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This paper is about neuronal dynamics and how
their special complexity can be understood in terms of
nonlinear dynamics. There are many aspects of neuro-
nal interactions and connectivity that engender the
complexity of brain dynamics. In this paper we con-
sider (i) the nature of this complexity and (ii) how it
depends on connections between neuronal systems
(e.g., neuronal populations or cortical areas). Themain
conclusion is that simulated neural systems show com-
plex behaviors, reminiscent of neuronal dynamics, when
these extrinsic connections are sparse. The patterns of
activity that obtain, under these conditions, show a
rich form of intermittency with the recurrent and
self-limiting expression of stereotyped transient-like
dynamics. Despite the fact that these dynamics con-
form to a single (complex) attractor this metastability
gives the illusion of a dynamically changing attractor
manifold (i.e., a changing surface upon which the
dynamics unfold). This metastability is characterized
using a measure that is based on the entropy of the
time series’ spectral density. r 1997 Academic Press

INTRODUCTION

This paper is concerned with the nature and genesis
of the complicated dynamics observed in the brain. The
question we started with was ‘‘Are brain dynamics best
described by a single dynamical system (i.e., a global
attractor) or an ensemble of separable systems (i.e., a
collection of smaller attractors)?’’ We concluded that
both viewpoints can be reconciled by representing
brain dynamics as a global attractor, where this single
attractor has a special complexity that emulates a
succession of transient-like dynamics, each with its
own distinct and recurring spatiotemporal organiza-
tion. This behavior can arise when the connectivity,
among simulated neuronal populations, is sparse. The
aim of this paper is to describe how these conclusions
were reached.

Complexity and Functional Integration

The brain appears to conform to two fundamental
principles of organization: functional segregation and

functional integration (e.g., Zeki, 1990). Functional
segregation requires the dynamics of each area to be
distinct, in terms of its intrinsic activity and responses
to input. Functional integration, on the other hand,
requires segregated areas to influence each other in a
way that facilitates coherent integration and the motor
behaviors that ensue. It has been proposed that the
resolution of this dialectic, between the preservation of
regionally specific dynamics and global coherence, is a
hallmark of complexity (Tononi et al., 1994; Friston et
al., 1995a). A measure of this complexity, based on the
theory of stochastic processes and information theory,
has been described (Tononi et al., 1994). The present
work uses a nonlinear framework to address the dy-
namic or temporal complexity of systems like the brain.
There are clearly many aspects of neuronal interac-

tions and connectivity that can render neuronal dynam-
ics complex. In this paper we first consider what
happens when the coupling between simulated neuro-
nal populations is systematically increased. The degree
of coupling or integration among neuronal populations
[e.g., neuronal groups (Edelman, 1993), functionally
specialized patches in extrastriate cortex or function-
ally segregated cortical areas like V5 (Zeki, 1990)] is
particularly important when considering functional
integration in the context of functional segregation.
Functional integration can be emulated by increasing
the extrinsic connectivity among simulated neuronal
populations that, in the absence of extrinsic connec-
tions, each express their own dynamics. On the basis of
simulations and electrophysiology one can make some
predictions about the effects of modulating extrinsic
connectivity: As the coupling increases the dynamics
should come to resemble the complicated, intermittent
dynamics seen in the real brain. In this regime several
populations may interact in a coherent way [e.g., phase
locking among units (e.g., Gray and Singer, 1989) or
populations (e.g., Sporns et al., 1989)], creating spatio-
temporal patterns of activity that include many, if not
all, of the system’s components. In real brains these
transient dynamics are generally short-lived, with new
patterns being continually created, destroyed, and sub-
sequently recreated. This regime could be likened to
intermittency in simple nonlinear systems (Tsonis, 1992)
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or to dynamic instabilities in self-organizing systems
(Kelso, 1995). As extrinsic connectivity is increased
further the dynamics cease to be complex, with every
component locked into a single, coherent pattern of
activity (see Friston et al., 1995a). The intermediate
regime of intermittent and dynamic instability is the
subject of this work.
The term ‘‘transient’’ is used here to denote a distinct,

self-limiting stereotyped pattern of activity, by analogy
to its use in dynamical systems theory. Generally a
transient describes the behavior of a system that occurs
in the initial period as the system approaches an
attractor. In this work, systems are considered to be
perpetually in an ‘‘initial period’’ by virtue of continu-
ous changes in the underlying attractor. These changes
may be real, due to changes in control parameters (e.g.,
changes in connection strengths caused by modulatory
interactions), or apparent. This paper is concerned with
apparent changes in the attractor that arise when the
system moves to a different part of the attractor, giving
the impression that the attractor itself has changed.
This apparent ‘‘switching’’ from one dynamic to another
is characterized here as dynamic instability ormetasta-
bility (Kelso, 1995). See Kelso (1995) for a description of
dynamic instability and its relationship to other as-
pects of dynamical systems.
This paper is divided into three sections. The first

section addresses the effect of increasing the extrinsic
connectivity between simulated neuronal populations.
In this section we observe that, as predicted, the
dynamics move from stable incoherence, where each
population preserves its own unique oscillatory dynam-
ics, through a regime of metastability (transients and
periods of stable coherence that are themselves inher-
ently unstable) (Kelso, 1995), to, finally, a regime of
stable coherence with phase locking and complete
entrainment. A key feature of the metastable regime is
a dynamic modulation of the frequencies expressed by
the succession of transients. This characteristic change-
ability in the spectral density is used as a measure of
metastability in the subsequent section.
The second section attempts to characterize metasta-

bility using the uncertainty (entropy) of the spectral
density measured repeatedly over short periods of time.
Thismeasure is then used to demonstrate thatmetasta-
bility shows an invertedU dependency on the density of
extrinsic couplings between neuronal populations,
reaching a maximum when these connections are pres-
ent but sparse. In contradistinction the ‘‘strangeness’’
or dimensional complexity (as measured with the corre-
lation dimension) falls monotonically, suggesting that
metastable complexity and chaos are fundamentally
different things. These findings are consistent with the
analysis presented in Friston et al. (1995a) using a
linear measure of complexity.
The third section presents a further perspective on

metastability in terms of attractormanifolds.An attrac-
tor is simply the surface (i.e., manifold) that contains
the trajectory traced out when time series from all the
system’s components [e.g., channels in multichannel
magnetoencephalography recordings] are plotted
against each other. If the attractor is a strange attrac-
tor (i.e., has a fractional dimensionality greater than 2)
the system is called chaotic. Strange or ‘‘chaotic’’ attrac-
tors are characterized by a deterministic unpredicabil-
ity in their evolution, sometimes referred to as ‘‘sensitiv-
ity to initial conditions’’ and related to an exponential
divergence of trajectories on the attractor manifold
(Tsonis, 1992). The distinction between ‘‘chaos’’ and
‘‘complexity’’ is a crucial one and represents a key focus
of this paper.

THE EFFECT OF INCREASING EXTRINSIC
CONNECTIVITY

This section describes the simulated neuronal sys-
tem used to examine the effect of changing the sparsity
of extrinsic connectivity among neuronal populations.
In brief we show that as extrinsic connectivity is
increased the system passes through a regime of compli-
cated metastable behavior into a regime of global
coherence. In what follows vectors are denoted by bold
lowercase letters and matrices by bold uppercase let-
ters.

The Nonlinear Simulation

The simulations comprised three groups of 6, 8, and
16 units. Within each group every unit was vicariously
connected to every other unit with one excitatory
connection. All the units within a group were directly
interconnected with inhibitory connections (cf., GABA
inhibitory interneurons). These intrinsic or within-
group connectivities were chosen to ensure chaotic
dynamics. The extrinsic connections between groups
were excitatory (cf., glutaminergic corticocortical projec-
tions). The within-group excitatory and inhibitory con-
nectivity matrices (Ew and I) comprised connection
strengths selected from a uniform random distribution
[0, 1] and scaled such that the sum of squares over all
elements was 0.2. To ensure that the system was
dissipative we added 0.125 to the random elements of
the leading diagonal of I (before normalization). This
models a decay in activity or adaptation in the real
brain. Between-group connections were based on the
matrix Eb whose elements were selected from the unit
normal distribution. These connections strengths were
then transformed using a sigmoid function to lie in the
range [0, 0.0008]. The sparsity or distribution of the
latter connections was determined by a control param-
eter a (see below). Dynamics were obtained by integra-
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tion of

≠si(t)/≠t 5 fi5 s1(t) · · · sn(t)6

5 SEij · sj(t) 2 si(t) · SIij · sj (t),

or, in matrix notation

≠s(t)/≠t 5 E · s(t) 2 diag (s(t)) · I · s(t),

where

E 5 Ew 1 c(a, Eb)

and

c(a, Eb) 5 0.0008 · (tan h(a 1 2 · Eb) 1 1)/2.

(1)

Eij are the elements of E and Iij are the elements of I.
s(t) is a column vector with elements si(t) representing
the activity of the ith unit. ≠si(t)/≠t is the change in
activity of unit i per unit time. c(a, Eb) is an element-
wise matrix function of Eb and returns a matrix of
connection strengths that constitutes the between-
group components of excitatory connectivity E. This
contribution increases with a in a way that allowed us
to manipulate the number of relatively strong connec-
tions (i.e., sparsity) in a continuous fashion.
The form of these equations means that excitatory

inputs from unit j increase activity in unit i according to
the excitatory connection strength Eij. The inhibitory
inputs, mediated by the inhibitory connections Iij are
modulated by activity intrinsic to the unit in question.
This nonlinear interaction emulates voltage-dependent
inhibition, where the effect is only realized in the
presence of postsynaptic depolarization. This form of
state equation [Eq.(1)] also ensures positivity of the
activities si(t) given all Eij and Iij . 0. The resulting
activities are then interpretable as instantaneous fir-
ing rates. Although Eq.(1) may seem very simple it can
lead to markedly nonlinear dynamics reminiscent of
neuronal systems with spontaneous periodic bursting.
We have previously used this model to estimate modu-
latory interactions in human visual cortex using fMRI
data (Friston et al., 1995b).
Each simulation comprised 214 iterations following a

2048 iteration ‘‘burn in.’’ This initial period ensured
that transients due simply to the initial conditions had
died away. The initial activities were selected from the
uniform random distribution [0, 1]. Each iteration
corresponded to a unit of time which, to relate these
simulations to real neuronal dynamics, was considered
to be amillisecond (i.e., ≠t 5 1ms). Each simulation can
then be thought of as lasting about 16 s. The dominant
oscillatory dynamics that result from these simulations
then correspond to the a range seen in the brain. The

intrinsic time constants (i.e., width of the autocorrela-
tion function of unit activity) for the systems simulated
was in the order of 24–64 ms.

Increasing Extrinsic Connectivity

The effect of increasing extrinsic connectivity was
investigated by repeating the simulations, as described
above, using low, intermediate, and high values of a

(i.e., scant, sparse, and dense interconnectivity). Figure
1 shows the results of a typical set of simulations for a
given set of connectivity matrices. On the left are image
representations of the extrinsic connectivities c(a, Eb),
all scaled to the same maximum. The middle graphs

FIG. 1. (Left) Extrinsic connectivity matrices corresponding to
c(a, Eb) in the main text. The gray scale is (0–0.0008). (Middle)
Example of the dynamics over 1000 iterations of Eq. (1). The activity
of the first unit from each of the three groups is shown (first
group—solid line, second group—dot-dash line, and third group—
dashed line). These time series have been normalized. Top row, scant
connectivity; middle row, sparse connectivity; and bottom row, dense
connectivity. (Right) Coherence functions between the first unit of the
first and third groups estimated using Welch’s averaged periodogram
method and a window length of 512 ms.
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show a segment of the resulting dynamics (over 1000 of
the 214 iterations). The time series from the first unit in
each of the groups are shown. The right graphs show
the coherence between the first unit of the first and last
groups estimated using Welch’s averaged periodogram
method. These functions reflect the degree of phase-
locked coherent interactions between the two groups
over the frequencies shown. The top row (a 5 25)
represents scant extrinsic connectivity, wherein the
dynamics of each of the three groups are largely
independent. This stable but uncoupled pattern of
activity is evident from the distinct frequencies at
which the three units show periodic bursts of activity
(middle graph) and the minimal amount of coherence
between the groups (right graph). When the extrinsic
connectivity is increased (middle row, a 5 21) the
dynamics show pronounced but complicated interac-
tions. These dynamics are neither independent or
coherent. These dynamics are shown in more detail in
Fig. 2 for an extended period of time (top, first unit
only) and for 2000 ms (bottom, all three units). The

coherence between the first and third groups has
increased and is fairly ‘‘broad band’’ (right in Fig. 1).
The first unit (solid line) reflects a degree of metastabil-
ity, with short-lived doublets or triplets of bursts,
interrupted by apparent suppression by the third unit
(broken line). This ‘‘unstable stability’’ is a hallmark of
metastable complexity and can be characterized as the
successive expression of a series of stereotyped tran-
sients. On further increasing the connectivity (bottom
row of Fig. 1, a 5 1.2) the dynamics become coherent
with clear phase locking and coherence at about 20 and
60 Hz (right). The interactions between the first and
the second (dot-dash line) speak to a degree of metasta-
bility, but less pronounced than in the previous simula-
tion.
If metastability is characterized by transient periods

of stability, or the recurrent expression of different
transients, then the frequency composition, or spectral
density of the time series should change with time.
However, if the dynamics are stable, then the corre-
sponding spectral densities will not change, irrespec-
tive of whether that stability results from the expres-
sion of independent intrinsic dynamics (i.e., no
connectivity) or from complete entrainment and coher-
ence (i.e., dense connectivity). Consequently the change-
ability or stability of the spectral densities could be
used to measure metastability.

MEASURING METASTABILITY

In this section we describe a simple measure of
metastability, framed in terms of the instability or
entropy of the spectral density of a time series. This
measure is then applied to the simulations of the
previous section, to characterize the relationship be-
tween the sparsity of extrinsic connections, dimen-
sional complexity, and metastability.

Spectral Density

Using a continuous time formulation, for any given
time series s(t) the (time-dependent) spectral density
g(v,t) can be estimated with:

g(v, t) 5 0 f (v, t) 02,

where

f (v, t) 5 s(t) # 5h(t) · exp(2jvt)6

5 eh(u) · exp(2jvu) · s(t 2 u) · du.

(2)

v is 2p times the frequency in question and j 5 Œ21.
Here # denotes convolution and h(t) is some suitable
windowing function of length l. A Hanning function [a
bell-shaped function 5 (1 2 cos(2pt/(l 1 1)))/2] with l 5

512 iterations or milliseconds was used in this paper.

FIG. 2. Metastable dynamics. (Top) The activity of the first unit
of the first group over the entire simulation (after the initial period
was discarded). (Bottom) The dynamics of all three first units over
2000 ms as in the middle row of Fig. 1. These time series have been
normalized.
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The temporal length of h(t) determines the period over
which the spectral density is estimated. Figure 3
presents a spectral density analysis of the time series
from the first unit of the first group (the data presented
in Fig. 2). A 2000-ms segment of this time series is
shown on the upper left. The same data are shown on
the upper right as a phase portrait using temporal
embedding. This is simply a plot of s(t), s(t 2 t), and
s(t 2 2 · t), where in this instance t 5 64 iterations
(roughly the decay of the autocorrelation function).
This phase portrait does not constitute an analysis but
is simply a way of visualizing the underlying attractor.
The lower left is an image representation of g(v, t) over
5000 ms. It can be seen that the spectral densities
themselves changewith time and display chaotic behav-
ior. The corresponding spectral density attractor is
shown on the lower right and was constructed by
plotting the activities of the first three principal compo-
nents or modes, of the spectral density time series,
against each other. These activities are given by the dot

product g(v, t) · pi(v), where pi(v) is the ith eigenvector
of the spectral density covariance matrix Cov 5g(v, t)6.
The elements in the ith row and jth column of Cov
5g(v, t)6 comprise the covariance between the spectral
densities at vi and vj over time. This is simply a device
to plot a three-dimensional view of a m-dimensional
attractor in a fashion that reveals the most structure.
m is the number of frequencies that were measured, in
this case 16.
The spectral density attractor has an interesting

interpretation wherein each region corresponds to one
or more transients in s(t): Each time a transient is
expressed (with a different spectral density) the trajec-
tory in spectral density space moves to a new region. In
other words one region in spectral density space corre-
sponds to a ‘‘transient’’ in the original time series and,
equivalently, to a particular submanifold of the original
dynamical attractor (top right).

A Measure of Metastability

Intuitively it can be seen that a large spectral density
attractor ‘‘covers’’ more regions and reflects a greater
number and diversity of transients (i.e., metastability).
Ameasure of the volume of the spectral density attrac-
tor is provided by the entropyHwhere, under Gaussian
assumptions (Jones, 1979),

H 5 log (2pem det 5Cov 5g(v, t)66)/2. (3)

det 5·6means the determinant of a matrix. This simple
expression provides the measure used below to assess
metastability as a function of extrinsic connectivity.

Dimensional Complexity and Metastability

It is important to appreciate that the complexity
embodied inmetastable dynamics is very different from
that measured using other nonlinear characteriza-
tions. The correlation dimension (D2) is a commonly
used nonlinear measure and reflects the degree of
chaos, or strangeness, of the underlying attractor. The
D2 is often referred to as ‘‘dimensional complexity’’ and
reflects the space-filling nature of the trajectory: It is
related to the average exponential divergence of nearby
trajectories on the attractor manifold. In this work we
estimated D2 using the Lyapunov exponents of the
system’s trajectory according to the Kaplan–Yorke con-
jecture (Kaplan and Yorke, 1979). The Lyapunov expo-
nents measure the degree of exponential divergence of
nearby trajectories and correspond to l, the eigenval-
ues of the Jacobian matrix (Tsonis, 1992). The elements
of the Jacobian J are ≠fi/≠sj and were derived using Eq.
(1). This method of calculating the Lyapunov exponents
is known as the Jacobian method and depends on
knowing the state equation governing the system’s
behavior. It is simple to show that small perturbations

FIG. 3. (Top left) Dynamics of the first unit of the first group over
2000 iterations. (Top right) Phase portrait or dynamical attractor of
the same time series using temporal embedding and a lag of 64
iterations. (Lower left) Spectral density as a function of time shown in
image format. The data have been mean corrected. The gray scale is
arbitrary. (Lower right) The spectral density attractor depicted in
terms of the first three principal components or modes of the spectral
density time series.
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s*(t) from the trajectory s(t) evolve according to ≠s*(t)/
≠t < J · s*(t) with the solution s*(t) < expm 5J · t6 · s*(0)
(Tsonis, 1992), where expm 5·6 is a matrix exponential.
Consider the evolution of an initial perturbation equal
to the kth eigenvector of J, i.e., s*(0) 5 ek· which is
given by s*(t) < expm 5J · t6 · ek 5 ek · exp (lk · t). In
other words, the perturbation along the kth principal
axis of divergence increases exponentially with expo-
nent lk. Because the Lyapunov exponents are them-
selves time dependent (Tsonis, 1992) we used the
expectation of their real components evaluated over the
system’s trajectory.
Our previous analyses (Friston et al., 1995a) sug-

gested that dimensional complexity falls monotonically
as extrinsic connectivity is increased. This can be seen
intuitively if one considers that, in the absence of any
connectivity, each isolated group contributes its own
dimensions to the overall dimension. As connectivity
increases the system ceases to be a collection of sepa-
rate chaotic systems and starts to behave as a single
system with a relatively lower dimensionality. This is
in contrast to the expression of metastability, which
rises and then falls. This point is made in Fig. 4. Figure
4 presents the dynamical and spectral density attrac-
tors for each of the three simulations presented in Fig.
1 (top—scant connectivity, middle—sparse connectiv-
ity, and lower—dense connectivity). The dynamical
attractors shown correspond to a trajectory traced out
by the first unit of each group. As extrinsic connectivity
increases, the space-filling nature of these attractors
falls with a corresponding reduction in dimensional
complexity (see below). Conversely the space-filling
nature of the spectral density attractor increases with
the expression of metastable dynamics and then falls
again.
We measured the degree of metastability (H, for the

first unit) and the dimensional complexity (D2) as a
function of extrinsic connectivity a. As predicted, the
dimensional complexity fell monotonically with increas-
ing a. Conversely H rose and fell (see Fig. 5). The
distribution of extrinsic connection strengths that gave
rise to the greatest metastability corresponded to a
sparsity of 0.12, using a threshold a 50% of the maxi-
mum strength to define a connection as ‘‘present.’’

METASTABILITY AND COMPLEX ATTRACTOR
MANIFOLDS

We have framed metastability in terms of the succes-
sive expression of transients that emerge when simu-
lated neuronal populations are loosely coupled or
sparsely connected. In this section we provide a heuris-
tic reformulation of metastability in terms of the under-
lying attractor.
Although chaotic systems can be represented by a

single attractor manifold, the recurrent creation and

destruction of transient-like dynamics can create an
impression of instability, where the attractor manifold
itself appears to change with time. Of course this is not
the case because there is only one attractor surface, but
if the system were observed for short periods at a time,
one would see one transient dynamic, then another,
and then another or the first again. This succession of
self-limiting, recurring patterns has been referred to as
metastability following Kelso (1995). This phenomenon
can be understood in terms of a complex attractor
surface that traps the trajectory locally in some ‘‘sub-
manifold’’ before it escapes to another locally struc-
tured part of the attractor surface. These submanifolds
are exactly the same as a normal attractor manifold but
for the fact that they are connected to, or embedded in,
a larger surface. At some point the trajectory will find
this connection and a new transient will emerge as the
trajectory moves off to another submanifold. We sug-
gest that attractors that have this property are com-
plex. Note that the complexity of the attractor is not
directly related to its dimensionality or strangeness

FIG. 4. (Left) Phase portrait or dynamical attractor obtained by
plotting the activities of the first unit from each group against each
other. (Right) The corresponding spectral density attractors based on
the unit from the first group. Top row, scant connectivity; middle row,
sparse connectivity; and bottom row, dense connectivity. The axes of
the three spectral density attractors have been made the same to
enable comparison.
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(e.g., as measured by the D2). The latter measures
pertain to the space-filling nature of the manifold,
averaged over its entire surface. Complexity, as dis-
cussed here, relates to the shape of the manifold,where
this shape can be characterized as a set of connected
submanifolds, each capable of sequestering the trajec-
tory for a limited period of time [see also Freeman and
Barrie (1994) for a convergent discussion].
If the system were observed over a short period it

may not be possible to differentiate between a true
(simple) attractor manifold and a submanifold. How-
ever, with continued observation, if the observed mani-
fold is part of a complex manifold it will, ultimately,
change. It is this apparent dynamical change in the
attractor that characterizes metastability and provides
the basis for the measure introduced in the previous
section (i.e., the uncertainty about the attractor when
repeatedly observed for short periods). More exactly we
have used the entropy of a multivariate ‘‘signature’’
(spectral density) of the extant submanifold.

CONCLUSION

In summary complicated metastable dynamics can
occur when the connectivity among simulated neuronal
populations is sparse. Complexity of this sort is charac-
terized by a succession of transient-like dynamics that

gives the illusion of a continuously changing attractor
manifold.
Neuronal dynamics can be characterized as a tempo-

ral succession of transients (Friston, 1995). See Mayer-
Kress et al. (1991) and Fuchs et al. (1992) for compelling
examples and Pfurtscheller and Aranibar (1979) for
spectral density changes in relation to self-paced move-
ment. On the basis of this, and in the light of the
simulations presented above, we infer that neuronal
dynamics are modeled by neither an ensemble of sepa-
rate attractors nor a simple low-dimensional attractor,
but are consistent with the attractor surface that
ensues when many separate attractors are loosely
coupled together. This manifold has a special complex-
ity, where the trajectories upon it show complicated
metastable dynamics, with the recurrent appearance
and destruction of transient-like dynamics. A compli-
cated manifold is not necessarily associated with a
high-dimensional complexity, because its main feature
is one of local entrapment or ‘‘lingering’’ of the trajectory
in submanifolds (as opposed to its space-filling nature).
The technique presented here for measuring the

degree of metastability is very simple and may provide
another perspective when characterizing dynamical
systems. This is particularly important because nonlin-
ear analysis procedures such as the correlation dimen-
sion are often very difficult to apply to empirical data
and a more complete picture emerges when several
complementary approaches are used.
It is proposed that the complex nature of nonlinear

systems like the brain includes metastability. Further-
more, in keeping with much of the current thinking on
complexity in self-organizing systems, this rich form of
intermittency, dynamical instability, or metastability is
found in regimes of parameter space near critical points
or phase transitions (e.g., Kauffman, 1992; Kelso, 1995).
This work suggests that, for the brain, critical regions
involve sparse extrinsic connectivity.
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