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a b s t r a c t

This paper presents a review of theoretical and empirical work on repetition suppression in

the context of predictive coding. Predictive coding is a neurobiologically plausible scheme

explaining how biological systems might perform perceptual inference and learning. From

this perspective, repetition suppression is a manifestation of minimising prediction error

through adaptive changes in predictions about the content and precision of sensory inputs.

Simulations of artificial neural hierarchies provide a principled way of understanding how

repetition suppression e at different time scales e can be explained in terms of inference

and learning implemented under predictive coding. This formulation of repetition sup-

pression is supported by results of numerous empirical studies of repetition suppression

and its contextual determinants.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The effect of stimulus repetition on neural responses is one of

the most studied phenomena in neuroscience. Typically,

repeated stimuli evoke neural activity with amplitudes

smaller than responses to novel stimuli. Although repetition

suppression is often portrayed as an expression of relatively

simple mechanisms, such as neural fatigue (Grill-Spector,

Henson, & Martin, 2006), its dependence on statistical regu-

larities in the environment and other contextual factors casts

repetition suppression as a consequence of sensory pre-

dictions (e.g., Summerfield, Trittschuh, Monti, Mesulam, &
tre for Neuroimaging, Ins

c.uk (R. Auksztulewicz), K

Elsevier Ltd. This is an ope
Egner, 2008). The predictive coding framework provides a

principled explanation of repetition effects in terms of

perceptual inference and learning, mediated by changes in

synaptic efficacy (Friston, 2005). Adaptive changes in coupling

of neuronal populations within areas and connectivity be-

tween areas are means of optimising a neuronal (generative)

model of the external world to provide more accurate and

precise predictions about sensory inputs. Thus, repetition

suppression can be understood in terms of ‘explaining away’

sensory prediction errors.

In the following, we will review modelling and experi-

mental work on repetition suppression in the setting of pre-

dictive coding. First, we introduce the predictive coding
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framework and portray neuronal message passing in terms of

descending predictions, ascending prediction errors, and

modulatory precision. We will then show how the predictive

coding scheme can be mapped onto a canonical cortical

microcircuit. The subsequent section will focus on explaining

the dynamics of repetition suppression using simulations and

computational modelling of empirical data. This will be fol-

lowed by a review of empirical studies on repetition sup-

pression and its context sensitivity, with a special focus on the

crucial role of predictions and precision in modulating the

effects of stimulus repetition.
2. Predictive coding

In order to maintain their integrity (e.g., homoeostasis), bio-

logical systems have to minimise the excursions or entropy of

their interoceptive and exteroceptive states. Since entropy is

the average of surprise (also known as surprisal or self-

information) over time, biological systems should continu-

ally minimise their surprise about sensory states. Mathe-

matically, this is equivalent to maximising the Bayesian

evidence for their model of sensory inputs, also known as

Bayesian filtering. Predictive coding (Friston, 2005; Mumford,

1992; Rao & Ballard, 1999) is a popular, neurobiologically

plausible Bayesian filtering scheme that decomposes the

optimisation of the agent's (neuronal) model of the world into

two tractable components; namely (1) changes in expecta-

tions about the sensory inputs and (2) the computation of

prediction errors that are needed to change expectations.

Minimising surprise e or maximising model evidence e

lies at the heart of the free energy principle, where free energy

provides a proxy for surprise that, under simplifying as-

sumptions, can be reduced to prediction error (Friston, 2010).

This means one can understand the process of perception as

the resolution of prediction errors, by changing top-down

predictions about the causes of sensory input (Fig. 1). Intui-

tively, the predictions descending along the processing (e.g.,

cortical) hierarchy are compared against sampled sensory

inputs in sensory cortex (or expectations as intermediate hi-

erarchical levels). The ensuing prediction errors are then

passed up the hierarchy to optimise expectations and subse-

quent predictions. If the ascending input matches the

descending prediction, the prediction error will be low e as

exemplified by repetition suppression. If the predictions are

inconsistent with the incoming input, the prediction error will

be high e as illustrated by mismatch negativity (Garrido,

Kilner, Stephan, & Friston, 2009). In the following, the notion

of perception under predictive coding will be unpacked in the

context of repetition suppression.

The ability of the brain to infer the causes of its sensations

rests upon the presence of statistical structure or contin-

gencies in the environment. These contingencies can be

embodied within a generative model describing the hierar-

chical and dynamic statistics of the external world:

D~xðiÞ ¼ f ðiÞ
�
~xðiÞ; ~vðiÞ�þ ~uðiÞ

x (1)

~vði�1Þ ¼ gðiÞ�~xðiÞ
; ~vðiÞ�þ ~uðiÞ

v : (2)
In the equations above, v denote causes representing

(hidden) causes (e.g., the bark of a dog), while x denote states

of the world mediating the influence of that cause on sensory

signals (e.g., the acoustic consequences of a dog barking).

Because these dynamics follow stereotyped trajectories over

time, they endow the model with memory. In equations

above, tilde is used to augment the variables with their

generalised coordinates of motion, i.e.,

~x ¼ �
x; x0; x

00
;…

�
: (3)

Eq. (1) describes themotion of states x(i) (at i-th hierarchical

level) as a nonlinear function f of causes and states them-

selves. Here D is a block-matrix derivative operator, with

identity matrices on its first leading-diagonal. Eq. (2) describes

the motion of causes at a hierarchically lower level i-1 as a

nonlinear function g of hidden causes and states at the level

above. Random fluctuations in hidden causes and states are

denoted by ~uðiÞ
v and ~uðiÞ

x respectively.

Since the brain does not have direct access to the causes

and states in the external world, it can only infer the most

likely values under its generative model: mathematically,

these values are expectations. In other words, the generative

model maps from causes to sensory consequences, while

perception solves the (usually very difficult) inverse problem

which is to map from sensations to their underlying causes.

An inversion of hierarchical dynamic models can be cast in

terms of a hierarchical message passing scheme also known

as predictive coding:

_~m
ðiÞ
v ¼ D~mðiÞ

v � v~v~ε
ðiÞ
xðiÞ � xðiþ1Þ

v (4)

_~m
ðiÞ
x ¼ D~mðiÞ

x � v~x~ε
ðiÞ
xðiÞ (5)

xðiÞv ¼ PðiÞ
v ~εðiÞv ¼ PðiÞ

v ð~mði�1Þ
v � gðiÞð~mðiÞ

x ; ~mðiÞ
v

�
(6)

xðiÞx ¼ PðiÞ
x ~εðiÞx ¼ PðiÞ

x ðD~mðiÞ
x � f ðiÞð~mðiÞ

x ; ~mðiÞ
v Þ

�
(7)

This message passing suggests two distinct populations

of neurons: one encoding the trajectory of the expectations

(conditional means) of hidden causes _~m
ðiÞ
v and states _~m

ðiÞ
x ,

which we can therefore label state-units, and one encoding

the prediction errors ~εðiÞv and ~εðiÞx weighted by their respective

precisions PðiÞ
v and PðiÞ

x , which we can label error-units.

These precisions are the inverse amplitude of the random

fluctuations above, so that when the fluctuations are

small, prediction errors become precise and are amplified.

To simplify notation, v~x and v~v are used to denote a

partial derivative with respect to hidden states and causes

respectively. Temporal derivatives, e.g., vtx, are denoted by a

dot _x.

These equations may look complicated but are formally

simple and quite revealing in terms of which (neuronal) units

talk to each other. In brief, the equations suggest that error-

units receive messages from populations in the same hierar-

chical level and the level above, while state-units are driven by

error-units in the same level and the level below. The pre-

diction errors from the same level xðiþ1Þ and the level below xðiÞ

provide lateral and bottom-up messages driving the condi-

tional expectations ~mðiÞ towards better lateral and top-down

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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Fig. 1 eMessage passing in the predictive coding scheme. This schematic illustrates the key asymmetry between ascending

prediction errors and descending predictions in predictive coding schemes. The descending predictions serve to explain

away sensory or neural input in lower areas. This is achieved by suppressing prediction errors, which in turn are used to

optimise expectations about the (hidden) causes of sensory inputs. The equations describe the optimisation scheme that is

discussed in more detail in the main text.
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predictions f(i) and g(i), serving to explain away the prediction

error in the level below. Thus, predictions are subserved by

the descending connections and prediction errors by

ascending connections.

As mentioned above, prediction errors are weighted by

their precision (or inverse variance). This allows for a disso-

ciation of themagnitude of prediction error from its reliability

e for example, in a noisy or volatile environment, continuous

signalling of large prediction errors should not (necessarily)

lead to large updates of expectations, since prediction errors

will be very imprecise. Conversely, even minor deviations of

sensory inputs from the descending predictions can lead to

large updates of the conditional expectations if prediction

errors are very precise. Crucially, precision itself has to

minimise surprise (about the amplitude of prediction errors).

Precision can therefore be manipulated exogenously; e.g., by

changing the contrast or statistics (e.g., texture) of the stim-

ulus, or endogenously; e.g., by attending to a particular sen-

sory stream or changing the contextual expectancy of

sequential stimuli. In other words, endogenous attention an-

ticipates precise sensory information (or prediction errors). As

we will see, the notion of precision will be key for interpreting

some of the empirical findings showing that repetition sup-

pression can be modulated by contextual factors such as

attention.
3. Canonical microcircuits and predictive
coding

The notion that the brain implements a predictive coding

scheme in its cytoarchitecture (Mumford, 1992) has recently

been put forward in the form of a canonical cortical micro-

circuit (Bastos et al., 2012) (Fig. 2). It draws upon the known

laminar asymmetries of ascending and descending connec-

tions in the brain, with ascending connections (from hierar-

chically lower to higher regions) originating predominantly in

superficial (supragranular) layers of the cortical sheet and

targeting spiny stellate cells in the granular layer e and

descending connections originating predominantly in deep

(infragranular) layers and targeting all layers with the excep-

tion of the granular layer (Felleman & Van Essen, 1991). These

asymmetries map neatly onto the distinction between pre-

dictions being propagated from hierarchically higher to lower

regions in the message passing scheme and prediction errors

being propagated in the opposite direction. Thus, in the ca-

nonical microcircuit for predictive coding, the deep pyramidal

cells are associated with encoding predictions about the cau-

ses of inputs to a given area, while the superficial pyramidal

cells are thought to represent prediction errors resulting from

a comparison of top-down predictions with expectations in

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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Fig. 2 e Mapping the predictive coding scheme onto a

canonical microcircuit. A canonical cortical microcircuit

has been proposed to implement predictive coding (Bastos

et al., 2012). This schematic shows a speculative mapping

of the key terms in the predictive coding scheme

(predictions and prediction errors about hidden causes and

states) onto distinct neuronal populations. Here, prediction

errors about hidden causes from hierarchically lower areas

are received by spiny stellate cells in the granular layer.

The spiny stellate cells also receive inputs from inhibitory

interneurons, encoding the prediction errors about hidden

states (i.e., describing the dynamics at a given hierarchical

level). These prediction errors are reconciled with

descending predictions from hierarchically higher areas

received by the superficial pyramidal cells, which

reciprocate the ensuing prediction errors. At the same

time, predictions are reconciled in the deep pyramidal

layers and relayed to hierarchically lower areas.

c o r t e x 8 0 ( 2 0 1 6 ) 1 2 5e1 4 0128
the microcircuit e or sensory input at the lowest hierarchical

level.

Ascending and descending connections have also been

shown to have distinct spectral profiles. Extensive work in the

macaque visual system has demonstrated spectral asymme-

tries between superficial and deep cortical layers. Within

cortical areas, activity in supragranular layers has been linked

to local synchronisation of gamma-band oscillations, while

neurons in infragranular layers typically synchronize in lower

frequency bands such as alpha and beta (Buffalo, Fries,

Landman, Buschman, & Desimone, 2011; Roberts et al., 2013;
Xing, Yeh, Burns, & Shapley, 2012). Similarly, synchronisa-

tion between areas in the gamma band has been shown to

subserve ascending connections from hierarchically lower to

higher regions (Bosman et al., 2012), while descending con-

nections are more likely mediated by inter-areal synchroni-

sation in the beta frequency band (Bastos, Litvak et al., 2015,

Bastos, Vezoli et al., 2015) Interestingly, this spectral asym-

metry between superficial and deep layers follows from a

closer inspection of the mathematical form of the predictive

coding scheme. Translating prediction errors into predictions

rests on a linear accumulation of prediction errors to give

slowly fluctuating estimates of hidden causes [Eqs. (4) and (5)].

As such, translating prediction errors into predictions e or

passing neuronal messages from superficial to deep cells e

entails a loss of higher frequencies. Conversely, translating

predictions into prediction errors rests upon a nonlinear

function [Eqs. (6) and (7)], which creates high-frequency pre-

diction errors (imagine squaring a sine wave to double its

frequency from beta to gamma). This raises the intriguing

possibility that rather than constituting distinct physiological

phenomena, different frequency bands form a spectrum

determined by the form of the neuronal microcircuit. In other

words, the laminar asymmetries inherent in microcircuits

and hierarchical message passing require prediction error and

prediction propagation to be mediated in different frequency

bands.

Mapping the predictive coding scheme onto a canonical

cortical microcircuit has important consequences. Since in

the predictive coding scheme the descending predictions are

subtracted from expectations in lower levels to form predic-

tion errors, descending connections from deep pyramidal

cells should inhibit activity in hierarchically lower areas

(Murphy & Silito, 1987; Olsen, Bortone, Adesnik, & Scanziani,

2012; Silito, Cudeiro, & Murphy, 1993), possibly using poly-

synaptic connections via inhibitory interneurons in Layer 1

(Chu, Galarreta, & Hestrin, 2003; Meyer et al., 2011; Wozny &

Williams, 2011). Similarly, the nonlinearity inherent in the

generative model prescribing top-down predictions speaks to

a modulatory character of descending predictions (Bullier,

Hup�e, James, & Girard, 1996; Covic & Sherman, 2011; De

Pasquale & Sherman, 2011; Mignard & Malpeli, 1991;

Sherman & Guillery, 1998). In the context of repetition sup-

pression, the inhibitory effects of descending connections

should attenuate the amplitude of neural responses, when

expectations can be successfully predicted by hierarchically

higher areas. The modulatory effects of descending connec-

tions, on the other hand, will manifest as changes in the

precision of prediction errors; possibly at a slower time scalee

such as changes in the attentional set or during perceptual

learning. The dual role of descending connections (cf. Kanai,

Komura, Shipp, & Friston, 2015) will be addressed in more

detail in later sections.
4. Models of repetition suppression based on
predictive coding

Many known characteristics of repetition suppression emerge

in simulations of predictive coding. This has been previously

shown in a formal model of an artificial brain perceiving

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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sequences of sensory events, simulated using attractor dy-

namics (Friston & Kiebel, 2009) (Fig. 3). In this model, the

predictive coding scheme was employed to allow the agent to

infer, categorize and learn its sensory inputs. As described

above, the predictive coding scheme formalises the notion

that the brain estimates hidden causes and states, repre-

senting the hierarchical structure and dynamics of the envi-

ronment, using precision-weighted prediction errors. This can

be mapped onto canonical cortical microcircuits whose su-

perficial pyramidal cells encode prediction errors about hid-

den causes, propagated to hierarchically higher areas via

ascending connections (Bastos et al., 2012). Similarly, deep

pyramidal cells send predictions via descending connections

to levels below.

Here, this architecture was used to model an artificial

songbird, assuming a simplified functional anatomy of bird-

song generation and perception. The artificial agent's goal was

to categorize three trajectories of sensory inputs correspond-

ing to three birdsongs. A predictive coding scheme was used

to model perceptual inference and categorisation. In percep-

tual inference, after a few hundredmilliseconds of listening to

any of the three birdsongs, the simulated neural activity cor-

responding to descending predictions about sensory input

recovers the trajectory of the input actually presented to the

agent. In perceptual categorisation, the expectations of hid-

den causes (that controlled the trajectories) at a higher level

disambiguated or categorised the three songs. This provides

an example of how sequences of sensory events unfolding in

time can be predicted and mapped to more abstract locations

in perceptual space, using predictive coding.
Fig. 3 e Simulating brain-like dynamics to perform perceptual i

was used to simulate brain-like dynamics in an artificial avian

perceive and categorise streams of auditory input, an example

thalamus, which receives the sensory input, is continually suppr

areas. Connections mediating prediction error propagation are

prediction propagation are shown in black.
Crucially, by simulating evoked responses to repeated

chirps, the same model can reproduce the dynamics of repe-

tition suppression e and, conversely, mismatch negativity e

at different time-scales (Fig. 4). To investigate the responses of

the artificial agent to repeated stimuli, a roving oddball para-

digm was simulated. In this paradigm, tones are repeated a

number of times, after which one or more of their attributes

are changed and the resulting tone is repeated several times.

The first tone in a sequence is defined as the sensory deviant,

while its subsequent repetitions gradually become a sensory

standard. Predictive coding of these sensory events (separately

for each trial) revealed that the simulated prediction errors at

the first (lowest) level peak at around 100 msec after stimulus

onset, corresponding to the classical N1 component, while

prediction errors at the second level peak at 150e250 msec

after stimulus onset, mimicking the typical latency of

mismatch negativity and consistentwith its neural generators

relying on hierarchically higher areas than those of the N1

component (Garrido, Kilner, Kiebel et al., 2009). Prediction

errors at both levels are progressively eliminated over peri-

stimulus time due to recurrent message passing and percep-

tual learning. In addition to minimising prediction error over

time on every trial, the prediction error in response to a novel

stimulus has a higher amplitude than prediction errors to

stimuli repeated in subsequent trials. In terms of the differ-

ence waveform, the MMN is largest following the first pre-

sentation of a sensory deviant and vanishes after

approximately two repetitions, while the amplitude of the N1

component fails to recover fully by the fifth repetition,

consistent with empirical findings (Garrido, Kilner, Kiebel
nference and categorisation. The predictive coding scheme

brain (Friston & Kiebel, 2009). The goal of the agent was to

of which is shown in the lower inset. The activity in the

essed by descending predictions from hierarchically higher

shown in red, while descending connections subserving

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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Fig. 4 e Repetition suppression dynamics at separate time-scales. The neural responses to repeated presentation of

auditory stimuli, as simulated in the artificial avian brain (Friston & Kiebel, 2009), show repetition suppression effects at

different time-scales. The left column contains panels illustrating the evolution of hidden states and causes at the lowest

hierarchical level states (dotted: true states, solid: conditional expectations). They describe the frequency and amplitude of

the sensory input, whose time-frequency representation is shown in the middle column. The right hand panels depict

prediction error evolving over the course of each trial. The uppermost row corresponds to a standard stimulus, while in the

second row a new stimulus is presented, resulting in a clear prediction error. Within trials, perceptual inference leads to a

suppression of prediction error over peristimulus time. Across trials, perceptual learning (i.e., optimising the parameters

and precision hyperparameters of the model) leads to repetition suppression.

c o r t e x 8 0 ( 2 0 1 6 ) 1 2 5e1 4 0130
et al., 2009). This sort of simulation shows that the process of

suppressing error can be decomposed into perceptual infer-

ence, occurring over peristimulus time, and perceptual

learning, occurring over the course of several trials. These two

aspects of error suppression can be formalised in terms of

expectations about dynamic hidden states and slowly

changing model parameters (including precision):

mx;v ¼ arg min
x;v

~ε$P$~ε (8)

mq ¼ arg min
q

X
t

~ε$P$~ε (9)

mP ¼ arg min
P

X
t

~ε$P$~ε� lnP (10)
Here, perceptual inference e as described in earlier para-

graphs e rests upon using precision-weighted prediction er-

rors to drive changes in conditional expectations of hidden

states and causes [Eq. 8]. In perceptual learning, the message

passing scheme is optimised on a slower time-scale in that its

parameters q [Eq. (9)] and precision parameters (hyper-

parameters) P [Eq. (10)] change as a function of precision-

weighted prediction errors accumulated over trials. Learning

the (hyper-) parameters of the model over the course of

several trials can be linked to changes in synaptic efficacy and

correspond to short-term plasticity.

An empirical study modelled the dynamics of repetition

suppression using Dynamic Causal Modelling (DCM) of event-

related potentials (ERPs) in humans (Garrido, Kilner, Kiebel

et al., 2009). A roving oddball paradigm was again used,

http://dx.doi.org/10.1016/j.cortex.2015.11.024
http://dx.doi.org/10.1016/j.cortex.2015.11.024
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comprising a structured sequence of pure auditory tones with

sporadically changing frequency. An incidental visual task

was used to maintain an attentional set away from the audi-

tory stimuli. An analysis of the ERPs revealed that after the

third presentation of any given tone, the evoked responses to

all subsequent tones differed only slightly, with no detectable

differences after the fifth repetition. Therefore, a parametric

DCM was adopted to examine the form of repetition-

dependent connectivity changes during the first five stim-

ulus presentations.

In the DCM, the effect of stimulus repetition was decom-

posed into two time courses: a monotonic exponential decay

function of stimulus repetition, mimicking slow cumulative

effects, and a phasic (gamma-density) function peaking after

the first repetition (Fig. 5). These two (basis) functions were

used to model trial by trial changes in intrinsic connectivity,

modelling the post-synaptic sensitivity of each source to all

inputs, and/or extrinsic connectivity, modelling the post-

synaptic sensitivity to source-specific inputs. The model that

best explained the observed data featured a mixture of both

effects, where biphasic plasticity (modelled as a combination

of exponential decay and negative phasic functions) was de-

ferred in intrinsic connections, while monotonic plasticity

(modelled as exponential decay only) was linked to extrinsic

(ascending) connections. This pattern of results is consistent

with the notion that intrinsic connections reflect the precision

(Friston, 2008), which should decrease after the presentation

of a novel stimulus and recover with its subsequent repeti-

tions (when more confident predictions can be made). On the

other hand, a monotonic decrease in ascending connectivity
Fig. 5 e Dynamics of adaptation and precision optimisation. By a

a roving oddball paradigm, Garrido, Kilner, Kiebel et al. (2009) p

underlying different time-scales of repetition suppression. The

intrinsic connections (modelling gain or precision effects) show

from lower (A1: primary auditory cortex) to higher (STG: superi

monotonic function of stimulus repetition. This is consistent wi

decreases after the presentation of a novel stimulus and recove

greatest for the first presentation of an (unpredicted) deviant st
speaks to an attenuation of prediction error signalling, after

each subsequent repetition.

The twomodelling approachese one based on simulations

of an artificial brain, one applied to empirical data e provide

converging evidence for the notion that repetition suppres-

sion can be formulated in terms of predictive coding. With

each stimulus repetition, the model of the sensory contin-

gencies is gradually optimised, as encoded in changes to

descending predictions. The descending predictions play a

dual role, resolving the prediction error induced by sensory

input and implementing changes in (expected) precision. Over

the past few years, there have been further simulations of the

mismatch negativity under predictive coding (e.g., Wacongne,

Changeux, & Dehaene, 2012) and there have been many pa-

pers re-interpreting the mismatch negativity in terms of hi-

erarchical inference in the brain (e.g., Winkler& Czigler, 2012).

In the next section, the implicit mechanisms will be illus-

trated with examples taken from empirical studies of repeti-

tion suppression.
5. Empirical studies of repetition
suppression in the context of predictive coding

5.1. The dual role of descending connections

Repetition suppression has been studied across species, im-

aging modalities, and stimulus categories. In the cat auditory

cortex, single neuron recordings have shown a decreased

response to standard stimuli and increased response to
pplying Dynamic Causal Modelling to EEG data acquired in

rovided evidence for distinct neuronal mechanisms

model that best explained the observed data suggests that

biphasic plasticity effects, while ascending connections

or temporal gyrus) auditory regions are modulated by a

th the notion that the expected precision of prediction error

rs with its repetitions, while prediction error signalling is

imulus and decreases with repetition.

http://dx.doi.org/10.1016/j.cortex.2015.11.024
http://dx.doi.org/10.1016/j.cortex.2015.11.024
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deviant stimuli within oddball paradigms (Ulanovsky, Las, &

Nelken, 2003). These effects likely extend beyond auditory

cortex to subcortical areas, with decreased responses to

repeated stimuli reported in single-neuron recordings from

rat inferior colliculus (Ayala & Malmierca, 2013) and the

medial geniculate body of the thalamus (Antunes, Nelken,

Covey, & Malmierca, 2010). Repetition suppression of subcor-

tical activity is modulated, although not abolished, after

deactivation of auditory cortex (Anderson & Malmierca, 2013;

Antunes & Malmierca, 2011) as well as after pharmacological

manipulation of GABAA receptors in the inferior colliculus

(P�erez-Gonz�alez & Malmierca, 2012) and medial geniculate

body (Duque, Malmierca, & Caspary, 2014). This is consistent

with the implementation of predictive coding within a ca-

nonical microcircuit (Bastos et al., 2012), where descending

predictions are typically modelled as targeting inhibitory in-

terneurons that enable superficial pyramidal cells to compare

incoming sensory input with the descending predictions. As

mentioned above, in the cortex this computational principle is

thought to rely on descending connections terminating pre-

dominantly in layer 1, containing exclusively inhibitory in-

terneurons. Similar mechanisms might be in place in

subcortical areas. For example, descending cortico-thalamic

projections target inhibitory cells in the reticular nucleus of

the thalamus (Zhang & Jones, 2004). In the inferior colliculus,

GABAergic neurotransmission has been shown to play a

dominant role in shaping and modulating functionally speci-

alised responses (Faingold, 2002). The findings that deacti-

vating descending connections has a predominantly

modulatory effect suggests that subcortical areas may receive

descending predictions of the precision of ascending auditory

information, contextualising this input to mediate temporal

attention (Nobre, Correa, & Coull, 2007). Indeed, manipulating

temporal regularity in the roving oddball paradigm leads to

increased repetition suppression effects under predictable

stimulus timing (Costa-Faidella, Baldeweg, Grimm, & Escera,

2011).

The evidence for a modulatory role of descending con-

nections in repetition suppression of BOLD responses was

further addressed in a DCM study using fMRI (Ewbank et al.

2011). Here, participants viewed repeated images of human

bodies, which were either identical across repetitions or

differed with respect to the size and/or view of the depicted

body. BOLD responses were modelled in DCMs comprising

regions of interest in the ventral visual stream e the extras-

triate body area and the fusiform body area. Repetition sup-

pression was modelled as modulating the extrinsic

connections between the extrastriate and the fusiform re-

gions (ascending, descending, both, or neither) and/or the

intrinsic connections describing the self-inhibition of the

extrastriate and the fusiform regions. Model comparison

revealed that when images were presented under changing

size or view conditions, stimulus repetition affected the

descending connections from the fusiform to the extrastriate

body area, as well as intrinsic connections in both regions.

However, under constant size and view conditions, stimulus

repetition also affected the ascending connections, reducing

the strength of these connections. The change in descending

connectivity with repetition suppression is consistent with

perceptual learning that enables them to suppress ascending
sensory input. Concurrent modulation of intrinsic connec-

tions corroborates the dual role of descending predictions not

only in resolving prediction errors but also inmodulating their

precision. Finally, the additional decrease in strength of

ascending connections by repetition of identical images sug-

gests that neuronal populations in the extrastriate body area

learn to predict low-level visual features, thereby attenuating

prediction errors propagated from that area.

5.2. Precision modulation and repetition suppression

Since prediction errors are weighted by their expected preci-

sion, changing precision at various levels of the cortical hier-

archy should modulate repetition suppression effects.

Synaptic gain control mechanisms such as N-methyl-D-

aspartate (NMDA), as well as classical neuromodulators such

as acetylcholine (ACh), dopamine and serotonin are natural

candidates to implement precision or gain control in predic-

tion error signalling (cf. e.g., Iglesias et al., 2013). Thus, phar-

macological manipulations of neurotransmission and

neuromodulation should influence repetition suppression.

Similarly, manipulating sensory precision by stimulus con-

struction (e.g., increasing its signal-to-noise ratio) or task in-

struction (e.g., by altering attentional set) shouldmodulate the

effects of stimulus repetition. Furthermore, due to the

nonlinearity inherent in precision-weighting of prediction

errors, manipulating precision at higher hierarchical levels of

abstraction or encoding, e.g., by changing stimulus expec-

tancy or environmental volatility, should have different ef-

fects on repetition suppression related to manipulating

precision at lower (sensory) levels (Fig. 6). In the following

paragraphs, we will review studies providing evidence for the

modulatory effects of changing the precision of sensory in-

formation at various hierarchical levels.

In predictive coding, the learning of statistical regularities

in the environment rests upon optimising descending pre-

dictions (of content and context). This learning implicates

short-term synaptic plasticity and neuromodulatory effects of

the sort mediated by NMDA-type glutamate (for perceptual

learning of content) and ACh receptors (for mediating atten-

tion through expected precision). Prediction errors, on the

other hand, are conveyed by ascending (driving) connections

that use fast AMPA-type glutamate receptors. This asymmetry

is not only supported by empirical differences between

ascending and descending projections but can be deduced

from the form of Eqs. (4) and (6): note that expectations are

driven by a linear mixture of ascending prediction errors,

while prediction errors depend upon non-linear functions of

descending expectations (Friston, 2005). Thus, pharmacolog-

ical manipulations of NMDA- and ACh-dependent processing

should primarily influence learning and attention, leaving

inference per se relatively intact. In the context of repetition

suppression, impaired learning would be evident in a loss of

the attenuation of evoked responses with stimulus repetition,

while intact inference would manifest itself in a preserved

response to sensory deviants. Exactly this pattern of results

was observed in a double-blind study in which ACh receptor

agonist nicotine (Baldeweg, Wong, & Stephan, 2006) was

administered in a roving oddball paradigm. Drug administra-

tion, relative to placebo, increased the amplitude of neural

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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responses in frontal areas to repeated stimuli, while leaving

the negative components of event-related potentials in

response to sensory deviants intact.

Similarly, a DCM study investigated the effects of galant-

amine (a cholinesterase inhibitor, increasing the availability

of ACh in synapses) on mismatch negativity (Moran et al.,

2013). An analysis of evoked responses to subsequent stim-

ulus repetitions showed diminished repetition suppression to

oddball stimuli in sensory cortices. Under placebo, as shown

in a previous study (Garrido, Kilner, Kiebel et al., 2009), the

expected precision of prediction errors is thought to be sup-

pressed after the first occurrence of a stimulus and gradually

increase with successive stimulus repetitions. This effect can

be seen in Fig. 5, where precision recovers with repetitions of

the new standard; thereby enhancing prediction error re-

sponses that are progressively attenuated by learning. The

implication here is that repetition effects on learning and

precision produce repetition suppression and enhancement

respectively, where suppression would normally supervene.

However, increasing the availability of ACh by galantamine

administration should counteract any initial decrease of pre-

cision and augment repetition enhancement, leading to

attenuated and delayed repetition suppression. Importantly,

the DCM used to model this attenuation of repetition
suppression empirically was based on a canonical microcir-

cuit (Bastos et al., 2012). Cholinergic manipulation was linked

to changes in gain (self-inhibition) of superficial pyramidal

cells, consistent with its role in mediating the expected pre-

cision of prediction errors.

Another DCM study investigated the mechanisms under-

lying the effects of NMDA-receptor antagonist ketamine,

administered in a roving oddball paradigm (Schmidt et al.,

2013). Besides replicating previous findings (Garrido, Kilner,

Kiebel et al., 2009) in terms of the winning model e which

included a modulation of both intrinsic and extrinsic con-

nections by sensory deviance e this study showed that keta-

mine reduced synaptic plasticity (extrinsic connections) but

not adaptation (intrinsic connections) in the auditory cortex.

This is consistent with a role of NMDA receptors in perceptual

learning (that changes extrinsic connections), as distinct from

a role of neuromodulation in precision or gain control (that

changes intrinsic connections). Furthermore, changes in

extrinsic connections were correlated with ratings of cogni-

tive impairment induced by ketamine. These findings suggest

that blocking the NMDA-type glutamate receptors impairs the

ability to learn the (changing) parameters of a generative

model efficiently. On the other hand, adaptive control of

precision in the sensory cortex might rely more on classical

http://dx.doi.org/10.1016/j.cortex.2015.11.024
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neuromodulators, such as ACh. A more direct assessment

(e.g., using optogenetic methods) of the relative contribution

of different neuromodulatory mechanisms to hierarchical

message passing remains an important subject of future

studies.

Beyond pharmacological manipulations, sensory precision

can be modulated by various exogenous and endogenous

factors. Decreasing stimulus visibility, for instance, has been

shown to abolish repetition suppression effects (Turk-

Browne, Yi, Leber, & Chun, 2007), consistent with modelling

work linking visual contrast to sensory precision (Brown &

Friston, 2012). Similarly, directing attention to stimuli, which

in previous modelling work had been linked to increased

sensory precision (Feldman & Friston, 2010), has been shown

to increase the amplitude of a mismatch response by dis-

inhibiting early sensory areas (Auksztulewicz & Friston, 2015).

In the latter study, DCMwas used tomodel MEG data acquired

from healthy participants performing a task in which sensory

expectation and temporal attention were orthogonally

manipulated. Specifically, auditory tones formed a roving

oddball sequence, where changing tone frequency differenti-

ated between sensory standards and deviants. Furthermore,

attention could be deployed to (or diverted away from)

different time windows in which the auditory tones could

appear. Temporal attention was shown to significantly

modulate sensory expectations, with the amplitude of evoked

neural responses in auditory areas differentiating between

sensory standards and deviants only when the tones were

attended. Crucially, DCM revealed that the effect of attention

was mediated by changes in descending connectivity from

higher to lower auditory regions, targeting inhibitory in-

terneurons in primary auditory cortex. This finding was

consistent with previous fMRI studies in the visual domain,

showing that repetition suppression of BOLD responses is

modulated by spatial attention (Eger, Henson, Driver,&Dolan,

2004; Henson & Mouchlianitis, 2007) as well as feature-based

attention (Moore, Yi, & Chun, 2013; Yi & Chun, 2005; Yi,

Kelley, Marois, & Chun, 2006). Although some forms of repe-

tition suppression or mismatch responses can be preserved in

the absence of attention (cf. Sussman, Chen, Sussman-Fort, &

Dinces, 2014), the studies reviewed here suggest that attention

e by increasing the gain at early processing stages, or the

precision of sensory prediction errors e will serve as a

modulatory factor, influencing the prediction error responses

underlying repetition suppression.

Attention has often been operationalised as the relevance

of a particular stimulus for the task at hand (Summerfield &

Egner, 2009). A direct comparison of neural responses to

relevant and irrelevant repeated stimuli provides evidence for

the modulatory character of stimulus relevance, with respect

to repetition suppression (Miller, Erickson,& Desimone, 1996),

although these effects might not be universal across the cor-

tex (Miller & Desimone, 1994). In these studies, macaques

performed a variant of a delayed match-to-sample task in

which the sample and target were separated by repeating

non-match stimuli (e.g., ABB0A0, where A is the sample, A0 is
the matching target, and repeating non-match BB0 stimuli

separate the two). The macaques were trained to respond to

the target stimulus only. Neurons in the prefrontal cortex that

showed a suppression of their firing rate in response to
repeated (task relevant) stimuli, relative to their first presen-

tation in a trial (i.e., A0eA), also suppressed their responses to

irrelevant repeated stimuli (B0), although to a lesser degree

than for relevant repeated stimuli (Miller et al., 1996). In the

inferior temporal cortex, on the other hand, the degree of

suppression was not significantly modulated by task rele-

vance e at least when compared to the sample stimulus A

(Miller & Desimone, 1994). In both areas, however, neurons

that showed repetition suppression of target-evoked activity

firedmost vigorously in response to the first occurrence of the

non-match stimulus (B), indicating a strong prediction error

response. Since neither of these studies analysed the inter-

action of repetition suppression and task relevance directly

(A0eA vs B0eB), but only compared the firing rate of neurons in

response to repeated stimuli relative to the sample (A0eA vs

B0eA), further work is needed to directly assess the interactive

effects of relevance and repetition on the firing rate of single

neurons in areas beyond sensory cortex. Crucially, however, if

task relevance provides a good operationalisation of attention,

its modulatory effects should be most pronounced in early

sensory areas (cf. Auksztulewicz & Friston, 2015).

In contrast to attention, which has been be linked to low-

level (sensory) precision, manipulating precision at higher

contextual levels has been addressed by manipulating repe-

tition probability e building upon a distinction between

repetition suppression and expectation suppression. The ex-

pectations here rely upon context (e.g., sequential structure or

stimulus probability), and thus are presumably located at high

hierarchical levels that can represent contextual factors. Ac-

cording to predictive coding, descending predictions of

incoming repeated stimulus should suppress the prediction

error resulting from the presentation of this stimulus. How-

ever, if the stimulus sequence is constructed such that stim-

ulus alternation is more likely than repetition, presenting an

identical stimulus twice should result in a prediction error,

while valid expectations of a different stimulus should sup-

press prediction error. The initial finding that stimulus repe-

tition probability affects repetition suppression (Summerfield

et al., 2008) was based on fMRI data acquired from humans,

and has since been replicated by other groups (Andics, G�al,

Vicsi, Rudas, & Vidny�anszky, 2013; Grotheer & Kov�acs, 2014;

Larsson & Smith, 2012; Mayrhauser, Bergmann, Crone, &

Kronbichler, 2014). The latter study (Grotheer & Kov�acs,

2014) also showed that the influence of expectation on repe-

tition suppression depends on prior experience. Although

repetition suppression occurred for both familiar (upright

Roman letters) and unfamiliar (false fonts) stimuli, the influ-

ence of expectation on repetition suppression was only

observed in the case of familiar stimuli. This suggests that

extensive prior experience facilitates the forming of pre-

dictions which, at the contextual level, influence repetition

suppression.

Interestingly, the effects of repetition suppression and

expectation suppression have been shown to be dissociated in

time using MEG (Todorovic& de Lange, 2012). While repetition

suppression was most prominent at relatively early latencies

(40e60 msec) of the auditory evoked response, expectation

suppression was present at later latencies (100e200 msec),

within the mismatch negativity range. The relatively early

onset of repetition effects suggests that repetition
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suppression may reflect low-level expectations based on local

transition probabilities (Garrido, Kilner, Kiebel, & Friston,

2007; Kiebel, Daunizeau, & Friston, 2008; Wacongne et al.,

2011), and replicates previous findings showing that devi-

ance magnitude (i.e., the absolute frequency of a deviant in

the stimulus sequence) affects early components of the

evoked response up to the N1 component (Horv�ath et al., 2008)

but not the later components of the MMN proper. The effects

of stimulus probability, on the other hand, might rely on hi-

erarchically higher expectations about the sequence structure

or likelihood of stimuli, induced by learning of the statistical

regularities of the sequence. This pattern of results is

consistent with a cascade of prediction errors that update

predictions at progressively higher levels of the processing

hierarchy, as reflected in the hierarchically distinct generators

of the early and late components of the evoked response

(Friston & Kiebel, 2009; Garrido, Kilner, Kiebel et al., 2009).

Interestingly, at even later latencies (200e500msec) repetition

and stimulus probability showed an interaction effect, repli-

cating themodulatory effects of expectation observed in fMRI.

As discussed above, repetition suppression is subject to

attentional modulation. Similarly, the interaction of expecta-

tion and repetition has been shown to depend on top-down

attention (Larsson & Smith, 2012). When participants atten-

ded to the visual stimuli, expectation influenced repetition

suppression of BOLD activity in extrastriate areas. However,

when participants diverted their attention away from the

stimuli, only repetition suppression was observed (albeit the

overall amplitude of the visual response was attenuated),

while the effects of stimulus expectation were abolished. This

finding might explain why the interaction of expectation and

repetition was not replicated in an invasive study in the ma-

caque inferior temporal cortex (Kaliukhovich & Vogels, 2011),

since in that study stimuli were presented under passive

fixation.

The results of studies investigating the interactions be-

tween repetition and attention are in line with the nonlinear,

modulatory nature of precision or gain control in predictive

coding. Due to this nonlinearity, independent manipulations

of precision at different hierarchical levels might even have

antagonistic effects on neural responses in sensory areas

(Kok, Rahnev, Jehee, Lau,& de Lange, 2012). Therefore, we now

turn to experiments showing that, under specific conditions,

stimulus repetition might lead to enhanced neural activity.

5.3. Repetition suppression and repetition enhancement

Besides repetition suppression effects, several studies have

reported repetition enhancement effects, or increased

neuronal responses to repeated stimuli (for a review, cf.

Segaert, Weber, de Lange, Petersson, & Hagoort, 2013). In a

roving oddball paradigm administered in MEG (Recasens,

Leung, Grimm, Nowak, & Escera, 2014), repetition enhance-

ment has been shown to occur later (at 230e270 msec) than

the repetition suppression effects (95e150 msec) which

contribute to the mismatch negativity. Both of these effects

could be localised to sources in auditory cortex including

Heschl's gyrus and superior temporal gyrus, as well as middle

temporal gyrus. However, repetition enhancement effects

were associatedwith additional sources in the anterior insula.
Functional dissociations between repetition suppression and

enhancement have also been observed using fMRI for distinct

stimulus categories. For example, repetition suppression

characterised BOLD responses to familiar faces, while repeti-

tion enhancement was observed in response to unfamiliar

faces (Henson, Shallice, & Dolan, 2000). Similarly, repetition

suppression was reported under conditions of high stimulus

visibility, while degrading stimulus visibility yielded repeti-

tion enhancement effects (Turk-Browne et al., 2007).

A recent fMRI study (Müller, Strumpf, Scholz, Baier, &

Melloni, 2013) tried to reconcile these two apparently

opposing phenomena. In this paradigm, novel visual scenes

were presented to participants at low contrast and exposure

duration (50 msec) a number of times. BOLD responses in

scene-selective regions followed an inverted U-shape func-

tion of stimulus repetition, with the first five presentations

of a novel stimulus showing gradual repetition enhance-

ment and further presentations showing gradual repetition

suppression. This suggests that while learning a new model

of a stimulus, repetition leads to a gradual increase in the

precision of perceptual predictions at higher levels in the

hierarchy, consistent with the relatively late latency of

repetition enhancement observed in MEG (Recasens et al.,

2014). After the perceptual representation of a stimulus

has been established, precision control can be deployed at

lower levels in the sensory processing hierarchy, leading to

(early-latency) repetition suppression. This deployment can

be understood as a reduction of model complexity at the

lower levels of the hierarchy. Formally, this may correspond

to Bayesian model averaging, in which the predictions of

different models are weighted according to their evidence.

The ensuing Bayesian model average provides an optimal

model, under which learning can proceed (FitzGerald, Dolan,

& Friston, 2014).

Similar arguments have been raised in interpreting the

results of another study (Zago et al., 2005), where the ampli-

tude of BOLD repetition suppression e as well as behavioural

performance (cf. Miyoshi et al., 2015) e was shown to depend

on the exposure duration of the first stimulus in a non-linear

fashion. At the shortest exposure duration examined

(40 msec), BOLD response to subsequently repeated stimuli

was not significantly suppressed, and in some areas was

nominally enhanced (cf. Müller et al., 2013, although note that

the two studies differ in the level of visual contrast and fa-

miliarity with the stimuli). For exposure durations up to

250 msec, the BOLD activity in extrastriate regions was pro-

gressively more suppressed in response to repeated stimuli.

However, for even longer exposure durations (up to

1900 msec), the degree of repetition suppression decreased

again, although it remained stable across a range of durations

tested. This is consistent with the idea that at very short du-

rations (e.g., 40 msec), the process of perceptual inference

might be incomplete, recovering the hidden causes of sensory

inputs with low precision e and resulting in weak repetition

suppression. However, with longer exposure times of

250 msec, the hidden causes can be recovered with high pre-

cision, leading to stronger repetition suppression. Finally,

longer exposure times can lead to further model optimisation

and deployment of precision control to hierarchically lower

areas, resulting in a steady level of repetition suppression.
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Another attempt at integrating repetition suppression and

enhancement effects provided evidence for their co-

occurrence within extrastriate visual regions (de Gardelle,

Waszczuk, Egner, & Summerfield, 2013). Based on fMRI data

acquired in a paradigm in which face images were repeatedly

presented to participants, two subpopulations of voxels were

isolated in the fusiform face area (as well as at more posterior

occipital sites in Brodmann Areas 18 and 19), showing repe-

tition suppression and enhancement effects respectively. The

two subpopulations in the fusiform face area were spatially

clustered (for example, the right fusiform face area showed an

anterior-posterior gradient of voxels showing enhancement

vs. repetition), stable across experimental sessions, and

showed different peak latencies of the BOLD response (again,

with the repetition suppression effects occurring earlier than

repetition enhancement) as well as differential functional

connectivity patterns. Specifically, the activity of voxels

showing repetition suppression correlated preferentially with

activity in lower visual regions, suggesting that these voxels

might be more responsive to ascending input. This is consis-

tent with the findings of invasive studies in the macaque

cortex, where inferior temporal cortex has proportionally

more neurons showing repetition suppression (Miller &

Desimone, 1994), in contrast to the prefrontal cortex with

more neurons showing repetition enhancement (Miller et al.,

1996). In terms of predictive coding, this suggests that voxels

showing repetition suppression effects might be mediated by

neurons signalling prediction errors, which become progres-

sively weaker as stimulus repetition leads to their more

effective reconciliation with the descending predictions. On

the other hand, the repetition enhancement subpopulation e

originally interpreted in terms of these voxels being populated

by prediction units emight reflect positive effects of stimulus

repetition as the expected precision of (or confidence in) pre-

diction errors increases with perceptual learning. As a result,

evenminimal differences between the descending predictions

and the incoming sensory inputs will be amplified by strong

precision weighting (for a more detailed discussion of the

relation between confidence and precision, see e.g.,

FitzGerald, Moran, Friston, & Dolan, 2015; Kanai et al., 2015;

Moran et al., 2013). The relatively late latency of repetition

enhancement effects on the amplitude of the evoked response

(Recasens et al., 2014) speaks exactly to the sort of slow neu-

romodulatory mechanisms (i.e., short-term plasticity) of

perceptual learning discussed above. In summary, we again

see the opposing effects of learning that mediates repetition

suppression (of prediction errors) and the increase in preci-

sion or confidence in prediction errors with repetition that

may underlie repetition enhancement (through precision

weighting).

5.4. Oscillatory mechanisms of repetition suppression

As discussed in previous sections, the predictive coding

framework postulates different spectral profiles of descending

predictions and ascending prediction errors (Bastos et al.,

2012). Since prediction errors are linearly accumulated over

time in order to inform predictions, the implicit trans-

formation of prediction errors into predictions will entail a

loss of high frequencies. Conversely, the non-linear
dependency of prediction errors on prediction augments high-

frequency message passing from deep to superficial cortical

layers. How do these spectral asymmetries hold in the context

of repetition suppression? MEG studies in humans have

shown suppression of gamma-band synchrony (as well as

evoked responses) in auditory cortex following an expected

stimulus repetition, consistent with a successful mini-

misation of the prediction error (Todorovic, van Ede, Maris, &

de Lange, 2011). In the same study, unexpected stimulus

repetitions were associated with stronger gamma-band re-

sponses than expected stimulus repetitions, indicating

stronger prediction error signalling e possibly in superficial

layers of auditory areas, although a direct assignment of

prediction error propagation to a specific laminar profile re-

mains to be established using intralaminar recordingsewhen

the descending prediction did not match sensory input.

Gamma-band synchronisation in response to stimulus

repetition has also been studied invasively in the macaque

visual cortex (Brunet et al., 2014). Here, a repeated presenta-

tion of visual gratings increased visually-induced gamma-

band activity in the primary visual cortex and in area V4, as

well as gamma-band coherence between V1 and V4 activity.

Although these findings might seem inconsistent with the

results from the human auditory cortex, in which expected

stimulus repetition is linked to decreased gamma-band ac-

tivity, the macaque study also reported dissociations in the

trial-by-trial evolution of gamma-band response depending

on cell population. Interestingly, the repetition-dependent

increase of gamma-band activity was limited to narrow-

spiking cells in area V4 (putative inhibitory interneurons),

while broad-spiking cells (putative pyramidal cells) showed

repetition-dependent decrease of gamma-band activity,

consistent with their role in signalling prediction error. The

positive effect of stimulus repetition on inhibitory in-

terneurons, on the other hand, supports their role in modu-

lating pyramidal activity by providing a gain mechanism

which can be described in terms of precision of prediction

errors (cf. Auksztulewicz & Friston, 2015).
6. Predictive coding and alternative accounts
of repetition suppression

One of the initially counterintuitive features or repetition

suppression effects is that less neural activity is associated

with improved behavioural performance. This apparent op-

position has attracted various explanations in terms of facil-

itation, sharpening, and synchronisation (Gotts, Chow, &

Martin, 2012). According to the “facilitation” hypothesis of

repetition suppression (Henson, 2003; James & Gauthier, 2006;

James, Humphrey, Gati, Menon, & Goodale, 2000), repeated

stimuli evoke earlier and less prolonged neural activity than

novel stimuli. In fMRI studies, the earlier onset of neural ac-

tivity would not be detectable due to the slow time course of

the BOLD response, while the shorter duration of evoked ac-

tivity would be detectable as repetition suppression. The

“sharpening” hypothesis (Desimone, 1996; Wiggs & Martin,

1998), on the other hand, postulates that repeated stimuli

evoke on average less neural activity, although this decrease

can largely be associatedwith cells that are poorly tuned to the
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stimulus. Conversely, the cells that are well-tuned to the

stimulus are assumed to increase their response rate with

stimulus repetition. Finally, the “synchronisation” model

postulates that while repetition leads to lower overall firing

rates, the cells responding to the stimulus fire more synchro-

nously with one another, which should lead to more efficient

neural processing (Gilbert, Gotts, Carver, & Martin, 2010).

The “facilitation” and “sharpening” phenomena are readily

explained within the predictive coding framework. Facilita-

tion, or a speeding of evoked neuronal responses, is equiva-

lent to an in increase in synaptic rate constants. This is

formally identical to an increase in synaptic gain, encoding

the precision of prediction errors. Similarly, increased preci-

sion will boost prediction errors that will inform higher levels

of the hierarchy about the most likely cause of sensory input,

while suppressing other explanations of the sensorium. This

is identical to sharpening of the neural representation of a

given stimulus. Stimulus repetition will lead to monotonic

changes in connections between cortical areas, enabling a

more efficient (facilitated and sharpened) neural response to

repeated stimuli.

The connections between cortical areas are subject to

modulation of post-synaptic gain to specific inputs. Synchro-

nisation of pre-synaptic inputs has been proposed as a likely

candidate for controlling post-synaptic gain (Chawla, Lumer,

& Friston, 1999). As discussed above, synchronisation of pre-

synaptic inputs would show spectral asymmetries depend-

ing on the directionality of effective connectivity, with

ascending connections being mediated by higher frequency

bands than descending connections (Bastos, Litvak et al., 2015,

2015; Bosman et al., 2012; Buffalo et al., 2011; Roberts et al.,

2013; Xing et al., 2012).

Similarly, several competing hypotheses had previously

been proposed to account for a phenomenon closely related to

repetition suppression, namely the mismatch negativity. Ac-

cording to the model-adjustment hypothesis (N€a€at€anen &

Winkler, 1999; Winkler, Karmos, & N€a€at€anen, 1996), the

MMN is a reflection of modifications of a perceptual model,

occurring when the sensory input does not match the pre-

dictions of the model. The adaptation hypothesis

(J€a€askalainen et al., 2004; May et al., 1999), on the other hand,

postulates that the MMN reflects adaptive changes in post-

synaptic sensitivity during learning. As suggested by the

DCM study of the roving oddball paradigm (Garrido, Kilner,

Kiebel et al., 2009), the predictive coding framework accom-

modates both these accounts. In the context of repetition

suppression, after each repetition of a stimulus, the percep-

tual model is optimised by increasing the precision-weighting

of prediction errors. This entails a gradual increase in post-

synaptic sensitivity to sensory inputs over the course of a

sequence of standard stimuli.

Crucially, beyond accommodating previous, more partic-

ular accounts of repetition suppression, predictive codinge by

postulating a central role for descending connections in

perceptual inference and learning in conveying predictions of

sensory inputs and their precision e readily explains contex-

tual effects of attention, expectancy, and confidence on neural

responses to repeated stimuli. At the same time, it generates

testable hypotheses in terms of laminar specificity of predic-

tion and prediction error propagation, as well as the key
involved neurotransmitters and neuromodulators, whose in-

teractions will be reflected in the amplitude and dynamics of

observable repetition effects.
7. Conclusions

The predictive coding framework offers a mechanistic expla-

nation of repetition suppression in terms of optimised pre-

dictions about the content and precision of sensory inputs.

This dual role of predictions, mediated by descending con-

nections between levels of the cortical hierarchy, explains

how contextual factors such as attention, contextual expec-

tancy, and prior experience might modulate the effect of

stimulus repetition e by simultaneously minimising predic-

tion errors in perceptual inference, and increasing their pre-

cision due to perceptual learning. The precision-modulation

of the underlying prediction error suppression is likely due to

NMDA-receptor dependent plasticity and classical neuro-

modulators such as ACh. The ensuing modulation of inhibi-

tory populations in sensory regions will influence neural

activity in superficial layers that are populated by neurons

encoding prediction errors. By bridging the neurophysiolog-

ical and computational levels of description, the predictive

coding framework reconciles several accounts of repetition

suppression and offers insights into the most general princi-

ples of neuronal message passing.
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