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Abstract: Statistical parametric maps are spatially extended statistical processes that are used to test 
hypotheses about regionally specific effects in neuroimaging data. The most established sorts of statistical 
parametric maps (e.g., Friston et al. [1991]: J Cereb Blood Flow Metab 11:690-699; Worsley et al. 119921: J 
Cereb Blood Flow Metab 12:YOO-918) are based on linear models, for example ANCOVA, correlation 
coefficients and t tests. In the sense that these examples are all special cases of the general linear model it 
should be possible to implement them (and many others) within a unified framework. We present here a 
general approach that accommodates most forms of experimental layout and ensuing analysis (designed 
experiments with fixed effects for factors, covariates and interaction of factors). This approach brings 
together two well established bodies of theory (the general linear model and the theory of Gaussian fields) 
to provide a complete and simple framework for the analysis of imaging data. 

The importance of this framework is twofold: (i) Conceptual and mathematical simplicity, in that the 
same small number of operational equations is used irrespective of the complexity of the experiment or 
nature of the statistical model and (ii) the generality of the framework provides for great latitude in 
experimental design and analysis. 
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INTRODUCTION 

The aim of this paper is to describe and illustrate an 
implementation of the general linear model that facili- 
tates a wide range of hypothesis testing with statistical 
parametric maps. lhis approach can be used to make 
statistical comparisons ranging from an unpaired f test 
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to linear regression in the context of analysis of 
covariance. Its importance lies in (i) expediency, in 
that a single conceptual and algorithmic framework 
can replace the many currently employed; (ii) general- 
ity, in that experimental design is completely uncon- 
strained (in the context of the general linear model); 
and (iii) portability, in that these linear models can be 
applied to any method of constructing a statistical 
parametric map. 

Functional mapping studies (eg., activation studies 
or comparing data from different groups) are usually 
analyzed with some form of statistical parametric 
mapping. Statistical parametric mapping refers to the 
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construction of spatially extended statistical processes 
to test hypotheses about regionally specific effects. 
Statistical parametric maps (SPMs) are image pro- 
cesses with voxel values that have, under the null 
hypothesis, a known distributional approximation 
(usually Gaussian). 

The power of statistical parametric mapping is 
largely due to the simplicity of the underlying idea: 
Namely one proceeds by analyzing each voxel using any 
(univariate) statistical parametric test. The resulting statis- 
tics are assembled into an image, that is then interpreted as a 
spatially extended statistical process. SPMs are inter- 
preted by referring to the probabilistic behaviour of 
stationary Gaussian fields [e.g., Adler, 19811. Station- 
ary fields model not only the univariate (univariate 
means pertaining to one variable) probabilistic charac- 
teristics of the SPM but also any stationary spatial 
covariance structure (stationary means not a function 
of position). "Unlikely" regional excursions of the 
SPM are interpreted as regionally specific effects ( e g ,  
activations or differences due to pathophysiology). In 
activation studies regonal or focal activation is attrib- 
uted to the sensorimotor or cognitive process that has 
been manipulated experimentally. This characterisa- 
tion of physiologcal responses appeals to junctional 
specialization, or segregation, as the underlying model 
of brain function. When comparing one group of 
subjects with another, a local excursion is taken as 
evidence of regional pathophysiology. When the physi- 
ologcal and cognitive (or sensorimotor) deficits are 
used to infer something about functional anatomy, 
this inference is usually based on a lesion-deficit model 
of brain organization. One could regard all applica- 
tions of statistical parametric mapping as testing some 
variant of the functional segregation or lesion-deficit 
hypothesis. 

The idea behind statistical parametric mapping is, of 
course, not new. Statistical parametric mapping repre- 
sents the convergence of two earlier ideas, change 
distribution analysis and significance probability mapping. 
Change distribution analysis was a pioneering voxel- 
based assessment of neurophysiological changes devel- 
oped by the St. Louis group for PET activation studies 
[e.g., Fox and Mintun, 19891. This technique provided 
a mathematical underpinning for the powerful subtrac- 
tion paradigm still employed today. Significance prob- 
ability mapping was developed in the analysis of 
multichannel electrophysiological (EEG) data and in- 
volves the construction of interpolated pseudomaps 
of a statistical parameter. The fact that SPM has the 
same initials is not a coincidence, and represents a nod 
to its electrophysiological counterpart. 

Unlike significance probability maps in electrophysi- 
ology, SPMs are well behaved in the sense they are 
approximated by stationary, spatially extended stochas- 
tic processes (due to the fact that neuroimaging 
samples uniformly and that the point spread function 
is stationary). This well behaved and stationary aspect 
of SPMs (under the null hypothesis) meant that 
theoretical advances were made, to a point where this 
area is growing rapidly and is an exciting part of 
applied spatial statistics. This development has been 
in the context of the theory of Gaussian fields [e.g., 
Friston et al., 1991, 1994; Worsley et al., 1992, 1993a; 
Worsley, 19941, in particular the theory of level- 
crossings [Friston et al., 19911 and differential topology 
[Worsley et al., 19921. 

SPMs can be as diverse as the experimental design 
and univariate statistics used in their construction. 
Experimental designs in functional neuroimaging can 
be broadly divided into (i) subtractive, (ii) parametric 
and (iii) factorial. Their application can be either to 
activation studies (time-series) or to group studies 
where each individual is studied once. Cognitive or 
sensorimotor subtraction is the best known example of 
the subtraction design in activation studies (e.g., co- 
lor [Lueck et al., 19891 or higher cognitive function 
[Frith et al., 19911). Categorical comparisons of differ- 
ent groups using SPMs represent another common 
application of statistical parametric mapping (e.g., 
depression [Bench et al., 19921). Parametric designs 
include studies where some physiological, clinical, 
cognitive or sensorimotor parameter is correlated with 
physiology to produce an SPM of the significance of 
the correlation or regression. In activation studies this 
may be the time on target during a visuomotor 
tracking paradigm [Grafton et al., 19921, performance 
on free recall [Grasby et al., 19921 or frequency of 
stimulus presentation [Price et al., 19921. In the analy- 
sis of different populations the parameter may reflect 
symptom severity [Friston et al., 1992al or some simple 
variable such as age [Martin et al., 19911. Clearly the 
parameter being correlated can be continuous (e.g., 
time on target) or discrete (e.g., word presentation 
frequency). Factorial designs provide the opportunity 
to consider an interaction between the treatments or 
sorts of condition (two factors interact if the level of 
one factor affects the effect of the other; at its simplest 
an interaction is a difference in a difference). In 
activation studies this may be the interaction between 
motor activation (one factor) and time (the other 
factor), an interaction that provides information about 
adaptation [Friston et al., 1992bl. Another example of 
an interaction is between cognitive activation and the 
effects of a centrally acting drug [Friston et al., 1992c; 
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Grasby et al., 19921. In summary there are many ways 
a hypothesis can be formulated and correspondingly 
there are as many sorts of SPMs. 

All the examples in the previous paragraph used 
SPMs in conjunction with a test statistic (usually the t 
statistic or correlation coefficient) that represented a 
special case of the general linear model. This begs the 
question “is there a single general approach that could 
accommodate all the above examples (and more)?” 
The purpose of this work was to identify an instantia- 
tion of the general linear model that would do this. 

This paper is divided into two sections. The first 
section deals with the theory behind the general linear 
model,. the implementation and making statistical 
inferences. This section includes a brief review of how 
significant regional excursions (activation foci or other 
regionally specific effects) can be characterized and 
identified. The second section illustrates various appli- 
cations of the approach, ranging from t tests to 
interaction terms in analyses of covariance. The appli- 
cations are illustrated with an exemplary data set 
obtained during a word generation activation study of 
normal subjects. 

A GENERAL APPROACH 

The general linear model 

The general linear model for a response variable xij 
(such as rCBF) at voxel j = 1,. . ., J is: 

written in matrix form as a multivariate general linear 
model: 

X = G P + e  (2) 

Here X is a rCBF data matrix with elements x,,; X has 
one column for each voxel j and one row for each scan. 
The matrix G is comprised of the coefficients &k and is 
called the design matrix. The design matrix has one 
row for every scan and one column for every effect 
(factor or covariate) in the model. p = [p,Ip~l,. . ., qlp~] 
is the parameter matrix where pi is a column vector of 
parameters for voxel j. e is a matrix of normally 
distributed error terms. It may be noted that Equation 
(2) does not have a constant term. The constant term 
can be explicitly removed by mean correcting the data 
matrix or implicitly by adding a column of ones to G. 
For didactic purposes we assume the data X are mean 
corrected. Least squares estimates of p say b, satisfy 
the normal equations [Scheffe, 1959, p. 91: 

GTGb = GTX 

if G is of full rank then GTG is invertible and the least 
squares estimates are uniquely given by 

b = (GrG)-’GTX 

where 

E{bi} = p, and Var{bj} = ut(GTG)-I (3) 

where i = 1,. . .,I indexes the observation ( e g ,  scan). 
The general linear model assumes the errors (e,,) are 
independent and identically distributed normally “(0, 
q j ] .  For example in activation studies this means one 
is assuming an equal error variance (utj across condi- 
tions and subjects (but not from one voxel or brain 
structure to the next). Here the Pkl are K unknown 
parameters for each voxel j .  

The coefficients gik are explanatory variables relat- 
ing to the conditions under which the observation 
(e.g., scan) i was made. These coefficients can be of two 
sorts: (i) a covariate ( e g ,  global CBF, time, plasma 
prolactin level, etc.) in which case Equation (1) is a 
familiar multivariate regression model or (ii) indicator- 
type or dummy variables, taking integer values to 
indicate the level of a factor (e.g., condition, subject, 
drug, etc.) under which the response variable (rCBFj is 
measured. Mathematically speaking there is no distinc- 
tion between these two sort of variables but we make 
the distinction for didactic reasons. Equation (1) can be 

If the errors are normally distributed then the least 
squares estimates are also the maximum likelihood 
estimates and are themselves normally distributed 
[see Scheffe, 19591. Var(b,] is the variance-covariance 
matrix for the parameter estimates corresponding the 
jth voxel. 

These simple equations can be used to implement a 
vast range of statistical analyses. The issue is therefore 
not so much the mathematics but the formulation of a 
design matrix (G) appropriate to the study design and 
the inferences that are sought. This section describes 
one general approach that is suited to functional 
imaging studies. 

The design matrix can contain both covariates and 
indicator variables reflecting the experimental design. 
Each column of G has an associated unknown param- 
eter in the vectors PI. Some of these parameters will be 
of interest (e.g., the effect of particular sensorimotor or 
cognitive condition or the regression coefficient of 
rCBF [the response variable] on reaction time [covari- 
ate]). The remaining parameters will be of no interest 
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and pertain to confounding effects (e.g., the effect of 
being a particular subject or the regression slope of 
voxel activity on global activlty). Confounding here is 
used to denote an uninteresting effect that could 
confound the estimation of interesting effects (e.g., the 
confounding effect of global changes on regional 
activations). The two levels (indicator us. covariate and 
interesting 71s. not rriterestiwg) suggest that G (and p) can 
be split twice into four partitions G = [GIIG,IHIIH,] 
and similarly p = [P,’ I p: I $ 1  with estimators b = 
[b,[(bfIg:(g:Ir. Here effects of interest are denoted by 
the G partitions and confounding effects of no interest 
by H partitions. The subscripts 1 or c refers to the 
nature of the effect (level within a factor or a covari- 
ate). There is a fundamental distinction between 
effects that are interesting and those that are not, as 
will be seen below. The distinction between levels and 
covariates is not mathematically important but helps 
in understanding and describing the nature of the 
design matrix. Although there is no mathematical 
difference between treating the level and covariate 
separately and together, we actually deal with them as 
separate matrices in our software implementation. 
This helps to clarify things when reading the code and 
interacting with the programs. Each partition of the 
design matrix has one row for each scan and one 
column for each effect modelled by that partition. 
Using these partitions Equation ( 2 )  can be expanded: 

where G1 represents a matrix of 0s or Is depending on 
the level or presence of some interesting condition or 
treatment effect (e.g., the presence of particular cogni- 
tive component). The columns of G, contain the 
covariates of interest that might explain the observed 
variance in X (e.g., dose of apomorphine or ”time on 
target”). HI corresponds to a matrix of indicator vari- 
ables denoting effects that are not of any interest (e.g., 
of being a particular subject or block effect). The 
columns of H, contain covariates of no interest or 
“nuisance variables” such as global activity or con- 
founding time effects. PI are effects due to the treat- 
ments of interest (e.g., activation due to verbal flu- 
ency). pc are the regression coefficients of interest. y1 
are the effects of no interest (e.g., block or subject 
effects) and yc are the regression coefficients for the 
nuisance variables or confounding covariates. 

To make this general formulation clear consider the 
model for an unpaired t test. In this instance G = [GI], 
where the elements of the column vector GI are 0 for 
all rCBF measurements in one group and 1 for the 
other group. A simple regression of reaction time on 

rCBF would be implemented by making G = IGE] 
where G, is a column vector containing the reaction 
time data. The randomized block design ANCOVA 
implemented by the MRC SPM software corresponds 
to G = [GIIH1IHC] where GI specifies the activation 
condition, HI accounts for subject (block) effects and 
H, is a column vector of confounding global CBF 
covariates. The point to be made here is that nearly 
every conventional statistical design is a special case of 
Equation (4) or in other words most linear parametric 
analyses cart br implemented with Equation (4). 

In this paper scaling the images to remove global or 
whole brain effects is considered a pre-processing 
step. If we tried to incorporate a geometric scaling into 
the statistical model we would end up with a model 
that was more complicated than those considered 
here. 

Experimental design-the forms for GI and HI 

In functional imaging one measures some physi- 
ological variable, usually hemodynamic (e.g., rCBF) in 
a number of conditions (levels of a factor). In many 
instances the same conditions are measured in a series 
of blocks; for example in PET, baseline and activations 
(conditions or factor levels) are repeated in a number 
of subjects (blocks or plots). In fMRI different condi- 
tions are usually repeated serially in blocks over time. 

The situation gets more complicated if one repeats 
the activation study under different conditions or in 
different subjects. The designs appropriate for this 
situation are called split-plot designs (a good reference 
for psychology applications is Winer [1971] and see 
Worsley et al. [1991] for an example in the PET 
literature using region of interest analysis). There are 
some complications that can arise when using split- 
plot designs; however, the situation is simplified if the 
block (or subject) effects are always included thereby 
restricting the analysis to within-block effects. This is 
the approach taken here. 

An example of this sort of experimental design, in 
PET, would be two verbal fluency studies, one in a 
series of normal subjects and one in a group of 
schizophrenic patients, or a psychopharmacological 
activation study in two groups of normal subjects 
studied with and without an appropriate antagonist. 
An example in fMRI would be the repetition of a 
blocked series of sensorimotor conditions in a differ- 
ent subject. In these examples the design is not 
completely blocked. In other words all conditions 
within and between studies are not repeated in the 
same block (e.g., subject). For example one cannot 
perform a verbal fluency activation study in a subject, 
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give the subject schizophrenia, and then repeat the 
activation study. This partial blocking problem sug- 
gests the following form for GI and HI: Let the 
experiment be divided into a series of studies. In each 
of the s = 1,. . .,S studies n j  conditions are measured in 
all of m, subjects (or more generally blocks). There is 
however no requirement for the number of conditions 
or subjects (blocks) within each study to be the same. 
This design is, we consider, the most accommodating 
for functional imaging experiments. One can think of 
this design as allocating Zn, conditions to Z.m, blocks in 
any permutation allowed. The column position of the”1” 
in the ith row of GI denotes which of the %I, conditions 
the ith scan was obtained under and the position of the 
column with a ”1” in the ith row7 of HI denotes the 
subject (block) in which that measurement was made. 

The suggested terminology, adopted in this paper, 
divides the experiment into studies. Each study com- 
prises one or more scans on one or more subjects (more 
generally bocks). Each subject in scanned in one or 
more conditions. Conditions can be variously classified 
and indeed may include several treatments (e.g., entreat- 
ing subjects to perform a series of psychological tasks 
[cognitive treatments] with and without a drug [phar- 
macological treatments]). A single level of any cogni- 
tive or sensorimotor treatment is a task and may be 
repeated in a number of conditions; but note that the 
first time a task is administered is one condition and 
the second time is another condition. The design 
matrix depends only on studies, subjects and conditions. 
The effects of a specific task are assessed by comparing 
one set of conditions with another using contrasts, as 
discussed in later sections. 

This one-way layout does not explicitly model 
interaction terms or effects due to study. This simplic- 
ity is deliberate and allows the investigator to test for 
the (simple) main effects of condition and interactions 
between condition effects and study post hoc (by 
testing for the appropriate effects on the Z H , ~  condition 
specific parameters PI). The alternative would be to 
model these effects explicitly in G .  The problem with 
this approach is that the effect of interest would only 
be assessed in an omnibus sense. For example imagine 
a pharmacological activation (with P scans or condi- 
tions) performed in three groups, a normal, a schizo- 
phrenic and a depressed group. The interaction be- 
tween condition and study (i.e., a regionally specific 
differential response to the drug challenge, across the 
three diagnostic groups) could be assessed using the 
ratio of variances (see below) but there would be no 
information about which group differed from which, 
or about the nature of the effect (augmented or 
blunted response). All these pairwise, direction- 

specific comparisons could be made post hoc if the 
experiment was treated as 3P (CnJ distinct conditions. 
The proposed layout does exactly this. 

A note of caution here: The multiple study (or 
split-plot) approach is proposed primarily for the 
analysis of interactions between condition and studies 
(and main effects of condition). Testing for the main 
effects of study is not so straightforward. This is 
because the estimates of the error terms are based on a 
within-block analysis and may not be appropriate for 
cornparing between-block effects such as those due to 
study [see Winer, 19711. 

The solution implicit in Equation (3) requires that G 
be of full rank or non-singular. This is paranteed for 
the covariates, assuming all the covariates are linearly 
independent; however it is sometimes the case that 
the G, and HI are not linearly independent. This is 
dealt with by applying constraints to the design 
matrix. In the current context this is effected by 
constraining all the block effects (effects not of inter- 
est) to sum to zero, This is equivalent to treating the 
uninteresting effects as residuals about the effects of 
interest. 

Adjusting for the confounding effects of no interest 

It is often wise to report physiological changes from 
a particular voxel in order to indicate the size of the 
physiological effect. This is best demonstrated by 
reporting the data (e.g., rCBF) after adjusting for the 
confounding effects of nuisance variables (e.g., global 
activity) and other spurious effects (e.g., block effects). 
After estimating p the adjusted data X* are given by 
discounting the effects of no interest (i.e., in mean 
corrected form): 

(5) 

[HIJH, ] represents the uninteresting or confounding 
parts of the design matrix (obtained by stacking the 
uninteresting factor level partition and the uninterest- 
ing covariates partitions side by side). [gFlgLlT repre- 
sents the corresponding parameter estimates. The g1 
and g, are linear estimators of y1 and ych, the uninter- 
esting components of p. The adjusted mean condition 
affects are given by the elements of bl and the 
regression coefficients by b,. 

Statistical inference-mnibus or overall effects at 
each voxel 

In this section we address statistical inferences 
about the effects of interest (condition and covariates 
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of interest). We also clarify the relationship between 
statistical parametric mapping (i.e., massive univariate 
testing) and multivariate analysis. 

The omnibus significance is assessed by testing the 
null hypothesis that including the effects of interest 
does not significantly reduce the error variance. This is 
equivalent to testing the null hypothesis that and pc 
are zero. In the sense that this inference does not 
address any specific condition (or covariate) it is 
referred to as an omnibus test. Note that in contradis- 
tinction to the use of “omnibus” in reference to tests 
that pertain to the whole image (e.g., the gamma-2 of 
Fox et al. [1988]) “omnibus” is used here in a univari- 
ate sense for a particular voxel (this use of omnibus is 
preferred because detecting a significant regional ef- 
fect [see below] is also an implicit confirmation that an 
effect exists somewhere in the image; i.e., in the old 
omnibus sense). 

The null hypothesis that the effects embodied in G1 
and G, are not significant can be tested in the follow- 
ing way. The sum of squares and products due to error 
R(R) is obtained from the difference between the 
actual and estimated values of X (a is the alternative 
hypothesis to the null hypothesis and includes the 
effects of interest): 

R(a) = (X - G.b)T(x - G.b) (6) 

The error sum of squares and products under the null 
hypothesis R(Ro), i.e., after discounting the effects of 
interest (GI and GJ, are given by: 

Clearly if H1 and H, do not exist this simply reduces to 
the sum of squares and products of the response 
variable (XTX). At this point we could (in principle) 
proceed in one of two directions. The first direction 
would be to test the omnibus significance of all effects 
of interest over at2 voxels. This would correspond to a 
multivariate analysis of variance or covariance 
(MANOVA or MANCOVA). Although many standard 
texts deal with MANOVA and MANCOVA separately 
there is no distinction in the context of the current 
analysis. The second approach would be to test for 
omnibus significance over effects of interest in a 
univariate sense at each voxel (cf. ANOVA or ANCOVA 
at each voxel). The second is employed by statistical 
parametric mapping and preserves the regional speci- 
ficity of the omnibus test at the cost of not being able to 
extend the “omnibusness” to the whole brain (i.e., a 
multivariate omnibus test). The multivariate omnibus 

significance would be tested with a single statistic, for 
example: 

where A is Wilk‘s statistic (known as Wilk‘s Lambda). 
A special case of this test is the Hotelling T2 test [see 
Chatfield and Collins, 19801. However there is a 
problem here; namely R(R) and R(a0) are both singu- 
lar (meaning h is undefined). This is a simple result of 
having more voxels than scans. This is one reason 
statistical parametric mapping adopts a mass univari- 
ate approach (mass univariate analyses implemented 
in parallel at each voxel). For a single voxelj Equation 
(8), after appropriate transformations, reduces to the 
univariate ratio of variances [see Chatfield and Col- 
lins, 1980, for details]: 

Fj = (r/[ro - r]) . [ R j ( W  - Rj@)]/Rj(R) (9) 

where Rj(fl) corresponds the the jth element on the 
leading diagonal of R(R) and similarly for Rj(n0). F, is 
distributed according to the F distribution with de- 
grees of freedom ro - r and r. Generally r = I - 
rank(G) and ro = I - rank ([HI H,]) where I is the total 
number of scans. If the data have been mean corrected 
and H1 has not, it is necessary to remove an extra 
degree of freedom from rD. The Fj can be displayed as 
an image to create an SPM{F) directly testing the 
overall significance of all effects designated “of inter- 
est.’’ In practice SPM{F]s are seldom employed as 
direct tests of hypotheses but this form of omnibus 
testing is very useful for selecting subsets of voxels 
that are used in some further analysis (e.g. singular 
value decomposition or principal component analysis. 
See Friston et al. [1993]). 

Statistical inference-specific effects at each voxel 

In the previous section the F ratio of variance was 
used to make some inference about the effects of all 
conditions and covariates of interest. In this section 
the significance of specific effects is examined. This is 
effected with the t statistic using linear compounds or 
contrasts of the parameter estimates bj = [b,, b,, . . .IT. 
For example if we wanted to test for activation effects 
between conditions one and two then we would use 
the contrast c = [-1 1 0 0 . . .]. The significance of a 
particular linear compound of effects at voxel j is 
tested with: 
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where the standard error for voxel j = 4 is estimated 
by e: [cf. Eqation (3)]: 

e; = (Rj(0)/r)c.(GTG)-'.cT (10) 

ti has the Student's t distribution with degrees of 
freedom r. When displayed as an image the t, consti- 
tute an SPM{t} and represent a spatially extended 
statistical process that directly reflects the significance 
of the profile of effects "prescribed' by the contrast c .  

Statistical inference-specific ef fectcver the 
entire SPM 

In this section we address the problem of how to 
interpret the SPM( t] in terms of probability levels or P 
values. The problem here is that an extremely large 
number of non-independent univariate comparisons 
have been performed and the probability that any 
region of the SPM will exceed an uncorrected thresh- 
old by chance is relatively high. In recent years 
advances have been made that have solved this 
problem. These advances have focussed on chosing 
thresholds that render the chance probability of find- 
ing an activation focus, over the entire SPM, suitably 
small (e.g., 0.05). The threshold can be of two types (i) 
a critical height that the regon has to reach or (ii) a 
critical size (above some threshold) that a region must 
exceed before it is considered significant. Another way 
of looking at these approaches is to consider that a 
local excursion of the SPM (a connected or contiguous 
subset of voxels above some threshold) can be charac- 
terized by its maximal value ( Z )  or by its size (n = the 
number of voxels that constitutes the region). Both 
these simple characterizations have an associated 
probability of occurring by chance over the volume of 
the SPM. These two probabilities form the basis for 
making a statistical inference about any observed 
regional effect. 

The analyses behind the distributional approxima- 
tions for Z and n derive from the theory of continuous, 
strictly stationary, stochastic Gaussian random fields 
(Gaussian here refers to the multivariate Gaussian 
probability distribution of any subset of points, not to 
the autocorrelation function). To simplify the analysis 
the SPM{t] is transformed to a SPM{Z} using a probabil- 
ity integral transform or other standard device. Strictly 
speaking this univariate transformation does not make 
a t field into a Gaussian field unless the degrees of 
freedom of the SPM{t) are very high. In what follows 
we assume that we are dealing with reasonably high 
degrees of freedom and that the SPM{Z] is a reason- 

able lattice representation of an underlying continu- 
ous Gaussian field. Analytical expressions for the 
distributional approximations of t,,, (the largest t 
value) have now been established [Worsley et al., 
1993b; Worsley, 19941 however approximations for 
nmax (the size of the largest region) have not. 

The P value based on 2, the largest value 
in the region 

The probability of getting at least one voxel with a 2 
value of say height u or more, in a given SPM{Z] of 
volume S [Ps(Z > u)] is the same as the probability 
that the largest Z value is greater than u [P(ZmaX > u)]. 
This is the same as the probability of finding at least 
one region above u. The central tenet here relies on 
the fact that the probability of getting at least one 
region above u and the expected number of regions 
tend to equality (at high values of u). 

Ps(Z > u) = P(Zm,, > u) = P(m 2 1) s E{m} (11) 

where m is the number of regions. The problem 
therefore reduces to finding the expected number of 
foci at u. An analysis was presented in Friston et al. 
[1991] that showed how this expectation could be 
identified using the theory of Gaussian fields. This 
analysis approximated activation foci with suprathresh- 
old ellipsoid regions. Subsequently the Euler character- 
istic (the number of blobs minus the number of holes) 
has been proposed as an approximation to the number 
of foci. The Euler characteristic was introduced in a 
key paper by Worsley et al. [1992] that also established 
a formal link between the theory presented in Friston 
et al. [1991] and earlier work on the expected number 
of maxima [see Adler, 19811 (the expressions derived 
on the basis of ellipsoid regions IFriston et al., 19911 
and those based on maxima [Adler, 19811 were shown 
to have, asymptotically, the same form but differ by a 
factor of ~ r / 4  at infinitely high thresholds [Worsley et 
al., 19921). The important issue here is that whether 
one uses the number of foci, the Euler characteristic or 
the number of maxima, very consistent results are 
obtained. At high thresholds the number of regions, 
the number of maxima and the Euler characteristic all 
tend to the same value. The Euler characteristic is 
more amenable to mathematical analysis than the 
earlier formulations and has led to extensions to 
SPM{t} and SPM(F} [Worsley et al., 1993a; Worsley, 
19941. For simplicity we will work with the number of 
maxima [Hasofer, 19781: 
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W is a measure of smoothness and is related to the full 
width at half maximum (FWHM) of the SPMs ”resolu- 
tion.” Equivalently W is inversely related to the 
number of ”resolution elements” or Resels (R) that fit 
into the total volume (S) of the D-dimensional SPM 
(R = S/FWHMD). 

In practice W can be determined directly from the 
effective FWHM if it is known when W = FWHM/d 
(41og: or estimated post hoc using the measured 
variance of the SPM{Z}’s first partial derivatives: 

D 

W = Var(BSPM(Z}/dx,)-li(zD) (13) 
r=l 

See Friston et al. [1941] and Worsley et al. [1492] for 
more details. 

threshold used. Our results indicated that low thresh- 
olds are more powerful for activation foci that are 
larger than the FWHM of the imaging device. In the 
sense that all signals (that are not subject to partial 
volume effects) arise in structures that satisfy this 
constraint one might anticipate that low thresholds 
will be generally the more powerful. On the other 
hand, if the FWHM is bigger than at least some focal 
activations, the significance based on peak height may 
be more powerful. In what follows we present both 
characterizations. 

It should be born in mind that the results presented 
here are only good approximations for large thresh- 
olds, so it would seem prudent to keep the thresholds 
high enough for the I’ values to remain valid. Simula- 
tions suggest that the approximations hold reasonably 
well for thresholds as low as 2.4 [see Friston et al., 
19941. 

The P value based on n, the size of the region 
APPLICATIONS 

The probability of getting one or more regions of say 
size k or more in a given SPM{Z) thresholded at u (say 
SPM,(Z)) of volume S [Ps(n > k)] is the same as the 
probability that the largest region consists of k or more 
voxels [P(n,,, > k)]. Expressions for this probability 
rely on a number of previously known distributional 
approximations and a conjecture that n2iD has an 
exponential distribution (in the limit of high thresh- 
olds) [Nosko, 1969, 1970; Adler, 19811. By assuming 
this form for P(n = x) to be asymptotically correct we 
[Friston et al., 19941 determined the parameters of the 
distribution by reference to its known moments. It was 
shown that: 

Ps(n >k) = P(n,,,> k) = 1 - exp(-E{m}.ep~kk’D) 

where 

p = [T(D/2 + l).E{m}/S * @ ( - u ) ] ~ / ~  (14) 

where @(-u) is the error function (integral of the unit 
Gaussian distribution) evaluated at the threshold cho- 
sen (-u). Equation (14) gives an estimate of the 
probability of finding at least one region with k or 
more voxels in an SPM,(Z}. Notice that u (the thresh- 
old) can be chosen. The optimum threshold should 
maximize sensitivity. In a previous paper we derived 
an approximate expression for the sensitivity to a 
”random” signal [Friston et al., 19941. We demon- 
strated how the sensitivity, or power, depends on an 
interplay between the shape of the signal and the 

This section describes the data used to illustrate the 
diversity of ways the expressions above can be used. 
The PET data were obtained from normal subjects 
during a word generation activation pdradigm. The 
results of each analysis will be displayed in the same 
format. This format includes the design matrix, the 
contrast, the SPM{Z) and a table of regions that have 
been characterized in terms of their size and their 
maximal height [P5(nmax > k) and Ps(Zmax > u)]. 

The data 

The data were obtained from five subjects scanned 
12 times (every 8 minutes) whilst performing one of 
two verbal tasks. Scans were obtained with a CTI PET 
camera (model 953B CTI, Knoxville, TN) [Spinks et al., 
1992; Townsend et al., 19921. I5O was administered 
intravenously as radiolabelled water infused over 2 
minutes. Total counts per voxel during the buildup 
phase of radioactivity served as an estimate of regional 
cerebral blood flow (rCBF) [Fox and Mintun, 19891. 
Subjects performed two tasks in alternation. One task 
involved repeating a letter presented aurally at one 
per 2 seconds (word shadozuing). The other was a paced 
verbal fluency task, where the subjects responded 
with a word that began with the letter presented 
(intrinsic word generation). To facilitate intersubject 
pooling, the data were realigned and spatially (stereo- 
tactically) normalized [Friston et al., in press] and 
smoothed with an isotropic Gaussian kernel (FWHM 
of 16 mm). 



4 SPMs in Functional Imaging 

A single subjects analysis 

This example introduces the basic implementation 
and highlights an equivalence between various simple 
statistical tests (e.g. unpaired f tests and testing for 
correlations). It deals with situations in which there is 
one subject scanned in many conditions or (equiva- 
lently from a mathematical perspective) many subjects 
scanned under the same condition. This section also 
covers comparing two groups of scans with paired 
and unpaired t tests. Finally it introduces the notion of 
removing confounding effects using linear regression. 

In this the first and simplest example we address the 
effects of activations due to intrinsic word generation 
or, equivalently, deactivations due to word repetition 
(extrinsic word generation) in a single subject (one of 
the five studied). Following the philosophy of cogni- 
tive subtraction this is effected by subtracting the 
word shadowing from the verbal fluency conditions to 
assess the activations associated with cognitive compo- 
nents in word generation that are not in word shadow- 
ing (e.g., the intrinsic generation of word representa- 
tions and the “working memory” for words already 
produced). In this instance we have one study, one 
subject and 12 conditions (comprising two tasks). The 
condition effects of interest are tested using a covari- 
ate of the form G ,  = [-1 1 -1 . . . l]’, i.e., -1 for word 
shadowing and 1 for word generation. Of course we 
can treat this covariate as levels in a factor and G ,  
could be renamed GI. As stated in the theory section 
there is no mathematical distinction: In this instance 
there is no difference between regressing rCBF on a 
series of +Is and -1s or taking the mean difference 
between odd and even scans. To account for the 
confounding effects of global differences the global 
activities were considered as covariates of no interest 
H,. There are two covariate effects to be estimated (one 
interesting and the other not). The analysis can be 
seen as an example of (i) multiple linear regression, (ii) 
ANCOVA (regarding G ,  as GI) or (iii) a simple correla- 
tion after partialling out a “nuisance” variable or 
confound. The important point is that these perspec- 
tives are all rather redundant because they are all 
exacfly fhe  same instantiation of the same linear model. 

The design matrix G = [GJH,] corresponding to this 
analysis is seen in Figure 1 (top right). The resulting 
SPM(Z} (top left) is seen to identify significant activa- 
tions in the left dorsolateral prefrontal cortex (includ- 
ing the opercular portion of Broca’s area and related 
insula), left extrastriate areas, right cerebellum, right 
and left frontal pole and the precuneus. Note that the 
contrast is simp1y”l” for the covariate effect of interest 
and zero elsewhere c = [l (11. In general the P values 

based on spatial extent are less “significant” than 
those based on peak height. This would be expected if 
the regons activated were smaller than the FWHM of 
the SPM [about 18 mm according to Equation (13)]. 

In the above analysis we could have pretended that 
we had studied 12 individuals in one of two states; 
with two studies, each with six subjects scanned in a 
single condifion. This has exactly the same degrees of 
freedom and gives exactly the same SPM(Z) as above 
and (if we ignore the confounding covariate) can be 
seen as an unpaired t test at each voxel. If one had 
scanned six subjects under both tasks there would be 
one study, six subjects and two conditions. The degrees 
of freedom in this example would be less because one 
would also be estimating subject-specific (block) ef- 
fects and the design matrix would include a subject or 
block partition HI (cf. a paired t test). In general the 
degrees of freedom of the t statistic are equal to the 
number of scans minus the number of estimated 
parameters (including a constant term, that may be 
explicitly included in HI or made implicit in the 
analysis by mean correction of the data and covari- 
ates). 

In the analysis of groups of subjects with scans 
obtained under the same condition this design (using 
one covariate of interest) can be useful in identifying 
regionally specific associations between physiology 
and some behavioral or symptom score in a paramet- 
ric fashion [e.g., Friston et al., 1992al. 

An activation study using intersubject averaging 

This example introduces the more general ANOVA- 
like layout and its extension to ANCOVA, again using 
covariates to remove the effects of confounding or 
nuisance variables. This removal reveals more clearly 
the underlying condition-specific effects of interest 
and is exactly the same as that implemented in the 
previous section (i.e., by linear regression). Three sorts 
of analyses are considered (subtractive, paramctric and 
factorial). All are implemented at the level of the 
contrast used in comparing condition-specific effects. 

In this case there is one study, five suhjecfs and 12 
conditiorzs. We removed the confounding effects of 
global activity by designating these as covariates of no 
interest H,. This example is equivalent to a one way 
ANCOVA with a completely blocked design. There 
are 12 condition specific effects, five subject effects 
(block) and a covariate effect. The SPM(F] correspond- 
ing to this analysis is depicted in Figure 2. This SPM 
can be regarded as an image of the (significance of) 
variance introduced by the experimental design (or 
more exactly the sums of squares due to condition 
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contrast 

2 

1 2 
Design Matrix 

Single subject analysis 

~ _ _ _ _ _  ~~ 

region {x,y,x mm} size {n} Zmax P(max > n) P(Zmax > Z) 

-36 -80 -4 
-46 16 0 
-2 16 56 
38 -70 -28 
22 64 8 
-30 50 28 
-22 64 0 
2 -86 36 

722 
245 
668 
124 
82 
136 
16 
63 

~~ 

5.54 
5.42 
5.20 
5.1 3 
4.91 
4.63 
4.58 
4.48 

0.000 
0.001 
0.000 
0.01 2 
0.030 
0.009 
0.192 
0.048 

0.000 
0.000 
0.001 
0.001 
0.004 
0.014 
0.01 6 
0.025 

Threshold = 3.60 Volume = 78217 

Figure 1. 

df = 10 

+ 198 + 
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effects relative to error). The design matrix used in this 
example is seen in Figure 3 and is displayed by placing 
the partitions in the same order as in Equation (4), i.e. 
[GlIG,I lqHIIH,]. Here GI models the 12 conditions and 
G,  is empty because there are no covariates of interest. 
Because of the constraint on the design matrix only 
four subject effects are estimated directly (see the 
corresponding design matrix HI partition). H, is seen 
to be a column of global activities (on the far left). The 
objective of further analysis, using contrasts, is to test 
specific hypotheses that particular differences be- 
tween conditions account for this variance in physiol- 
ogy. 

A subtractive approach 

Suppose one wanted to identify significant activa- 
tion foci associated with word generation as above by 
pooling data from all the subjects. Having estimated 
the 12 condition-specific effects the effect of verbal 
fluency vs. word shadowing is assessed using a con- 
trast that is 1 in all the verbal fluency conditions, - 1 in 

Figure 1. 
Results of a single subject analysis. The format of this Figure is the 
same as for Figures I, 3 , 6 ,  7 and 9. Top right: Design matrix. This 
is an image representation of the design matrix; because elements 
of this matrix can take negative values the gray scale is arbitrary and 
has been scaled to the minimum and maximum. The form of the 
design matrix is the same as in the text (condition effects, covariates 
of interest, subject effects, covariates of no interest) = [GI G, HI 
HJ where these partitions exist. Contrast: This is the contrast or 
vector defining the linear compound of parameters tested (c). The 
contrast is displayed over the column of G that corresponds to the 
effect@) in question. Note that the length of the contrast is the 
same as the number of columns in the design matrix, which is the 
same as the number of parameters one is explicitly estimating. In 
this figure there are only two parameters to be estimated and these 
are the regression coefficients for the covariate testing for the 
difference between verbal fluency and word shadowing and the 
confounding covariate of global activity. Top left: SPM{Z]. This is a 
maximum intensity projection of the SPM[t] following transforma- 
tion to the Z score. The display format is standard and provides 
three v iew of the brain from the front, the back and the right hand 
side. The grayscale is arbitrary and the space conforms to  that 
described in the atlas of Talairach and Tournoux [ 19881. Lower 
panel: Tabular data are presented of “significant” regions (P < 0.05 
corrected the volume of the SPM{Z]. The location of the maximal 
voxel in each region is given with the size of the regions (n), and the 
peak Z score. For each region the significance is assessed in terms 
of E(mJ > P(Z, > Z) using Equation (I I )  and P(nmax > n) using 
Equation (I 4). In this figure there are eight significant regions that 
are described in the text. The footnote gives the volume in voxels 
of 2 X 2 X 4 mm and the degrees of freedom. 

Figure 2. 
SPM(F]: Maximum intensity projection of the SPM(F] computed 
according to  Equation (9) for the design matrix in Figure 3. The 
design matrix was used to assess the I2 condition effects in all fwe 
subjects. Experimental variance is prominent in bitemporal, (ante- 
rior and posterior) cingulate, thalamic regions and opercular 
portions of Broca’s area. The display format is the same as in the 
previous figure and the gray scale is arbitrary. All the F ratios are 
significant at P < 0.05 (uncorrected). 

the word generation and 0 elsewhere c = [ 1 - 1 1 - 1 
. . . -1 0000 . . .]. The results of this analysis are 
presented in Figure 3 which shows the design matrix, 
the contrast and the resulting SPM[ZJ. The results 
demonstrate significant activations in the left anterior 
cingulate, left dorsolateral prefrontal cortex, opercu- 
lum and related insula, thalamus and left extrastriate 
(among others). The relationship of the left prefrontal 
and mediodorsal thalamic activations to the underly- 
ing anatomy is seen in Figure 4 which is the SPM{Z} 
sectioned in three orthogonal planes and rendered on 
an arbitrary structural MRI scan. The extent and 
regional topography of the dorsolateral prefrontal 
activation is highlighted in Figure 5 by rendering the 
SPM onto the cortical surface of the same structural 
scan as in the previous figure. 

The correspondence between this group analysis 
and the single subject analysis can be seen by compar- 
ing the SPM{ZJs in Figures 1 and 3. The most conspicu- 
ous difference is that unlike the group as a whole, the 

199 + 



+ Friston et al. + 

..., '., /-- .$........I ..... ; 

contrast 

10 

20 

30 

40 

50 

60 
5 10 15 

Design Matrix 

A subtraction 

region {x,y,x mm} size {n} Zmax P(nnax > n) P(Zrnax > Z) 

-2 20 40 938 6.78 0.000 0.000 

-48 20 4 2697 6.23 0.000 0.000 

-12 -14 8 221 1 5.68 0.000 0.000 

-50 -66 -8 646 5.59 0.000 0.000 

54 22 0 58 4.68 0.222 0.008 

24 42 32 104 4.39 0.1 10 0.027 

-34 -82 24 76 4.14 0.167 0.067 

Threshold = 3.20 Volume = 69142 df = 43 

Figure 3. 
A subtractive analysis based on intersubject averaging. The format 
is the same as for Figure I. The design matrix now includes 
condition and subject (block) partitions and the contrast can be 
seen to test for differences in condition means in the verbal fluency 

and word shadowing conditions. The corresponding profile of 
activations in seen in the SPM{Z}. Significant activations are 
tabulated below and are described in the main text. 
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single subject fails to activate the thalamus (see below) 
but overall there is a remarkable similarity. 

A parametric approach 

In this example we tested for monotonic and linear 
time effects using the contrast depicted in Figure 6. 
The results of this analysis identify bilateral foci in the 
posterior temporal regions, the precuneus and the left 
prefrontal and anterior cingulate that show mono- 
tonic decreases in rCBF. These decreases are task- 
independent. 

This example is trivial in its conception but is used 
here to introduce the notion of a parametric approach 
to the data. Parametric approaches avoid many of the 
shortcomings of “cognitive subtraction”; and “addi- 
tive factors logic” in testing for systematic relation- 
ships between neurophysiology and sensorimotor, 
psychophysical, pharmacologic or cognitive param- 
eters. These systematic relationships are not con- 
strained to be linear or additive and may evidence 
very nonlinear behaviour reflecting complex interac- 
tions at a physiologcal or cognitive level (from a 
statistical perspective these interactions are linear in 
the parameters). 

A factorial approach 

This example looks at regionally specific interac- 
tions, in this instance between the activation effect 
due to intrinsic word generation and time. The con- 
trast used is depirted in Figure 7 and shows a typical 
mirror symmetry. The design matrix has not changed 
but we are now testing for a specific profile of 
condition effects. The greatest t values will obtain 
when the condition effects (i.e., relative activations) 
“match’ the contrast. As the contrast initially goes up, 
down, up, down and then switches to down, up, 
down, up, this contrast will highlight those regions 
that deactivate early in the experiment and activate 
towards the end. In other words those areas that show 
a time-dependent augmentation of their activation. 
The areas implicated include left frontal operculum, 
insula, thalamus and superior temporal cortex. Note 
that these regional results suggest a true physiological 
“adaptation” in the sense that it is the physiological 
response (to a task component) that shows a time- 
dependent change (contrast this with the task- 
independent changes of the previous section). 

The SPM{Z} in this analysis is reported in a descriy- 
tive way only because no region was assessed as 
significant (at P < 0.05). This means that unless one 
had made specific predictions about which regions 

were going to be involved, no statistical inference about 
regional activation could be made on the basis of these 
yes ults. 

This example also shows how to do a factorial 
experiment without explicitly modeling interaction 
terms in the design matrix. This approach has proved 
powerful in the demonstration of time-dependent 
adaptation during motor practice [Friston, 1992bl and 
in psychopharmacological activation studies crossing 
cognitive activation and pharmacologcal manipula- 
tions [Grasby et al., 19921. In the example above we 
have described a time-dependent reorganisation of 
physiological responses to the same task. It is tempting 
to call this plasticity, however the term plasticity 
means many things to many people and hence the 
term should be used carefully. 

The adjusted responses 

Recdll that adjusted data has been adjusted for 
uninteresting effects [see Equation (5)]. As an example 
of an adjusted response we have chosen data from a 
voxel from the left thalamus. This region clearly shows 
a variable and complicated response with time- 
dependent changes (see previous section). The ad- 
justed data for the analysis of all subjects for a voxel in 
the left mediodorsal thalamus is shown in Figure 8. 
The bars represent the mean adjusted condition- 
specific estimates of rCBF and the dots correspond to 
individual (adjusted) data. The regional activation 
from which this voxel was selected is seen on orthogo- 
nal MRI sections in Figure 4. This thalamic response is 
very interesting with no activation in the first four 
conditions and a profound activation in the last six. At 
some point during the course of this experiment the 
physiological changes supporting the cognitive pro- 
cessing elicited by verbal fluency changed markedly to 
involve the mediodorsal thalamus and, by reference to 
Figure 7, augment responsiveness of the opercular 
cortex and insula. 

The single subject analyses revisited 

This section deals with situations were one wants to 
compdre several activation studies obtained in differ- 
ent groups. This sort of design is especially powerful 
in loolung at the effect of centrally active drugs, 
pathophysiology, clinical diagnosis, etc., on condition- 
specific activations, where the conditions may them- 
selves involve several treatments and the condition- 
specific effects may themselves be interaction terms 
(e.g., the adaptation above). We take the limiting case 
of this general situation where there is only one 
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subject in one of two studies. This ties in neatly with 
the single subject analysis above and allows us to 
make a number of points; however it should be 
remembered that everything in the remainder of this 
section applies when the two (or more) studies in- 
clude more than one subject. 

In this application we want to look at the first 
subject in the context of the remaining four in terms of 
activations due to intrinsic word generation. Although 
we might anecdotally compare the activation profiles 
for the single subject (Figure 1) and for the group 
(Figure 3) the apparent differences may not be the 
most important (or indeed significant). This section 
addresses the differences between the single subject’s 
activations and the group’s activation in a more formal 
way. Here the design matrix has two studies. The first 
study has four subjects and the second study is of the 
single subject. In both studies there are 12 conditions, 
giving effectively 24 conditions (12 in the group and 12 
for the single subject). Again global activity was 
treated as a confounding covariate. The differences 
between the activations constitute an interaction. 

Study x condition interaction 

The difference of interest represents a conditian x 
study interaction and is tested using the contrast 
shown in Figure 9 (again note the mirror symmetry). 
This contrast will highlight regions that activate more 
in the group than the single subject (or de-activate 
less). Because there are effectively 24 conditions effects 
(two studies with 12 conditions) the contrasts is a 
vector with 24 elements. The SPMIZ) in Figure 9 
shows that the most significant differences are in 
bilateral auditory and periauditory regions. These are 
areas that de-activate generally and more profoundly 
in the single subject studied. The condition effect 
tested here is that due to the difference between the 
two tasks, however we could have tested other condi- 
tion specific effects ( e g ,  time). This analysis directly 
addresses how the physiological response of a single 
subject differs from some normative data. In other 
words the activation effects peculiar to this individu- 
al’s functional anatomy can be directly assessed using 
an interaction term. The importance of this approach 
lies in careful characterization of single cases when 
applied using a lesion deficit model or in assessing 
inter-individual variability in functional anatomy. 

DISCUSSION 

We have described a simple framework within the 
context of the general linear model that allows for a 

diverse interrogation of functional imaging data using 
statistical parametric maps. The same implementation 
and layout can accommodate approaches that are as 
simple as an unpaired t test, to ANCOVA with mul- 
tiple covariates. This approach partitions the design 
matrix at two levels: (i) according to whether the effect 
is interesting or not and (ii) whether the effect is factor 
level (an indicator-type variable) or continuous (a 
covariate). The first distinction is fundamental and 
directly affects adjustment for confounding effects 
and the estimation of omnibus significance at each 
voxel. The second distinction is purely conceptual; 
mathematically there is no distinction between indica- 
tors and covariates. 

Specific effects modelled in the design matrix are 
assessed using linear compounds (contrasts) of the 
parameter estimates (such as condition-specific mean 
activity or regression coefficients). The resulting statis- 
tic’s distribution has the Student’s t distribution under 
the null hypothesis and is used to make statistical 
inferences. Inferences about local excursions (peaks) 
of the SPM(t} (after transformation to a SPM{Z} use P 
values that are estimated using distributional approxi- 
mations from the theory of Gaussian fields. These P 
values are based on the region’s highest value and the 
number of voxels comprising that region. 

This paper presents the operational expressions 
required to perform the analysis and some examples 
which cover most applications one might envisage. In 
particular we have focussed on comparing activation 
studies performed in different subjects. Our discus- 
sion uses a general taxonomy of activation studies that 
distinguishes between subtractive (categorical), para- 
metric (dimensional) and factorial (interactions) de- 
signs. Subtractive designs are well established and 
powerful devices in functional mapping but are predi- 

Figure 4. 
The same data presented in Figure 3 but here the SPM{Z] has been 
sectioned in three orthogonal planes and displayed on top of an 
arbitrary MRI image that has been spatially normalized to the same 
anatomical space. This figure details the functional anatomy of the 
left prefrontal and mediodorsal thalamic activations and their 
relationship to underlying anatomy. 

Figure 5. 
The same data as in Figure 3. but here the SPM(Z] has been 
rendered onto the same MRI image as in Figure 4. This figure details 
further the topography of the left prefrontal activation which can be 
seen to involve the opercular portion of Broca’s area, inferior 
frontal gyrus and extend almost to the frontal pole. This is the 
largest contiguous region of activations elicited by this comparison 
(see table in Figure 3). 
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Design Matrix 

A parametric analysis 

region {x,y,x mm) size {n} Zmax P(nma > n) P(Zma > Z) 

-54 -50 8 570 4.59 0.076 0.01 2 

54 -48 4 697 4.42 0.041 0.024 

0 -82 40 385 4.10 0.200 0.084 

-44 46 -4 540 3.67 0.089 0.350 

Threshold = 2.40 Volume = 69142 and FWHM = [15.97 18.97 19.331 mm and df = 43 

Figure 6. 
A parametric analysis. The format of this figure is the same as for Figure I and shows the results of 
testing for a linear monotonic time effect using a contrast of the condition effect estimates. 
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cated on possibly untenable assumptions about the 
relationship between brain dynamics and the func- 
tional processes that ensue (and where these assump- 
tions may be tenable they are not demonstrated to be 
so). The main concerns with subtraction and additive 
factors logic can be reduced to the relationship be- 
tween neural dynamics and cognitive processes. For 
example, even if, from a functionalist perspective, a 
cognitive component can be added without interac- 
tion with pre-existing components the brain's imple- 
mentation of these processes is almost certainly going 
to show profound interactions. This follows simply 
from the observation that neural dynamics are nonlin- 
ear [e.g., Aertsen and Preissl, 19911. Indeed nearly all 
theoretical and computational neurobiology is based 
on this observation. Parametric approaches avoid 
many of the philosophical and physiological shortcom- 
ings of "cognitive subtraction" in testing for system- 
atic relationships between neurophysiology and senso- 
rimotor, psychophysical, pharmacologic or cognitive 
parameters. These systematic relationships are not 
constrained to be linear or additive and may show 
very nonlinear behaviour. The fundamental differ- 
ence between subtractive and parametric approaches 
lies in treating a cognitive process, not as a categorical 
invariant, but as a dimension or attribute that can be 
expressed to a greater or lesser extent. It is anticipated 
that parametric designs of this type will find an 
increasing role in psychological and psychophysical 
activation experiments. Finally factorial experiments 
provide a rich way of assessing the effect of one 
manipulation on the effects of another. They could 
also be used to establish the validity of subtraction by 
assessing the degree of "interaction" between cogni- 
tive processes at a physiological level. The assessment 
of differences in activations between two or more 
groups represents a question about regonally specific 
interactions. The limiting case of this example is where 
one group contains only one subject and we suggest 
that this is one way to proceed with single subject 
analyses. We mean this in the sense that the interest- 
ing things about an individual's activation profile are 
how it relates to some normal profile or a profile 
obtained from the same subject in different situations 
or at a different time. These differences in activations are 
interactions. 

Assumptions and limitations 

The validity and scientific utility of statistical para- 
metric mapping has been established by its diverse 
and expert application in many imaging centers over 
the past years. Given that the advantages are gener- 

ally accepted we present here a critical evaluation of 
some of the assumptions and limitations of the ap- 
proach. 

Parametric assumptions 

Underlying the general linear model is an assump- 
tion that the error terms are normally distributed. 
Recent interest in non-parametric approaches [e.g., 
Holmes et al., in press] might be interpreted as a 
challenge to this assumption (this interpretation is not 
correct). There are a number of reasons for being 
confident that the data obtained with imaging devices 
(particularly PET) conform to Gaussian distributions. 
The image reconstruction process in PET (back projec- 
tion) can be thought of in terms of convolving the 
underlying distribution of radiodecay events with 
itself many many times. The underlying distribution is 
approximately Poisson and by central limit theory the 
univariate distribution of intensity values in the back 
projected image will be, almost certainly, Gaussian. 
This argument does not however allow for non- 
Gaussian behaviour of the physiological component 
in functional images (although there is no reason to 
suppose they are not Gaussian); however one can 
make a reasonable argument that the univariate behav- 
iour of the final measurements will be Gaussian. This 
is because of explicit and implicit convolutions of the 
original distributions in the early parts of data process- 
ing (e.g., ramp and Hanning filtering in frequency 
space [i.e., convolving in Cartesian space] during 
reconstruction and Gaussian smoothing of images as a 
pre-processing step). Even if the original physiological 
measurements were not Gaussian, after these convolu- 
tions they will be (nearly). 

Homoscedasticity 

Homoscedasticity is term referring to invariant sec- 
ond order behaviour (variance) of the error term over 
different conditions. Although generally accepted in 
most applications of the general linear model this 
constancy is not necessarily always the case. If the 
error variance associated with one condition was very 
different from that associated with another then the 
statisticdl inferences based on a t value in the SPM(t} 
cannot be guaranteed. This is because the distribu- 
tional approximations may no longer be valid. Given 
that very few observations (usually up  to twelve for 
PET activation studies) are available it would be very 
difficult to demonstrate a significant difference in error 
variance (or indeed demonstrate that they were not 
significantly different). It is interesting to note that the 
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Figure 8. 
Adjusted regional activity. Using the results displayed in Figure 7 a 
voxel in the mediodorsal thalamus was selected and the adjusted 
activity was plotted for each of the 12 conditions. The bars 
represent mean condition-specific estimates and the dots represent 
individual data adjusted for confounding effects. Note the time- 
dependent augmentation of activations due to verbal fluency. 

criticism levelled at approaches that use an estimate of 
error variance pooled over voxels (namely, one cannot 
assume that error variance is region-independent) can 
be turned around and applied to statistical parametric 
mapping (namely one cannot assume that error vari- 
ance is condition-independent). Variance estimators 
which accommodate condition-specific changes in 
error variance are the subject of some current work 
(Worsley, personal communication). 

Figure 7. 
A factorial analysis. The format of this figure is the same as for 
Figure I and shows the results of testing for an interaction between 
activations due to verbal fluency and time. The contrast used 
detects regions whose response to verbal fluency increases with 
time. No region can be considered significant because the largest 
region would have been obtained on 8.5% of occasions by chance 
(see lower panel). The results of this analysis can only be reported 
descriptively and no statistical inference can be made about the 
regionally specific effects. 

Stationarity 

In statistical parametric mapping weak stationarity 
is assured under the null hypothesis since the mean at 
any voxel is zero and the variance is unity, because the 
error variance is estimated separately at each voxel. 
However there is another aspect of stationarity that is 
assumed; namely a stationary multivariate behaviour, 
or more simply the correlations between different 
parts of the SPM are unchangmg (for Gaussian fields 
homogeneous correlation structure, in addition to 
weak stationarity implies strict stationarity). This as- 
sumption is implicit in modelling the SPM as a 
stationary stochastic process (usually a Gaussian ran- 
dom field). It is possible that (i) the smoothness 
changes from region to region and (ii) long range 
correlations in error variance may show a regonal 
specificity. The first nonstationary behaviour can only 
be demonstrated with "local" estimates of smoothness 
(W above). The distributional approximations for the 
estimators of W are currently being investigated in 
order to address this issue at an empirical level (Poline, 
personal communication). It is expected that this form 
of nonstationarity will not be significant in the sense 
that one can usually assume the same point spread 
function for all parts of the original data. The second 
sort of regionally specific deviation from stationarity is 
due to functional interactions between remote brain 
areas that are mediated physiologically (i.e,, by func- 
tional connectivity). This sort of nonstationarity can be 
discounted at one level by noting that under the null 
hypothesis there are no systematic physiological inter- 
actions. A deeper analysis however reveals the funda- 
mental distinction between the mass univariate ap- 
proach taken by statistical parameteric mapping and 
equivalent multivariate approaches. In multivariate 
approaches one would explicitly use the measured 
covariance structure of the error terms in making 
some statistical inference about the effects of a treat- 
ment on the multivariate measure (i.e., the profile of 
activity over the entire brain). Because these infer- 
ences depend on inverting the error variance-covari- 
ance matrix they are not applicable to voxel-based 
analyses of neuroimaging data (this is because the 
matrices are singular due to the great number of 
voxels relative to the number of scans). The solution is 
therefore to proceed on a univariate basis (treating 
each voxel as if it were measured in isolation) and then 
model the covariances among voxels using a Gaussian 
field model. Note also that the multivariate approach 
is rather weak in that it cannot be used to make 
regonally specific inferences. 
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Figure 9. 
An interaction analysis comparing a single subject and the remaining 
subjects. The design matrix now has 24 condition effects (I 2 for the 
group and I 2  for the single subject). The contrast is testing for a 
failure to activate (or a greater deactivation) in the single subject 

with respect to the group. The bitemporal areas deactivate more 
profoundly than one would have predicted on the basis of the 
group data. 
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Low degrees of freedom 

SPMs will fail at low degrees of freedom. The 
reasons for this failure can be quite entertaining [see 
Worsley et al., 1993bl. This limitation is however 
simply the familiar caution “statistics are only mean- 
ingful when one has enough data” restated in the 
context of spatially extended statistical processes. It is 
difficult to prescribe a lower limit for the degrees of 
freedom that one should use: Ideally one would like to 
see at least 30. However the practical limitations of 
PET make this number of scans prohibitive in the 
analysis of single subjects and one could be obliged to 
work with ten degrees of freedom or less. Because low 
degrees of freedom compromise conventional single 
subject analyses we consider the suggestions above 
concerning single subjects (and their analysis using 
group data) to be particularly important. It should be 
remembered that the lower the degrees of freedom 
the less a transformed SPM{t} conforms to a Gaussian 
field model. In this case of very low degrees of 
freedom (e.g., 10-20) non-parametric approaches may 
be more appropriate [e.g., Holmes et al., 19941 or 
reference to distributional approximdtions for the 
SPM[t} (as opposed to the SPM(Z]) should be consid- 
ered [Worsley, 19941. 

In conclusion we have presented a unified frame- 
work using the general linear model and the theory of 
Gaussian fields that facilities the analysis of neuroim- 
aging data using a variety of experimental layouts. 
These can range from categorical and factorial activa- 
tion studies to parametric designs with many covari- 
ates. This generalization should increase the latitude 
of possible experiments available to the imaging neu- 
roscientist. 
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