaller (4 x 4) array, left-eye input (left).
(b) Cx is the covariance matrix of the input sequence thus obtained. The top left subpartition is that representing the
smaller left-eye input. (¢) The time-dependent probability (p,) that an input is connected to one or more outputs over
100 iterations (time). Solid lines, left-eye inputs; broken lines, right-eye input. (d) The receptive field for one output

unit after 500 iterations.

(b) A more realistic simulation

The same procedure was then applied to a co-
variance matrix derived from a real time series. This
series was meant to represent input from two (un-
coordinated) eyes, and was obtained by repeated local
sampling of a picture (a magnetic resonance image
(Mr1) of the human brain). Most inputs modelled
afferent signals from the right eye using a 10 x 10 array
of simulated receptors, spaced 1 pixel apart. The left
input came from a similar (4 x 4) array. Both receptor
arrays were moved randomly over the picture 1000
times to create a sequence of 116 (= 102+4?) inputs.
The covariance matrix of this input sequence was
calculated and the connection strengths to ten output
units were updated for 500 iterations according to
equation (1) with { = 0.002. To make these simulations
more realistic, connection strengths were not allowed
to change sign. @ was a matrix of random elements
selected with uniform probability in the range [0, 1]
which were scaled by a factor of 1/n, where z is the
number of inputs.

The covariance matrix of the simulated visual input
i1s seen in figure 46 and shows the segregation of
covariance into two partitions corresponding to the
two eyes. The development of ocular dominance is
apparent in figure 4¢, which shows the selective
elimination of the 16 afferents from the left eye. This
elimination reflects the disproportionate influence of
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right eye inputs, which only results from their greater
number. The receptive field of a typical output unit is
also shown.

4. DISCUSSION

This paper makes two separate but related points.
First, by invoking a presynaptic retrograde signal in
the regulation of synaptic efficacy, a biological basis
for one pca learning rule emerges. This signal relies on
retrograde axonal transport from presynaptic terminals
to the cell body of an afferent neuron and is distinct
from (but depends on) retrograde signalling between
pre- and postsynaptic sites (see, for example, Gally et
al. 1990). Second, the resulting pca-like behaviour can
account for segregation of mixed inputs and the
elimination of orthogonal or unrelated afferents pre-
dicted by functional segregation.

(a) Axonal retrograde signalling

We have derived a pca learning algorithm (Oja’s
‘Subspace’ Algorithm) from a synaptic modification
rule that comprises a Hebbian associative term and a
biologically motivated decay term. The decay term
models a plastic mechanism acting at the level of the
cell body. The result is two complementary, interacting
and anti-symmetrical influences on synaptic connec-
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tivity : (i) synaptic consolidation, which depends on the
conjunction of local pre- and postsynaptic depolar-
ization events; and (i) synaptic weakening, which
again depends on a local interaction between a pre-
and postsynaptic signal but where these signals come
from the cell body. These signals reflect postsynaptic or
target activity ‘seen’ by all the presynaptic terminals of
cell 7 and, equivalently, the presynaptic influences
integrated over all the dendritic synapses on cell j. The
cell body is naturally implicated as the site of this
convergent integration, particularly on the presynaptic
side where there is no facility for electrotonic signalling
over the pre-terminal arbors.

As suggested by Rotshenker (1988), synaptic
induction (consolidation) and regression (weakening)
interact to render the endstate of neuronal extensions
in equilibrium. It is possible that one mechanism
mediating the weakening effect relies on inhibition of
the expression of morpho-regulatory proteins, for
example, growth associated protein, GAP-43. Support
for the notion that axonal structural changes have a
key role in dynamic (as opposed to developmental or
regenerative) plasticity derives from the involvement of
GAP-43 in long-term potentiation and synaptic regu-
lation (Benowitz & Routtenberg 1987). GAP-43 is a
rapidly transported axonal protein most prominently
expressed in regenerating and developing nerves.
However, the low-level persistence of GAP-43 in the
adult central nervous system (cns), where growth and
regenerative capacity are minimal, may suggest a role
for this molecule in neuronal remodelling (De la Monte
et al. 1989). GAP-43 expression is strikingly high in the
adult rat hippocampus, and has also been shown to be
localized with monoaminergic neurons in the brain
stem suggesting that ‘this phosphoprotein might be
involved in the functional plasticity and synaptic
transmission of monoaminergic neurons’ (Bendotti
et al. 1991).

The notion that axonal growth is under retrograde,
centrally (cell body) directed inhibitory control sug-
gests that collateral axonal growth should be potenti-
ated when that signal is attenuated by: (i) removal
of postsynaptic depolarization (see above, and Rot-
shenker 1988) ; and (ii) removal of collaterals distant to
the axonal extensions potentiated. There is some
evidence to suggest the latter. Stanfield (1989) has
reported that, if axons ascending from the locus
coeruleus are cut in rats then a more widespread
distribution of descending coeruleospinal neurons is
retained beyond the perinatal period. These results not
only suggest ‘that the absence of the normally retained
collateral of the locus coeruleus neuron is sufficient to
prevent the elimination of a collateral which would
otherwise be lost, but also may imply that the presence
of the maintained collateral is somehow causally
involved in the elimination of the transient collateral’
(Stanfield 1989). This is clear evidence of a central (cell
body) mechanism.

(b) Functional segregation and pca-like algorithms

The elimination of trivial and uncorrelated affer-
entation by a pca-like mechanism is not surprising.
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The important aspect of this phenomenon is its
relevance to functional segregation. Functional seg-
regation depends on divergent and convergent extrinsic
cortico-cortical connections which assemble function-
ally related signals in specialized areas and subareas
and then redistribute segregated, less-correlated signals
to other areas. Intrinsic connections within some
cortical regions may behave according to a pca-like
mechanism and, in so doing, segregate mixed inputs.
Furthermore, by eliminating uncorrelated afferenta-
tion, the same mechanism could also help to establish
appropriate patterns of extrinsic connectivity.

Extrinsic connectivity becomes committed at an
early stage of cns development (McConnell 1989; Sur
et al. 1990). A selective elimination of synaptic
connections (which would otherwise confound func-
tional segregation) may be instrumental in the refine-
ment and sharpening of axonal arbors during de-
velopment. During development, many bifurcating
axons could derive from a group of neurons (Edelman
1978). These axons may impinge in a largely arbitrary
fashion on distant groups, however, only those con-
vergent axons with non-trivial intercorrelations will be
selected (not eliminated) by pca-like mechanisms. In
this way, topographic segregation of function is
preserved. Note that this scenario precludes two
uncorrelated sets of axonal efferents from the same
group being connected to the same target group. In
this way convergence and divergence of extrinsic
connectivity (Zeki 1990) is ensured.

The elimination of afferents by the mechanisms
modelled in this paper depend on a complicated
interaction between eigenvalues of the input sequence
covariance maltrix, the contribution of each input to
these eigenvectors and the degree of dimension re-
duction. Elimination ensues whenever there is a
significant dimension reduction and a small subset of
inputs that are statistically independent of the domi-
nant input patterns.

It should be noted that there are many more
comprehensive mechanisms proposed for the formation
of patchy, ordered connectivity which take explicit
account of spatial interactions by using limited lateral
connectivity or lateral diffusion (see von der Malsburg
& Willshaw 1979; Kohonen 1982; Miller 1992;
Montague et al. 1991).

(¢) Conclusion

We hope to have extended the biological relevance
of pca-like plasticity by proposing a simple neuronal
mechanism and demonstrating a consistent relation
between the phenomenological aspects of pca-like
mechanisms and functional segregation.

K.J.F. was funded by the Wellcome Trust.

APPENDIX 1

The postsynaptic response of unit j(y,) to many
presynaptic inputs (x;) is 2 @, x,, where {x,> =0 (x,
can be interpreted as the deviation from mean firing



rate). Let yj(u) denote the cross-covariance, at
lagu, between x; and x;, y§(u) = {x,(t+u) x;(¢)). We
assume that x; is stationary and yf;(«) = 0 for u # 0.
This assumption can be partly relaxed (see below).
Therefore

yi(u) =0, for u#0. (A1)

In what follows we use a discrete time formulation
and rely on some standard results derived in the
frequency domain. Cross-spectral density gJj(w) be-
tween processes y;, and y; is (Cox & Miller 1980):

gh(w) = 1/2m Zyfu) e ™", (A2)
=v%(0)/2m  (from A 1). (A '3)
Changes in connection strength @, are effected by

an associative term and a centrally mediated decay
term (see text):

AQij oc 4 yj>—€<cpre RZQu i) (Cpost ® .’/7)>> (A4)

where ® denotes convolution; ¢, and ¢, are kernels
which account for the delay and dispersion associated
with convergence of intracellular signals, onto the cell
body, and redistribution to peripheral extensions. Let
Core have an associated transfer function A, ():

Apre(w) = 2 Cpre(t) ’ e_iw’

and similarly for ¢ If y,=¢,.®y, and
Y; = Cpost @ y; then equation (A 4) can be written more
compactly:

AQij oY Qkﬂ’fh(o) —eX Qik’y?)i}(()%

where

(A5)

(A6)

v5(0) = fg?}(w) do = prre<w) Apost (@) * - gy (@) dw

= v(0)/(2m) 'j/\pre(m Aposy(@)*dw. (A7)
If we let, for simplicity, 1/e be equal to the integral
in equation (A 7) (they are both constants), then the
expression for change in @; is

AQy; o X @y vi(0) —Z Qi v35(0), (A8)
or, in matrix notation:
AQ oc Cx-Q—Q - Cy. (A9)

This is the ‘Subspace’ logarithm. The main point
made here is that delay and dispersion do not affect the
relative covariances between two multidimensional
processes if the cross-spectral density is distributed
uniformly over all frequencies (equivalently, if the
cross- and auto-covariance functions decay very
quickly). Furthermore, the relative cross-covariances
are preserved even if the two delay and dispersions are
different for each process. The amount of cross-
covariance that remains after convolution depends on
the ‘overlap’ between the two convolution kernals (¢,
and ¢,,). This dependency is expressed in frequency
space in equation (A 7).

All these observations hold for any two processes
whose cross-spectral densities can be factorized into a
term which depends only on {i,j} and a second
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frequency-dependent term which does not depend on
{,J}. An analysis of the general case of arbitrary 7 («)
will be presented in a further paper.

Finally, it should be noted that the arguments
presented here could also apply to the associative term
in equation (A 4). For simplicity we have assumed that
the signalling which mediates Hebbian plasticity is
sufficiently fast that the associated convolution func-
tions can be modelled as ¢ functions. In this case, the
associative terms reduces to its usual form ({x,y,).
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Figure 2. Cx: the (64 X 64) input covariance matrix Cx used in the first simulation. The last 48 units are substantially
intercorrelated, whereas the first 16 were mutually independent (orthogonal). The 48 x 48 subpartition of Cx was a
Toeplitz (autocorrelation) matrix of a Gaussian function of parameter 2. The 16 X 16 subpartition was the identity
matrix. ): connection strengths mapping the (64) inputs to the (8) outputs before and after 100 iterations. Note that
the connection strengths from the first 16 inputs (top portion), to the outputs, have been eliminated. The orderly and
structured connections to the remaining 48 units have segregated in such a way as to render the outputs largely
uncorrelated. Cy: covariance matrix of the (8) outputs. At the end ol the simulation the outputs were more
orthogonal. The grey scale is scaled to the maximum of each matrix.
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Figure 3. (a) The ume-dependent probability (p,) that an input is connected to one or more outputs over 100
iterations (time). In accord with figure 1, (@ —after) the last 48 inputs have been ‘selected’ by the outputs and the
first 16 eliminated. (#) The eigenvalues associated with the eigenvectors of Cx. The broken line separates the first 8

eigenvalues from the rest. The flat portion of the curve corresponds to the eigenvector patterns due to the first 16
Inputs.
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Figure 4. (a) The MRI 1images used to generate an input sequence. This 256 x 256 pixel mid-sagittal section of the
human brain was sampled independently (1000 times) by two square arrays of simulated receptors spaced 1 pixel
apart. The larger (10 x 10) array modelled right-eye input (right), and the smaller (4 x 4) array, left-eye input (left).
(b) Cx 1s the covariance matrix of the input sequence thus obtained. The top left subpartition is that representing the
smaller left-eye input. (¢) The time-dependent probability (p;) that an input is connected to one or more outputs over
100 1terations (time). Solid hnes, left-eye inputs; broken lines, right-eye input. (d) The receptive field for one output
unit after 500 1terations.



