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The successive expression of neuronal transients is related to dynamic correlations and, as shown in this
paper, to dynamic instability. Dynamic instability is a form of complexity, typical of neuronal systems,
which may be crucial for adaptive brain function from two perspectives. The first is from the point of
view of neuronal selection and self-organizing systems: if selective mechanisms underpin the emergence
of adaptive neuronal responses then dynamic instability is, itself, necessarily adaptive. This is because
dynamic instability is the source of diversity on which selection acts and is therefore subject to selective
pressure. In short, the emergence of order, through selection, depends almost paradoxically on the
instabilities that characterize the diversity of brain dynamics. The second perspective is provided by

information theory.
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1. INTRODUCTION

This paper reviews the notion of complexity and how it
relates to transients and dynamic instabilities in neuronal
systems. In §2, it relates neuronal transients to nonlinear
dynamical concepts such as intermittency, itinerancy and
dynamic instability. This section introduces the distinction
between different sorts of complexity (type I and II),
which is useful when considering complexity and diversity
in relation to selective mechanisms that may operate in
the brain. After considering the genesis of complexity, §3
addresses the role of asynchronous or nonlinear coupling.
The strengths of connections, among simulated popula-
tions, are manipulated to induce changes in (i) the nature
of the coupling and (i1) the complexity of the ensuing
dynamics. This allows the relative contributions of
synchronous and asynchronous coupling to complexity to
be characterized. In brief, we will show that complexity
and nonlinear coupling go hand in hand, presiding in
of sparse connectivity. The importance of
complexity for self-organization (Kelso 1995) and the
selective consolidation of synaptic connections in terms of
neuronal selection (Edelman 1993) are introduced in §4.
In this section it is suggested that selective mechanisms of
a high order are sufficient to explain why the brain
expresses complicated dynamics.

regimes

2. A DYNAMICAL PERSPECTIVE

(a) Complexity
In this section we consider transients in relation to the
complexity of the dynamics that they generate.
Complexity is itself a complex field with numerous defini-
tions and perspectives (Horgan 1995). Generally,
complexity refers to something in the behaviour of a
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system that is not ordered or predictable nor chaotic or
random but something in between that reflects an under-
lying order that, is itself, inherently unstable or labile.
There are two distinct approaches to complexity: those
that derive from information theory and those that come
from the field of deterministic chaos in nonlinear systems.
The former approaches are based on some measure of the
entropy of the system (e.g. Morgera 1985) and can be
related to algorithmic complexity (framed in terms of the
minimum length of an algorithm required to generate an
observed time-series). More recently, entropy-based
complexity measures have been proposed that try to
capture the balance between integration among different
neuronal systems and the preservation of information that
is unique to them. Functional segregation requires the
dynamics of each area to be distinct, in terms of their
intrinsic activity and responses to input. Functional inte-
gration, on the other hand, requires segregated areas to
influence each other in a way that facilitates coherent
integration. It has been proposed that the resolution of
this dialectic, between the preservation of regionally
specific dynamics and global coherence, is a hallmark of
complexity (Tononi et al. 1994; Friston et al. 1995). A
measure of this complexity, based on the theory of
stochastic processes and information theory, is found in
Tononi et al. (1994).

In this paper we are concerned with the second
approach to complexity, namely that predicated explicitly
on nonlinear dynamic systems. Within this class there is
another dichotomy that distinguishes between dimen-
sional complexity in chaotic systems and dynamic
instability (Kelso 1995) associated with self-organizing
and pattern-forming systems. Dimensional complexity is
a measure (the correlation dimension) that reflects the
degree of chaos in terms of the average local behaviour of
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the system’s evolution (in particular the exponential
divergence of trajectories). It is closely related to the
Lyapunov exponents and through this to the Kolmogrov
entropy (Tsonis 1992). However, this is not the sort of
complexity that people are generally interested in when
thinking about biological or self-organizing systems. The
critical sort of complexity is that which we would intui-
tively appreciate as complex, namely the successive
expression of different transient dynamics with stereo-
typed temporal patterns being continuously created and
destroyed and re-emerging again. In the context of the
brain, this is simply the expression of neuronal transients
that arise when cell populations interact. Populations
may interact in a synchronous way (e.g. phase-locking
among units (e.g. Gray & Singer 1989) or populations
(e.g. Sporns et al. 1989)), creating spatio-temporal
patterns of activity that include many, if not all, of the
system’s components. Generally the ensuing coherent
states are labile, self-limiting and short lived. Alterna-
tively, complexity could arise from incoherent, asynchro-
nous coupling that engenders very different transients in
different populations.

In summary, complexity (of a dynamic sort) can be
divided into dimensional complexity and dynamic
instability. The former is a measure of chaos and the latter
directly characterizes what makes a system complicated.
From now on we will use complexity, dynamic instability
and metastability (Kelso 1995) synonymously. For the
purposes of discussion, we will distinguish between two
different sorts of dynamic instability (type I and type II
complexity) and illustrate them using the neuronal simu-
lations described in paper 1 (Iriston, this issue). To do this
we need to introduce the notion of an attractor. Consider
equation (1) in Friston (paper 1, this issue) and assume that
we know all the relevant state variables x.

Ox(1)|0t = f(%,C). (1)

As time goes on these variables will change. If we
plotted these variables against each other (in a state
space) they would trace a path or trajectory as the
system evolved. An attractor is simply the surface or
‘manifold’ over which this trajectory courses. Clearly the
dimension of the state space, in which the attractor
manifold i1s embedded, 1s equal to the number of
variables considered (the dimensionality of the manifold
is, in fact, the dimensional complexity referred to above).
The shape of the manifold will dictate the nature of the
associated dynamics. The control parameters (C in
equation (1)) will in turn dictate the shape the manifold.
To see this, imagine that the trajectory, defined by the
coordinates of the vector x, is a point flowing through
state space. The direction taken at each point is deter-
mined by a ‘flow field” where the direction of flow is
specified by equation (1). The flow field is determined
only by the control parameters C. This flow field in turn
configures the shape of the attractor manifold. Dynamic
instability suggests that this manifold is itself unstable.
The distinction between type I and type II complexity
rests on whether this instability arises from apparent
changes in the manifold, as the trajectory explores
different parts of it, or is mediated by changes in the
control parameters.
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(b) Type I complexity

This form of dynamic instability could be likened to
‘intermittency’ in simple nonlinear systems (Tsonis 1992)
or ‘itinerancy’. These phenomena reflect an apparent
change in the attractor manifold that arises when the
trajectory moves from one part of the manifold to another.
The basic idea here is that the trajectory gets trapped in
some local submanifold leading to distinct dynamics asso-
ciated with that part of the attractor surface. Inevitably,
after some time, the trajectory will escape to another
submanifold to express a new transient-like behaviour.
This wandering or ‘itinerant’ behaviour gives rise to
dynamic instability despite the fact the that global mani-
fold never actually changes. In other words, there is an
apparent change in the manifold that is due to the itinerant
nature of the trajectory getting stuck in local submanifolds.
Because the attractor never changes, the underlying
control parameters (e.g. connection strengths) are likewise
invariant and this is what defines type I complexity (i.e.
dynamic instability due to a complex attractor manifold
that supports an itinerant trajectory). Perhaps the simplest
illustration of this sort of behaviour is inherent in the
Lorenz attractor describing the spatio-temporal modes of
convection. This famous example (figure la) has two wings
that can, for periods of time, capture the trajectory before
it escapes to the other wing. This itinerant wandering
between the two parts of the attractor manifold can be
seen clearly if one plots one of the three state variables as a
function of time (figure 15). A more compelling example
can be constructed using neuronal simulations.

(1) Anillustration using short-term plasticity

Let us assume that the system under investigation is a
single population as modelled in the
presented in Friston (paper 1, this issue). Here we know all
the state variables and, because there are no transmission
delays to consider, the entire set of equations governing
the dynamics can be considered as an example of equa-
tion (1). Burst firing in these simulated cell populations
will be used to illustrate type I complexity. Spontaneous
bursting behaviour is intermittent where that intermit-
tency is in part mediated by postsynaptic desensitization,
engendered by the bursts Intracortical
synapses display several forms of facilitation and depres-
sion. One of the most predominant forms of this short-
term plasticity is depression that develops over a few
action potentials and decays with time constants in the
range of 200-600 ms (see Abbot et al. (1997) for a discus-
sion of this in relation to cortical gain control). This
phenomenon was incorporated into the simulations,
described in Appendix B of Friston (paper 1, this issue) by
modulating the discharge probability of subpopulation j by
01{—4O—Ej} where E; is a trace of the transmembrane
potential V; obtained by making OF;/0t= (V,— E})|T. The
trace can be thought of as modelling some intracellular
calcium-dependent effect that depends on a slow build up
of Ca*" during prolonged depolarization. o{—40—E;}
is a sigmoid function that is one when the trace is
low and starts to fall as it passes though —40mV. The
time constant for this short-term depression effect was
7=300 ms.

Typical results evidencing intermittent bursting are seen
in figure 24, over a 3s period, in terms of the simulated

simulations

of activity.
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Figure 1. (a) The Lorenz attractor, and () the ‘itinerant’ dynamics of the first state variable.

local field potential (LFP). This intermittency renders the
dynamics complex and, by virtue of the fact that the
control parameters (time constants and connection
strengths) were constant, has a type I complexity. After a
period of bursting, the trajectory falls on to another part of
the manifold while the trace of depolarization recovers
sufficiently to allow another burst of spontaneous activity.
In the next example, we will introduce a new control para-
meter that is time dependent. Although a similar sort of
intermittency is produced the mechanism is very different.

(c) Type II complexity
With this sort of complexity dynamic instabilities are
introduced by actually changing the attractor manifold
through changes in the underlying control parameters.
An obvious candidate for a control variable, in relation to
a single neuronal population, is some diffuse neuro-
modulatory effect mediated by afferents of a neuro-
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modulatory ascending neurotransmitter system. In
compelling experiments by Munk et al. (1996), ascending
neurotransmitter systems were activated by stimulation of
the mesencephalic reticular formation. This resulted in
facilitation of oscillatory activity in the gamma range and
enhanced the stimulus-specific synchronization of
neuronal spike-trains in the visual cortex of cats. To simu-
late this we introduced a new, time-dependent, control
variable M), representing neuromodulatory input, that
varied between 0 and 1. This control parameter simply
attenuated the closing of open fast excitatory channels.
This effect entered into the simulation equations though
the time constant governing the first-order kinetics of
AMPA channel closure; 7,yps was replaced by 7Tanpa/
(1 =M()). In figure 25, intermittent bursting engendered
by this facilitatory modulatory effect is seen. In this
example, M () was varied periodically (dotted line) at
about 2 Hz.
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Figure 2. Different sorts of itinerant dynamics or dynamic instabilities. (a) The simulated LFP of a single population showing
short-term depression (desensitization of postsynaptic responses), modelled as described in the main test. Characteristic here is
the intermittent refractoriness and bursting activity that is attributable to the dynamics of some intrinsic state variables (i.e.

type I complexity). The AMPA self-excitation connection strength was 0.44 in this simulation. () Similar intermittent dynamics
but in this instance engendered by extrinsic modulatory input emulating a classical neuromodulatory effect on postsynaptic
conductances (see main text for details). The sinusoidal modulation M (¢) had a period of 512 ms and varied between 0.6 and 1.
The time-course of this input is depicted by the dotted line. The self-excitation connection strength was here 0.18 for AMPA-like

synapses and 0.022 for NMDA-like synapses.

In this instance, M (#) is a control variable that changes
the shape of the attractor manifold and consequent
dynamics. But there is an important observation to be
made here. If M() had come from another simulated
population then should it be considered a control variable
from the perspective of the first population or as a state
variable when considering both populations together?
Clearly, ignoring time-delays, in the latter context M)
would be a state variable where the collective control
variables of both populations would be invariant. This is
a crucial observation because it suggests that the
distinction between type I and type II complexity is
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simply a matter of perspective. In other words, what may
be a type II complexity from the point of view of one
system may turn out to be a type I complexity when one
‘stands back’ and considers a larger system in which the
first was embedded. The distinction is, however, critical,
as will be shown below, particularly if one considers that
it is impossible to stand sufficiently ‘far back’ in open
systems like the brain to get a type I perspective. The
point here is that neuronal activities can be construed as
state variables or control variables depending on whether
they are intrinsic or extrinsic to the neuronal population
examined.
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Figure 3. A further example of dynamic instability in a simulated population. In this example the self-excitatory connection
strength was used as a dynamic control variable to elicit type II complexity in the ensuing LFP. (¢) The time-dependent
self-excitation obtained by adding 0.44 to the (normalized) state variable of the Lorenz attractor in figure 1. (4) The resulting
dynamics. It can be seen that as self-excitation becomes too great there is something akin to a depolarization block and the
dynamics move out of an oscillatory regime, only to re-emerge when the dynamic connection strength falls sufficiently.

(d) Attractors within attractors: type I or type II?

As a final example of how dynamicism in control
variables might arise, consider what would happen if we
took some control variables (e.g. the self-excitatory
connection strengths) from the simulation above and
made them dynamic, not by borrowing the outputs or
state variables of another population (e.g. M(f) above),
but by giving each its own little attractor. This model,
of attractors with control variables, that are themselves
state variables of smaller attractors, leads naturally to
the notion of multiple and recurrent embedding of
attractors, within attractors at different spatio-temporal
scales. This model seems relevant to the brain and
furthermore is capable of generating great complexity.
Figure 3 illustrates an example of this by making the
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AMPA self-excitatory connections of a single simulated
population a state variable of the Lorenz attractor
(figure 1). The dynamics of the latter can be thought of
as modelling some reasonably low-dimensional dyna-
mical system at the level of transcription, or trans-
lational mechanisms, that is associated with maintaining
the pre- and postsynaptic infrastructure of intrinsic
excitatory connectivity. Depending on whether one
construes the ensuing plastic connection strengths
(figure 3a) as dynamic control variables or new state
variables, one can regard this resulting dynamics
(figure 36) as type II or type I complex. Bear this
example in mind because we shall return to it below
when discussing neuronal selection and the importance
of complexity.
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(e) Dynamic control variables and complexity
(1) Complexity at a microscopic level

The distinction between type I and type II complexity
depends on whether or not the underlying control vari-
ables are invariant. Here we will refer to control variables
that change with time as dynamic control variables. Type
IT complexity is generated by dynamic control variables.
However, a dynamic control variable can be thought of as
a state variable in a larger system (even though the
dynamics of that superordinate system may not be
known). The distinction between type I and type II
complexity is essentially a question of perspective. In
other words, it depends on what we consider to be the
boundaries of the system that determine whether a vari-
able i1s an extrinsic control variable ar whether it is
intrinsic to the system and enters as a state variable. Irom
the point of view of self-organizing systems, and their
empirical  characterization, perturbations due to
stochastic noise play a critical role in dynamic instability
(Kelso 1995). In the current framework, these stochastic
perturbations can be regarded as extrinsic influences
rendering the ensuing transitions in the dynamics an
example of type II complexity. The reason for introducing
the notion of dynamic control variables will become
apparent later when we (i) consider mesoscopic levels of
description, and (i1) consider selection in the light of type
IT complexity.

The complexity that arises from interactions among
populations can be seen as type II complexity if we regard
the extrinsic inputs to any single population as dynamic
control variables. Is this sensible? Consider in more detail
how the voltage-dependent NMDA synaptic interactions
in the simulations of § 2 were modelled. They are based on
the probability that a voltage-dependent channel will
open in response to a presynaptic input from some other
population, times a sigmoid function of the postsynaptic
transmembrane potential (see Appendix B, Friston
(paper 1, this issue)). This term has two interpretations.
First, we can construe it as a voltage-dependent effect
that is mediated by extrinsic inputs (the conventional
view) or equivalently it is a self-excitatory connection
that is modulated or gated by extrinsic input. The latter
interpretation follows from the fact that for any fixed
afferent input the number of excitatory channels opening
1s an increasing monotonic function of depolarization.
The reason for focusing on this interpretation is that it is
a concrete example of the more general notion that inputs
from distal populations can always be considered as
dynamic control parameters, that express their effect
vicariously through the dynamics
population in question. This notion can be generalized to
all inputs, both driving and modulatory. At a simple level
of analysis this perspective is clearly correct, in the sense
that extrinsic inputs, even of a AMPA-like or driving sort,
will lead to an increased sensitivity to intrinsic
presynaptic inputs through a tendency to subthreshold
postsynaptic depolarization.

intrinsic to the

(11) Complexity at a mesoscopic level
Hitherto we have looked at complexity directly in
terms of the state and control variables at a microscopic
level. How does the distinction between type I and type
IT complexity translate at a mesoscopic level in terms of
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the input—output relationships among neurons? At the
mesoscopic level there is an enforced partitioning of the
brain into an ensemble of coupled input-state—output
dynamical systems that calls naturally for a type II
perspective. Here, extrinsic inputs enter as dynamic
control variables. In brief, we will suggest that type II
complexity can be represented as dynamic changes in
Volterra kernels that characterize neuronal interactions or
equivalently, and more intuitively, dynamic changes in
effective connectivity within and among populations.
Consider again equation (2) of Friston (paper 1, this
1ssue) where we select just those functions that pertain to
the activities of a small number of units or populations x;:

() =/ (%(l —u),C). (2)

We can divide the activities x on the right-hand side
into those that come from the units or populations in
question x; and those that are extrinsic x,:

x;(t) =S ({1 — u).x, (1 = u),C). (3)

This has an alternative form were the extrinsic inputs are
grouped with the control parameters € that govern the
intrinsic dynamics.

x:(t) = f(x;(t = u),C"),
where
C* :fC<xe<t_u)7C)7 <4>

where f is a vector function (i.e. returns a vector). If we
pretend for a moment that the extrinsic inputs x,({—u)
are constant, then we have a simple (Volterra series)
characterization in terms of state variables and control
parameters fq(x, C) that determine the Volterra kernels.
This is a smaller version of the entire ensemble of units or
populations that constitute the brain. In other words,
equation (4) has exactly the same form as equation (2).

Now allowing for time-dependent changes in extrinsic
mput we can regard the subset of units or populations x;
as a collection of input—state—output systems with time-
varying Volterra kernels. In other words, C* specifies
activity-dependent Volterra kernels. The implications of
rewriting equation (2) as equation (4) are quite subtle but
important. In equation (2), the control parameters C are
fixed and represent the Volterra kernels that are applied
to the activity throughout the brain to give the response
in the populations one is characterizing. These control
parameters ‘stand in for’ the fixed casual structure of the
dynamics intrinsic to these populations, including, for
example, all the intrinsic connectivity, short-term plasti-
city, facilitation, etc. Equation (4) suggests that this
subsystem can also be regarded as an isolated system if
one allows for time-varying control parameters C*. These
dynamic control parameters are a function of extrinsic
inputs and will cause type II complexity. In short, all
neuronal activity in extrinsic afferents can be construed
as dynamic control parameters that influence the reci-
pient population by changing its attractor manifold in
some way.

Recall that Volterra kernels are synonymous with effec-
tive connectivity, implying that the effective connectivity
intrinsic to the units, or populations, considered is time
dependent or, more specifically, activity dependent. The
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type II perspective allows for activity-dependent changes
in the kernels or connectivity that is due to afferents
from other populations. Perhaps the simplest example is
the modulation of effective connectivity between two
populations by activity in a third. This sort of effect has
been posited as a mechanism for the attentional modula-
tion of the sensitivity of higher-order sensory areas to
inputs from lower areas (see Biichel & Friston (1997) for
an empirical example using neuroimaging). Put simply,
if we took a small part of the brain and tried to charac-
terize all the interactions among its components in terms
of Volterra kernels (i.e. effective connectivity) we might
be surprised to see that, for some reason, these kernels
were themselves inherently unstable. This would reflect
the fact that we had ignored the effect of extrinsic input
from other parts of the brain (e.g. modulation of connec-
tion strengths between V2 and V5 by parietal afferents).
The value of this perspective is that it (i) highlights the
central role of activity-dependent changes in effective
connectivity in the genesis of complexity; and (ii) moti-
vates a way of characterizing the effects of extrinsic
input when this extrinsic input is not known, or rather is
known but the particular subset of afferents responsible
are not (G. Green, personal communication). This will
be pursued elsewhere.

(f) Complexity and transients

The above suggests that brain dynamics can be thought
of in two equivalent ways. First, they arise from a single,
immensely complicated, dynamical system with a global
attractor manifold that is stable over time but supports an
itinerant trajectory or, second, it is an ensemble of small,
loosely coupled systems, wherein each smaller system has
a dynamically changing attractor manifold due to
extrinsic influences from other systems. The only distinc-
tion 1s whether one considers all the populations collec-
tively or focuses on a single population (at any scale)
embedded among the others. The existence of dynamic
control variables must engender some degree of type II
complexity in each population. Given that a type II
perspective can be adopted for any complex dynamics,
the genesis of complexity reduces to the source of dynami-
cism in the extrinsic control variables. Clearly there are
three possibilities: (i) dynamics in subordinate systems
(e.g. slow dynamics of protein synthesis, axonal transport
and translational mechanisms); (ii) the effect of extrinsic
input from superordinate systems (e.g. neuromodulatory
input from another population); or (iii) coupling to the
dynamics on different time-scales within the system (e.g.
activity-dependent plasticity such as long-term depres-
sion). At a mesoscopic scale one can regard inputs from
other neuronal populations as dynamic control para-
meters that enter as variables determining the form of the
Volterra kernels expressed at that time.

A key notion here is that the cortical sheet can be
considered as an ensemble of separable neuronal popula-
tions. Each population enacts its dynamics by tracing out a
trajectory on its own attractor manifold. The influence of
other populations changes the attractor manifold and the
associated dynamics. This speaks to an important question,
that has been addressed by a number of investigators: Are
brain dynamics best described by a single dynamical
system (i.e. a global attractor) or an ensemble of separable
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systems (i.e. a collection of smaller attractors)?’ In Friston
(1997, p. 164), we addressed this issue and concluded that
both viewpoints can be reconciled by representing brain
dynamics as a global attractor, where ‘this single attractor
has a special complexity that emulates a collection of
constituent attractors whose manifolds appear to change
as a function of time’. This i1s simply type I complexity.
From the point of view of any one neuronal population,
the constantly changing attractor manifold will give rise
to a succession of transient dynamics, each with its own
distinct and recurring spatio-temporal organization.
Generally, a ‘transient’ describes the behaviour of a system
that occurs in the initial period as a dynamical system
settles down and approaches an attractor. Here neuronal
systems are considered to be perpetually in an ‘initial
period’ by virtue of continuous changes in the underlying
attractor. These changes may be construed in terms of the
effect of dynamic control parameters (type II) from other
populations (e.g. changes in connection strengths caused
by modulatory interactions) or attributed to itinerant
dynamics where the trajectory wanders from one part of
the global attractor manifold to another (type I). This
behaviour is the essence of neuronal transients and engen-
ders the special complexity typical of the brain. This
complexity is not mandatory and only emerges under
certain conditions. The aim of the analysis presented in
Friston et al. (1997) was to show it arises when and only
when the anatomical connectivity among populations is
sparse. In what follows we revisit this issue but now ask
whether the nature of the extrinsic coupling (linear or
nonlinear) is an factor in the genesis
complexity.

important

3. COUPLING AND COMPLEXITY

(a) The principle of sparse connectivity

There are clearly many aspects of neuronal interactions
that can render neuronal dynamics complex. In this
section, we consider what happens when the connections
between simulated neuronal populations are gradually
increased. On the basis of simulations and electrophy-
siology one can make some predictions about the effects
of increasing extrinsic connectivity: at very low levels of
connectivity each neuronal population will express its
own dynamics, unaffected by those of its neighbours. As
connectivity increases, the dynamics should come to
resemble the complicated, intermittent dynamics seen in
the real brain. As extrinsic connectivity is increased
further, dynamic instability disappears, with every popu-
lation locked into a single, coherent pattern of activity
(see Iriston et al. 1995). In Friston (1997), we addressed
directly the effects of increasing extrinsic connectivity in
simulations to confirm these predictions. Initially the
dynamics move from stable incoherence, where each
population preserves its own unique and relatively stable
behaviour, through a regime of dynamic instability (tran-
sients and periods of stable coherence that are themselves
inherently unstable) to, finally, a regime of stable coher-
ence with phase-locking and complete entrainment. The
intermediate regime of dynamic instability is the subject
of interest because it is in this regime that transients
flourish with a diversity that has important implications
for adaptive neuronal responses (see §4).
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In this section, we will revisit the relationship between
complexity and sparse connectivity using a more compre-
hensive analysis, based on the model described in Friston
(paper 1, this issue) and looking at driving (AMPA-like)
connections, modulatory (NMDA-like) connections and
the interactions between these two types. Furthermore,
we will look at the relationship between complexity and
the relative contributions of synchronous and asynchro-
nous coupling. The idea here is that asynchronous,
nonlinear interactions will supervene in the regimes of
high complexity that best characterize real brain
dynamics. To pursue this, complexity, and in particular
dynamic instability, has to be defined and measured.

(b) A measure of dynamic instability

Here we describe a simple measure (Friston 1997) of
dynamic instability framed in terms of the instability or
entropy of the spectral density g(w,f) of a measured
neuronal process. If metastability is characterized by tran-
sient periods of stability, or the recurrent expression of
different transients, then the frequency composition, or
spectral density of the time-series should change with time.
However, if the dynamics are stable, then the corre-
sponding spectral densities will not change; irrespective of
whether that stability results from the expression of inde-
pendent intrinsic dynamics (i.e. no connectivity) or from
complete entrainment and coherence (i.e. dense connec-
tivity). Consequently the changeability or stability of the
spectral densities can be used to measure metastability.

The entropy of a process reflects its predicability or the
amount of information one would derive from observing
it. A metric that has a high entropy is unpredictable and
therefore provides a lot of information when known. For
example tossing a coin provides less information than
throwing a die. The former has only two outcomes (one
bit of information) whereas the latter has six outcomes
(1.e. logy(6) bits). Dynamic instability is simply a charac-
teristic of a system whose attractor manifold is unpredict-
able. Therefore a measure of dynamic instability is
provided by the entropy of the spectral densities asso-
ciated with that manifold. Here the spectral densities are
being used as a ‘signature’ for a particular manifold that
is relatively insensitive to the actual trajectories them-
selves. The measure used in this paper is a simple
measure predicated on a time-frequency analysis of the
underlying process (that was first described in Iriston
(1997)). It is, however, suboptimal in that it only approxi-
mates what one is really trying to measure. Ideally a
measure of dynamic instability should reflect the causes of
the complexity, which reduces to variability in the
dynamic control variables that underpin it. A measure of
this variability would be a direct measure of changes in
the attractor manifold whilst being completely insensitive
to the trajectories extant at any time. Practically, this sort
of measure obtains from the entropy of the estimated
Volterra kernels describing the dynamics. This is the
subject of current work.

H = Hig(w,)}, (3)
where H{.} returns the entropy. See Friston (paper 1, this
issue) for a description of how g(w,?) is computed. Under

Gaussian assumptions (Jones 1979),
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H =log ((2me)"det{Covig(w,t)}})/2. (6)

det{.} means the determinant of a matrix and m is the
number of frequencies considered. This simple expression
provides the measure used below to assess metastability as
a function of extrinsic connectivity.

(c) Nonlinear coupling and complexity

To look at the relationship between dynamic instability
and the relative role of synchronous and asynchronous
coupling, we used the neuronal model described in
Appendix B of Iriston (paper 1, this issue). In these
simulations we varied both NMDA- and AMPA-like
extrinsic connections between several simulated popula-
tions. In this way, we were able to elicit dynamic
instability in any one population and examine the nature
of the coupling between it and connected populations.
The simulations comprised four populations, where the
intrinsic self-excitatory connection strengths were fixed at
random values sampled from a uniform distribution in the
range 0.12 to 0.16. The extrinsic excitatory connections
were varied using a parameter &, such that the connection
strengths of all NMDA or AMPA connections were
1/(1 + exp(—¢)). This allowed us to explore the effects of
increasing extrinsic connectivity at very low or sparse
levels (from O to 0.2). The architecture of the model was
simple and comprised four serially linked populations. In
the forwards direction the connections were all driving or
AMPA-like. Backwards connections were all modulatory
or NMDA-like. This biologically plausible organization
(Crick & Koch 1998) allowed us to manipulate both
driving and modulatory connections in the context of the
same architecture. For each pair of AMPA- and NMDA-
like connectivity strengths we simulated the dynamics over
a 4s period. The activities of each population were subject
to time-frequency analyses as described in Friston (paper 1,
this issue) to give g;(w,t) (=1, ...4). The metastability H
was computed for the third population according to equa-
tion (6) and the proportion of variance in gg(w,?) predicted
by synchronous and asynchronous contributions from
connected populations (2 and 4) was computed, using the
regression analysis described in Friston (paper 1, this issue)
extended to model multiple inputs. The results of this
analysis are shown in figures 4 and 5 in terms of the
connection strength parameter é.

Figure 4 shows how complexity varies with extrinsic
connectivity. Consistent with previous results (Friston
1997), dynamic instability is evident only in a limited
regime of connection strengths, namely when they are
sparse. Figure 4a shows complexity as a function of
AMPA- and NMDA-like extrinsic connectivity in image
format (white areas correspond to high levels of dynamic
instability). The interaction between driving and modula-
tory connections is not simple, i.e. the effect of increasing
the strength of AMPA connections depends on the level
of NMDA connectivity and vice versa. In fact, there
seems to be an optimum balance to attain maximal
complexity in these simulations, where driving connec-
tions are slightly sparser than modulatory connections.
The dynamics, averaged over all four populations under
conditions of maximal complexity, are shown in
figure 45, and are remarkably complicated considering
we only used four loosely coupled oscillators.
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Figure 4. Dynamic instability in coupled neuronal populations. (¢) Dynamic instability, indexed by the entropy of the spectral
density changes (from 8 to 96 Hz), as a function of extrinsic AMPA- and NMDA-like connection strengths. The architecture of
this system is described in the main text. The key thing to observe is that metastable dynamics are limited to a regime of sparse
connectivity, when both AMPA- and NMDA-like connections are very low. The mean LFP of the four simulated populations is
shown in (4) for the most complex pairing of both connection types. Extrinsic connectivity is expressed in terms of &, where

connection strength=1/(1 +exp(—e¢)).

Figure 5 shows the relationship between complexity
and the degree of synchronous and asynchronous
coupling at a fixed level of AMPA-like connections (0.1).
Figure 5a shows the complexity and corresponds to a row
from figure 4a. Figure 55 shows the nature of the coupling
that underlies this complexity, expressed as the propor-
tion of the variance in gz(w,t), over all frequencies,
explained by synchronous and asynchronous effects from
connected populations. These results reveal something
quite significant; namely that asynchronous coupling
prevails when the dynamics are complex or metastable.
As complexity starts to fall, with increasing connectivity,
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the degree of asynchronous coupling also falls. As
complexity becomes very low, synchronous interactions
increase  substantially and overtake asynchronous
coupling. This phenomenon is important because the real
brain shows dynamic instabilities, speaking again to the
importance of nonlinear interactions. In other words,
functional integration is not simply a question of engen-
dering synchronized interactions throughout the brain but
a delicate balance between preservation of dynamics
intrinsic to each population and the mutual influence
among these populations. This balance facilitates a
dynamic instability that is induced and maintained by
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Figure 5. The relationship between asynchronous coupling and (a) dynamic instability. For a fixed AMPA-like extrinsic
connectivity of 0.1 the NMDA-like connection strengths were varied from 1/(1 + exp(—4.4)) to 1/(1 +exp(—1.4)). (4) The
proportion of variance in frequency modulation, in the third of the four simulated populations, explained by synchronous (broken
line) and asynchronous (solid line) coupling with the second and fourth populations are shown in the lower panel. The point being
made here is that asynchronous coupling supervenes in domains of high metastability whereas synchronous coupling emerges when

the dynamics become more coherent and less complex.

asynchronous interactions (see Freeman & Barrie (1994)
and Erb & Aertsen (1992) for convergent discussions).

In summary, complicated metastable dynamics can
occur when the connectivity among simulated neuronal
populations is sparse. Complexity of this sort is character-
ized by a succession of transients that belie a continuously
changing attractor manifold for each neuronal population
and consequent instability of spectral density of the
underlying dynamics. Characteristic of this complexity is
the prevalence of asynchronous or nonlinear coupling
between the populations. In relation to the distinction
between type I and type II complexity, one can regard
the dynamics of the simulations above as a reflection of
type I complexity when considering all four populations
together, or as an example of type II complexity where
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the dynamic control variables correspond to extrinsic
inputs to the third population. When these inputs result in
asynchronous coupling among populations the complexity
1s likely to be high.

On the basis of this, and in the light of the simulations
presented above, one can infer that neuronal dynamics
are modelled by neither an ensemble of separate attrac-
tors nor a simple low dimensional attractor, but are
consistent with the attractor surface that ensues when
many separate attractors are loosely coupled together or
buried within each other. This manifold has a special
complexity, where the trajectories upon it show compli-
cated dynamics, with the recurrent appearance and
destruction of transients. In keeping with much of the
current thinking on self-organizing systems, this rich
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form of dynamical instability is found in regimes of
parameter space near critical points or phase transitions
(e.g. Kauffman 1992; Kelso 1995). This work suggests
that, for the brain, these critical regions involve sparse,
extrinsic connectivity and asynchronous interactions.
Before considering why complexity of this sort might be
important, dynamic instability is related to some
empirical studies.

(d) An empirical perspective on dynamic instability

Dynamic instability has been characterized above in
terms of the modulation of different frequencies expressed
in neuronal time-series that accompanies the expression
of transients. It has often been noted that ‘gamma
rhythms can occur in brief bursts with a considerable
jitter in the frequency’ (Jefferys et al. 1996) and this has
been used as a rationale for explaining the difficulties in
detecting synchronization. The alternative viewpoint is
that, of course, it is this very transience and jitter that is
the essence of what should be measured. Dynamic
changes in synchronized interactions do provide the focus
for research, most prominently in event-related studies.
These pertain either to a single time-series (e.g. event-
related desynchronization (Pfurtscheller & Aranibar
1979)) or those relating two or more time-series (e.g.
dynamic coherence). See Mayer-Kress ¢/ al. (1991) and
Fuchs et al. (1992) for compelling examples, and
Pfurtscheller & Aranibar (1979) for spectral density
changes in relation to self-paced movement.

(1) Event-related examples

Most of the empirical evidence for dynamic modulation
of frequencies in neuronal time-series comes from event-
related work. For example, Tallon-Baudry et al. (1996,
1997) have characterized transient episodes of synchron-
ization in the gamma band following presentation of
stimuli using electroencephalograph (EEG)
recordings. They find early stimulus-locked synchroniza-
tion unrelated to the stimulus type in contradistinction to
a later component at 40 Hz that appears around 280 ms
and 1s not locked to the stimulus onset. The latter compo-
nent is stronger for coherent (illusory or real) stimuli
relative to non-coherent stimuli. See Steriade et al. (1996)
for a description of frequency and temporal coherence
changes in relation to stimulation of ascending activating
systems and naturally during different stages of sleep.
Similar examples can be found at lower frequencies than
the gamma range. For example, Vanni et al. (1997)
demonstrate modulation of the parieto-occipital alpha
rhythm during object detection, where the presentation of
non-objects evoked systematically higher levels of
transient alpha activity than objects. This difference
emerging about 400 ms after presentation.

visual

(i1) Dynamic correlations and nonlinear coupling

In Friston (paper 1, this issue) we introduced dynamic
correlations (e.g. Vaadia et al. 1995) as an equivalent
perspective on neuronal transients. Because of the inti-
mate relationship between the successive expression of
transients and complexity, there is an equally straightfor-
ward relationship between complexity (i.e. dynamic
instability) and dynamic correlations. Consider two
normalized neuronal time-series x;() and x;(¢). The cross-
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correlation function p;u,t) over lag u, at time /, is given
by the inverse Fourier transform IFT{.} of their cross-
spectral density

pij(u,t) = LFT{{/ (g (w,t) g;(w,t)) x exp (Jl@(w,t) — §;(w,)])},
(7)

where f;(w,t) denotes the phase at a particular frequency
and time. This expression says that the dynamic changes
in the cross-correlation can be induced by either changes
in the spectral density (i.e. dynamic instability in one or
both time-series) or transient changes in the phase rela-
tionship between them. Desmedt & Tomberg (1994) have
demonstrated transient phase-locking between prefrontal
and parietal EEG recordings during selective attention. A
fuller discussion of the relationship between dynamic
correlations and transient phase-locking is found in
Friston et al. (1997).

This equivalence (equation (7)) means that dynamic
instability necessarily results in dynamic correlations. A
beautiful example of dynamic correlations is provided in
MacLeod & Laurent (1996). In this instance, the
dynamic correlations were expressed, following olfactory
stimulation, as transient synchronization of neuronal
assemblies in the olfactory system (in particular between
the dynamics of projection neurons and the local field
potential). Recent work on nonlinear coupling (Schiff et
al. 1996) has been exploited in the investigation of intra-
cranial EEG recordings during complex partial seizures.
Le Van Quyen et al. (1998) have shown that during the
inter-ictal period, nonlinear coupling was low or absent,
whereas transient nonlinear interdependencies developed
during the onset, offset and other critical periods of
seizure development. Although this example comes from
pathology, it is among the rarer empirical examples of
asynchronous coupling in real brain systems.

4. WHY IS COMPLEXITY IMPORTANT?

In §2 and 3, the importance of asynchronous coupling
and neuronal transients when characterizing brain
dynamics is promoted. They are motivated by the assump-
tion that the brain should be complicated or evidence
dynamic instability. Why should it? There are two main
themes that emerge when thinking about this question.
The first relates to selectionism and self-organization in
the brain and the second to information-theoretical
approaches to brain function.

(a) Dynamic instability and second-order selection

One of the most compelling reasons for the complexity
of brain dynamics is based on population dynamics and
selectionism, either at an evolutionary or somatic time-
scale (Edelman 1993). The point of contact between
selectionism and complexity (i.e. diversity) may be one of
the most promising areas for understanding the mechan-
istic basis of the adaptive and self-organizing capacities of
the brain.

The idea is simple. Given that one can take a type II
perspective on the complexity of any neuronal system, it
follows that there must be dynamic control variables that
underpin it. If these dynamic control variables are subject
to consolidation, that is contingent on the dynamics
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expressed, then there exists a mechanism for selection
and self-organization. Furthermore, irrespective of the
contingencies mediating this consolidation, when, and
only when, the dynamics of the control variables generate
sufficient diversity to support selection will these
dynamics prevail under selective pressure. In short, it is
only necessary to posit dynamic control variables that are
subject to consolidation, contingent on the dynamics
expressed, to explain (1) how particular spatio-temporal
patterns of activity can be selected, and (ii) how dynamic
instability 1s itself selected as an emergent but necessary
precondition for this selection. The analogy here with
evolutionary selection is obvious. The transient dynamics
correspond to the phenotype and the dynamic control
variables to the underlying genotype. Dynamic instability
over time corresponds to phenotypic diversity over a
population and consolidation of the dynamic control vari-
ables corresponds to selection per se. The emergence of
dynamic instability corresponds to the second-order selec-
tion of selectability traits; a theme that was part of the
evolutionary synthesis when ‘adaptational aspects of
diversity were analyzed as due to selection forces’ (Mayr
1982). We will now review this in a less abstract fashion.
Clearly for the brain to mediate adaptive sensorimotor
integration the repertoire of neuronal responses to any
environmental situation should be sufficiently diverse to
allow for the selection of the most adaptive response. This
selection is probably most easily seen in terms of consolida-
tion of synaptic efficacies when something of value occurs.
Value-dependent selection (Friston et al. 1994) is no
different from any other form of selection and necessarily
depends on diversity upon which selection can act: in this
instance, spatio-temporal patterns of activity or neuronal
transients and implicitly the connections that subtend
them. In other words, a diversity or dynamic instability is
a necessary condition for the selection of adaptive func-
tional integration. To the extent that this selection is
mediated by consolidation of activity-dependent control
parameters (the type II perspective), then it depends on
diversity of the activity patterns themselves. This obtains
as a natural consequence of dynamic instability. There is
then a simple casual explanation for why the brain
should come to express complicated dynamics that
depends on selection for selectability (Kauffman 1992). If
it 1s necessary to have metastability to facilitate neuronal
selection then that metastability has, by definition, adap-
tive value. It will therefore be selected for at both an
evolutionary and neuronal level. This mechanism is a
second-order aspect of selection that does not pertain to
‘what’ is selected but to the constraints under which selec-
tion can occur. It is easy to see a phylogenetic trend to
increasing complexity on an evolutionary time-scale, but
perhaps it is more interesting to look at similar
phenomena on a neuronal time-scale. In the absence of a
pre-selected neuronal response to some completely novel
situation, the only adaptive strategy is to facilitate the
(selective) mechanisms that will lead to an adaptive
response, namely, to explore the diversity of alternative
responses (i.e. one can do nothing, keep doing the same
thing or try different things until something works. Only
the latter is adaptive). This leads naturally to the induc-
tion of dynamic instability. A fanciful view of desynchro-
nization associated with arousal (Munk ez al. 1996) is that
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it may, in part, be the electrophysiological correlate of
augmented selectability.

(b) An illustrative simulation

These points can be made clearer using a simple
example that employs one of the simulations above.
Consider the example of type II complexity presented in
figure 3. In this case, a single population was simulated
where the excitatory—excitatory AMPA-like connectivity
was assigned its own dynamics using the Lorenz attractor.
Say that the regular bursting of this population every
600ms has some adaptive value and that this was
reflected in a reduction of ‘arousal’, indexed by the
afferent input from ascending modulatory neurotrans-
mitter systems. The effect of this input could mediate (i)
selection of the appropriate dynamics, and (i1) selection
for selectability in the following way. First let us distin-
guish between the underlying connection strengths (more
generally any control variables) € and the actual
dynamic control parameter C*, which include some
dynamic terms D() (e.g. those borrowed from the Lorenz
attractor in previous simulation) where

C* (1) = C(1) + D) (1) x A(1). (8)

It is clear that under states of high arousal the dynamic
connection strengths will vary substantially, generating a
fair degree of complexity in the resulting activity. Conver-
sely when arousal is low, C*(f) will not change much and
the type II complexity, attributable to this dynamic
control variable, will be minimal. Under conditions of
high arousal the dynamics expressed will be diverse,
exploring a large range of patterns and increasing the
probability that an adaptive pattern will be expressed and
selected. Equation (8) models selection for selectability
(second-order selection). Arousal enters here as a control
parameter for the dynamics of the dynamic control para-
meters (hence the second-order nature of this effect). The
dynamicism modelled by D() can arise from three
possible sources: (i) modulatory inputs from other
neuronal systems (e.g. classical neuromodulation); (ii)
from subordinate dynamical systems associated with the
control variable in question (e.g. protein synthesis and
slow changes in cellular infrastructure); or (i) it can be
‘borrowed’ from the dynamics of the system itself (e.g.
activity-dependent plasticity). Each of these will generate
a type II complexity or diversity at the level of the
activity patterns that are selected.

The selective consolidation of C*(f) itself can be
modelled in many ways, perhaps the simplest is

OC(1)]0t = —OA(1)|0t x (C" (1) — C(1)), (9)

where the underlying (latent) connection strengths ‘catch
up’ with the actual (effective) values in proportion to the
ongoing reduction in arousal. In other words, when
something valuable happens that reduces arousal, the
short-term potentiation or depression of synaptic eflicacy,
extant at that time, is consolidated. The form of
equation (9) is exactly the same as that used in Iriston et
al. (1994) to model value-dependent consolidation of
synaptic efficacy and, through this, is closely related to
temporal difference models of reinforcement learning
(Sutton & Barto 1990).
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Figure 6. Selection and fitness landscapes. (a) The “fitness landscape’ computed on the bases of 4096 iteration trials as a function of
self-excitatory AMPA- and NMDA-like connection strengths in a single neuronal population. Fitness here is defined as 1 —A(¢),
where A(¢) is ‘arousal’. 1 — A(¢) = exp(—abs(/—600)/64). I is the interval between bursting in milliseconds. Fitnessis 1 (or arousal is
0) when the inter-burst interval is 600 ms. (4) The same landscape as above but now viewed from the top. Superimposed is the trajec-
tory taken during a simulation using the selective consolidation scheme described in the main text. The evolution of inter-burst
interval is shown in (¢) and the dynamics eventually selected are shown in (d), in terms of discharge probability.

Here we will illustrate a rather more robust model of
consolidation that depends on a dynamic threshold 7 that
arousal or its complement ‘value’ (in this case,
value=1—A4()) must exceed for consolidation of short-
term changes in synaptic efficacy to occur. Let 7(f) be a
permissive effect mediated by ascending neurotransmitter
systems (i.e. A(f)), such that

€ (1)1 = (1) x (C" (1) - C(1)),

and

()0t = m(t) x (A(t) —n(1)),

where

m(t) = T{n(t) — A1)} (10)
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t{.} is some threshold function; in the example below
t{x} =tanh(xx16) for x>0 and t{x}=0 otherwise.
Working through these equations will reveal a very
simple mechanism. Whenever arousal falls below a
threshold, the underlying connection strengths change to
approximate the extant dynamic values. Coincidently
the threshold approaches the new level of low arousal.
This system of equations ensures a progressive minimiza-
tion of arousal. A more intuitive understanding of how
this selective consolidation works can be gained in
relation to the notion of gradient ascent on ‘fitness’
landscapes. Consider again the problem of selecting a
dynamic of bursting every 600ms or so. For every
combination of AMPA- and NMDA-like excitatory—
excitatory connection strengths in a given population
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there will be a mean inter-burst interval that may range
from several milliseconds to long intervals (possibly as
long as 600 ms). Each pair will be associated with an
arousal that is the complement of value or ‘fitness’.
Plotting 1 —A(¢) as a function of the two dynamic control
variables creates a landscape in which the peaks repre-
sent the most adaptive values of the control parameters
and associated bursting activity. The upper panel of
figure 6a shows this landscape for a single population
that includes short-term depression used in figure 3. In
this instance arousal 4(f) was computed as an exponen-
tial function of the absolute difference between the
actual and desired inter-burst interval. Imagine that you
and I had to climb this mountain in the dark. First of
all we elect to simply follow the steepest course in our
immediate vicinity (cf. conventional gradient ascent). We
soon realize that this is not going to work because the
mountain is covered with little peaks, one of which we
arrive at very quickly and get stuck. We then decide that
I should wander around a bit and shout whenever I start
going uphill. At this point you join me and we repeat
the procedure (cf. equation (9) and temporal difference
models). This seems to work better for a while until I
find myself walking up from a local gully and calling
you down into it! Finally we agree that I should explore
the local terrain and whenever I am higher than you,
you will then join me. This works. It is slow but infallible
and 1s exactly what equation (10) implements. I am the
dynamic control variable exploring the local fitness
landscape and you are the underlying control variable.
Clearly the dynamics of the exploration have to be slow
in order to build the landscape, that is a function of the
faster dynamics of the activity engendered. An example
of a path or trajectory taken in a simulation of these
selective dynamics is given in figure 6. The arousal in
this example was evaluated every 4096 iteration ‘trial’
and the consolidation of connection strengths and
threshold effected at these times. The short-term
plasticity D(f) in this example was assumed to be driven
by a high-dimensional deterministic system and emulated
by sampling from a random Gaussian distribution
(s.d.=1/32). The trial by trial evolution of inter-burst
interval is shown in figure 6¢ and the final dynamics
selected in figure 64, in terms of the discharge probability.
In this simulation 7(t) was substituted for A(f) in equation
(8) to give a more graceful convergence.

This example is a simple one, used to illustrate the idea,
and ignores all sorts of issues relating to dynamic and
contextual changes in the fitness landscape, how this land-
scape 1s constructed or, from the point of view reinforce-
ment learning, temporal and spatial credit assignment.
However, it does possess some features that make it
unique in relation to other adaptive neural networks.
First, it explicitly invokes a second-order selection (in
terms of arousal in the current example) of adaptive
exploration of the fitness landscape, and second, there is
no dependence on associative plasticity or Hebbian
learning of any sort. It could be considered as a form of
genetic algorithm that has been cast in terms of dyna-
mical systems.

Despite its simplicity, this example shows how easy it 1s
for any particular dynamic to be selected using mechan-
isms that may well have neurobiological correlates. The
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particular model of consolidation here deals with the
typically difficult terrains associated with fitness land-
scapes of dynamic systems that show great sensitivity to
small changes in the control parameters (in the language
of self-organizing systems, near the edge of chaos or in
regimes dense in phase transitions). It should be noted
that this sort of nonlinear gradient ascent depends on
only one scalar (‘arousal’ or its complement ‘value’) and
as such i1s locally computable in the brain, provided the
‘value’ (height on the fitness landscape) is available.

(1) Neurobiological mechanisms

Selective consolidation as mediated by some consolida-
tory or reinforcing signal is an essential component in the
emergence of adaptive dynamics. There i1s considerable
evidence to suggest monoaminergic (dopamine DA,
norepinephrine NE and serotonin 5HT) and cholinergic
(ACh) neurotransmission facilitates either the consolida-
tion or maintenance of long-term changes in synaptic
strength following short-term plasticity (McGaugh 1992).
The three most compelling lines of evidence are modula-
tion of (i) experience-dependent changes in synaptic
efficacy, (i1) behavioural plasticity, and (iil) experiment-
ally induced long-term potentiation. One neurodevelop-
mental example is the role of ACh in facilitating
experience-dependent organization of connections in
striate cortex. Induction of ocular-dominance shift in
cats, and its recovery following monocular deprivation
depend on the integrity of NE and/or ACh neuro-
transmission (Bear & Singer 1986). Further evidence
implicating ACh in the modulation of plasticity comes
from the electrophysiological correlates of learning
(Metherate & Weinberger 1989). See Friston et al. (1994)
for a full discussion.

5. CONCLUSION

The main arguments developed in this paper can be
summarized as follows.

(1) Complexity is the phenotypic variation in neuronal
dynamics or transients that, from a dynamical
perspective, implies a constantly changing attractor
manifold.

(11) Changes in an attractor manifold can be apparent,
as itinerant trajectories explore different regions of
a global attractor (type I complexity), or can arise
from the extrinsic influence of dynamic control vari-
ables. The distinction depends on whether one
considers the system as a whole or focuses on a
component.

(111) Considering the brain as an ensemble of loosely
coupled attractors allows one to treat extrinsic inputs
to any neuronal population as dynamic control
variables that will engender type II complexity.

(iv) The Volterra formulation in terms of coupled
input-state—output  systems replaces dynamic
control variables with dynamic Volterra kernels.
Volterra kernels embody the intrinsic causal struc-
ture of the population dynamics and how extrinsic
inputs enter in terms of effective connectivity.
Dynamic Volterra kernels therefore correspond to
dynamic or activity- and time-dependent effective
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connectivity that is a cornerstone in the genesis of
complexity.

(v) The regimes in which complexity is most prominent
involve sparse extrinsic connections and asynchro-
nous or nonlinear coupling among populations.
This can be demonstrated heuristically with
neuronal simulations.

(vi) The theoretical importance of complex dynamics
in the brain can be motivated by appeal the
second-order selection. If the selection of adaptive
transients depends
mechanism, then diversity or complexity is neces-
sarily adaptive and will be subject to selective
pressure at neuronal (e.g. the correlates of arousal)
or evolutionary time-scales. The corollary of this is
that activity- and time-dependent connections,
sparse connectivity and nonlinear coupling, as
architectural features implicated in the genesis of
complexity, will themselves be subject to selective
pressure.

(vii) The conjunction of dynamical and selective perspec-
tives posits that phenotypic diversity is maintained
by complexity and the diverse expression of
neuronal transients over time. These ‘populations’ of
phenotypes are caused by control parameters that
stand in for the genotype. Genetic variation, over
time, is mediated by dynamicism in control para-
meters that themselves ensure phenotypic variation
through type II complexity.

(vii1) This framework leads to the intuitive position that the
primary selective mechanisms act at the level of
dynamic control variables (i.e. changing Volterra
kernels) or, equivalently, activity- and time-dependent
effective connections. The consolidation of plastic
changes in connection strengths is an established
theme in theoretical neuroscience.

on some primary selective

The relationships among complexity, self-organizing
systems and neuronal selection is an intriguing area and
will be dealt with more thoroughly, in the context of
neuronal transients, elsewhere. In Friston (paper 3, this
issue) we focus on neuronal transients and how informa-
tion is abstracted from the sensorium in early visual
processing.
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