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This note derives the variational free energy under the Laplace
approximation, with a focus on accounting for additional model
complexity induced by increasing the number of model parameters.
This is relevant when using the free energy as an approximation to the
log-evidence in Bayesian model averaging and selection. By setting
restricted maximum likelihood (ReML) in the larger context of
variational learning and expectation maximisation (EM), we show
how the ReML objective function can be adjusted to provide an
approximation to the log-evidence for a particular model. This means
ReML can be used for model selection, specifically to select or compare
models with different covariance components. This is useful in the
context of hierarchical models because it enables a principled selection
of priors that, under simple hyperpriors, can be used for automatic
model selection and relevance determination (ARD). Deriving the
ReML objective function, from basic variational principles, discloses
the simple relationships among Variational Bayes, EM and ReML.
Furthermore, we show that EM is formally identical to a full variational
treatment when the precisions are linear in the hyperparameters.
Finally, we also consider, briefly, dynamic models and how these inform
the regularisation of free energy ascent schemes, like EM and ReML.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

The purpose of this note is to describe an adjustment to the
objective function used in restricted maximum likelihood (ReML)
that renders it equivalent to the free energy in variational learning
and expectation maximisation. This is important because the
variational free energy provides a bound on the log-evidence for
any model, which is exact for linear models. The log-evidence
plays a central role in model selection, comparison and averaging
(for examples in neuroimaging, see Penny et al., 2004; Trujillo-
Barreto et al., 2004).
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Previously, we have described the use of ReML in the Bayesian
inversion of electromagnetic models to localise distributed sources
in EEG and MEG (e.g., Phillips et al., 2002). ReML provides a
principled way of quantifying the relative importance of priors that
replaces alternative heuristics like L-curve analysis. Furthermore,
ReML accommodates multiple priors and provides more accurate
and efficient source reconstruction than its precedents (Phillips et
al., 2002). More recently, we have explored the use of ReML to
identify the most likely combination of priors using model selection,
where each model comprises a different set of priors (Mattout et al.,
in press). This was based on the fact that the ReML objective
function is the free energy used in expectation maximisation and is
equivalent to the log-evidence Fλ=ln p(y|λ,m), conditioned on λ,
the unknown covariance component parameters (i.e., hyperpara-
meters) and themodelm. The noise covariance components encoded
by λ include the prior covariances of each model of the data y.

However, this free energy is not a function of the conditional
uncertainty about λ and is therefore insensitive to additional model
complexity induced by adding covariance components. In this note
we finesse this problem and show how Fλ can be adjusted to
provide the variational free energy, which, in the context of linear
models, is exactly the log-evidence ln p(y|m). This rests on deriving
the variational free energy for a general variational scheme and
treating expectation maximisation (EM) as a special case, in which
one set of parameters assumes a point mass. We then treat ReML as
the special case of EM, applied to linear models.

Although this note focuses on the various forms for the free
energy, we also take the opportunity to link variational Bayes
(VB), EM and ReML by deriving them from basic principles.
Indeed, this derivation is necessary to show how the ReML
objective function can be generalised for use in model selection.
The material in this note is quite technical but is presented here
because it underpins many of the specialist applications we have
described in the neuroimaging literature over the past years. This
didactic treatment may be especially useful for software developers
or readers with a particular mathematical interest. For other
readers, the main message is that a variational treatment of imaging
data can unite a large number of special cases within a relatively
simple framework.

Variational Bayes, under the Laplace approximation, assumes a
fixed Gaussian form for the conditional density of the parameters
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of a model and is used implicitly in ReML and many applications
of EM. Bayesian inversion using VB is ubiquitous in neuroimaging
(e.g., Penny et al., 2005). Its use ranges from spatial segmentation
and normalisation of images during pre-processing (e.g., Ashbur-
ner and Friston, 2005) to the inversion of complicated dynamical
casual models of functional integration in the brain (Friston et al.,
2003). Many of the intervening steps in classical and Bayesian
analysis of neuroimaging data call on ReML or EM under the
Laplace approximation. This note provides an overview of how
these schemes are related and illustrates their applications with
reference to specific algorithms and routines we have described in
the past (and are currently developing; e.g., dynamic expectation
maximisation; DEM). One interesting issue that emerges from this
treatment is that VB reduces exactly to EM, under the Laplace
approximation, when the precision of stochastic terms is linear in
the hyperparameters. This reveals a close relationship between EM
and full variational approaches.

This note is divided into seven sections. In the first we
summarise the basic theory of variational Bayes and apply it in
the context of the Laplace approximation. The Laplace approxi-
mation imposes a fixed Gaussian form on the conditional density,
which simplifies the ensuing variational steps. In this section we
look at the easy problem of approximating the conditional
covariance of model parameters and the more difficult problem of
approximating their conditional expectation or mode using
gradient ascent. We consider a dynamic formulation of gradient
ascent, which generalises nicely to cover dynamic models and
provides the basis for a temporal regularisation of the ascent. In
the second section we apply the theory to nonlinear models with
additive noise. We use the VB scheme that emerges as the
reference for subsequent sections looking at special cases. The
third section considers EM, which can be seen as a special case
of VB in which uncertainty about one set of parameters is
ignored. In the fourth section we look at the special case of linear
models where EM reduces to ReML. The fifth section considers
ReML and hierarchical models. Hierarchical models are important
because they underpin parametric empirical Bayes (PEB) and
other special cases, like relevance vector machines. Furthermore,
they provide a link with classical covariance component
estimation. In the sixth section we present some toy examples
to show how the ReML and EM objective functions can be used
to evaluate the log-evidence and facilitate model selection. This
section concludes with an evaluation of the Laplace approxima-
tion to the model evidence, in relation to Monte Carlo–Markov
chain (MCMC) sampling estimates. The final section revisits model
selection using automatic model selection (AMS) and relevance
determination (ARD). We show how suitable hyperpriors enable
EM and ReML to select the best model automatically, by
switching off redundant parameters and hyperparameters. The
Appendices include some notes on parameterising covariances
and the sampling scheme used for validation of the Laplace
approximations.

Variational Bayes

Empirical enquiry in science usually rests upon estimating
the parameters of some model of how observed data were gen-
erated and making inferences about the parameters (or model).
Estimation and inference are based on the posterior density of
the parameters (or model), conditional on the observations.
Variational Bayes is used to evaluate these posterior densities.
The variational approach
Variational Bayes is a generic approach to posterior density (as

opposed to posterior mode) analysis that approximates the
conditional density p(ϑ|y,m) of some model parameters ϑ, given
a model m and data y. Furthermore, it provides the evidence (also
called the marginal or integrated likelihood) of the model p(y|m)
which, under prior assumptions about the model, furnishes the
posterior density p(m|y) of the model itself (see Penny et al., 2004
for an example in neuroimaging).

Variational approaches rest on minimising the Feynman
variational bound (Feynman, 1972). In variational Bayes the free
energy represents a bound on the log-evidence. Variational
methods are well established in the approximation of densities in
statistical physics (e.g., Weissbach et al., 2002) and were
introduced by Feynman within the path integral formulation
(Titantah et al., 2001). The variational framework was introduced
into statistics though ensemble learning, where the ensemble or
variational density q(ϑ) (i.e., approximating posterior density) is
optimised to minimise the free energy. Initially (Hinton and von
Cramp, 1993; MacKay, 1995a,b) the free energy was described in
terms of description lengths and coding. Later, established methods
like EM were considered in the light of variational free energy
(Neal and Hinton, 1998; see also Bishop, 1999). Variational
learning can be regarded as subsuming most other learning
schemes as special cases. This is the theme pursued here, with
special references to fixed-form approximations and classical
methods like ReML (Harville, 1977).

The derivations in this paper involve a fair amount of
differentiation. To simplify things we will use the notation fx=∂f/
∂x to denote the partial derivative of the function f, with respect to
the variable x. For time derivatives we will also use xb=xt.

The log-evidence can be expressed in terms of the free energy
and a divergence term

ln pðyjmÞ ¼ F þ Dðqð#Þjjpð#jy;mÞÞ
F ¼ hLð#Þiq � hln qð#Þiq
L ¼ ln pðy; #Þ: ð1Þ

Here −hln q(ϑ)iq is the entropy and hL(ϑ)iq the expected energy.
Both quantities are expectations under the variational density. Eq.
(1) indicates that F is a lower-bound approximation to the log-
evidence because the divergence or cross-entropy D(q(ϑ)|| p(ϑ|y,m))
is always positive. In this note, all the energies are the negative of
energies considered in statistical physics. The objective is to
compute q(ϑ) for each model by maximising F, and then compute F
itself, for Bayesian inference and model comparison, respectively.
Maximising the free energy minimises the divergence, rendering the
variational density q(ϑ)≈p(ϑ|y,m) an approximate posterior, which
is exact for linear systems. To make the maximisation easier one
usually assumes q(ϑ) factorises over sets of parameters ϑi.

qð#Þ ¼j
i
qi: ð2Þ

In statistical physics this is called a mean field approximation.
Under this approximation, the Fundamental Lemma of variational
calculus means that F is maximised with respect to qi=q(ϑi) when,
and only when

dFi ¼ 0f
Af i

Aqi
¼ f iqi ¼ 0

f i ¼ F#i ð3Þ
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δFi is the variation of the free energy with respect to qi. From
Eq. (1)

f i ¼
Z

qiq5iln Lð#Þd#5i �
Z

qiq5iln qð#Þd#5i

f iqi ¼ Ið#iÞ � ln qi � ln Zi

Ið#iÞ ¼ hLð#Þiq5i ð4Þ

Where ϑ\i denotes the parameters not in the ith set. We have
lumped terms that do not depend on ϑi into ln Z i, where Z i is a
normalisation constant (i.e., partition function). We will call I(ϑi)
the variational energy, noting its expectation under qi is the
expected energy. Note that when all the parameters are con-
sidered in a single set, the energy and variational energy become
the same thing; i.e., I(ϑi)=L(ϑ). The extremal condition in
Eq. (3) is met when

ln qi ¼ I #i
� �� ln Zif

q #i
� � ¼ 1

zi
exp I #i

� �� �
: ð5Þ

If this analytic form were tractable (e.g., through the use of
conjugate priors) it could be used directly. See Beal and
Ghahramani (2003) for an excellent treatment of conjugate-
exponential models. However, we will assume a Gaussian fixed-
form for the variational density to provide a generic scheme that
can be applied to a wide range of models. Note that assuming a
Gaussian form for the conditional density is equivalent to
assuming a quadratic form for the variational energy (cf. a
second order Taylor approximation).
The Laplace approximation
Laplace’s method (also known as the saddle-point approx-

imation) approximates an integral using a Taylor expansion of
the integrands logarithm around its peak. Traditionally, in the
statistics and machine leaning literature, the Laplace approxima-
tion refers to the evaluation of the marginal likelihood or free
energy using Laplace's method. This is equivalent to a local
Gaussian approximation of p(ϑ|y) around a maximum a
posteriori (MAP) estimate (Kass and Raftery, 1995). A Gaussian
approximation is motivated by the fact that, in the large data
limit and given some regularity conditions, the posterior
approaches a Gaussian around the MAP (Beal and Ghahramani,
2003). However, the Laplace approximation can be inaccurate
with non-Gaussian posteriors, especially when the mode is not
near the majority of the probability mass. By applying Laplace's
method, in a variational context, we can avoid this problem: In
what follows, we use a Gaussian approximation to each p(ϑi|y),
induced by the mean field approximation. This finesses the
evaluation of the variational energy I(ϑi) which is then
optimised to find its mode. This contrasts with the conventional
Laplace approximation; which is applied post hoc, after the
mode has been identified. We will refer to this as the post hoc
Laplace approximation.

Under the Laplace approximation, the variational density
assumes a Gaussian form qi=N(μi,Σi) with variational parameters
μi and Σi corresponding to the conditional mode and covariance of
the ith set of parameters. The advantage of this is that the
conditional covariance can be evaluated very simply. Under the
Laplace assumption

F ¼ L lð Þ þ 1
2

X
i

U i þ lnjSij þ piln 2pe
� �

I #i
� � ¼ L #i; l5i

� �þ 1
2

X
j p i

U j

Ui ¼ trðSiL#i#iÞ ð6Þ

pi=dim(ϑi) is the number of parameters in the ith set. The
approximate conditional covariances obtain as an analytic func-
tion of the modes by differentiating I(ϑi) in Eq. (6) and solving
for zero

FSi ¼ 1
2
L#i#i þ 1

2
Si�1 ¼ 0 Z

Si ¼ �L
�
l
��1

#i#i : ð7Þ

Note that this solution for the conditional covariances does not
depend on the mean-field approximation but only on the Laplace
approximation. Eq. (7) recapitulates the conventional Laplace
approximation; in which the conditional covariance is determined
from the Hessian L(μ)ϑiϑi, evaluated at the variational mode or
maximum aposteriori (MAP). Substitution into Eq. (6) means
U i=pi and

F ¼ L lð Þ þ
X
i

1
2

lnjSij þ piln 2p
� �

: ð8Þ

The only remaining quantities required are the variational
modes, which, from Eq. (5), maximise I(ϑi). This leads to the
following compact variational scheme.

ð9Þ

The variational modes
The modes can be found using a gradient ascent based on

m� i ¼ AIðliÞ
A#i

¼ I liÞ#i

� ð10Þ

It may seem odd to formulate an ascent in terms of the motion
of the mode in time. However, this is useful when generalising to
dynamic models (see below). The updates for the mode obtain by
integrating Eq. (10) to give

Dli ¼ exp tJð Þ � Ið ÞJ�1m� i

J ¼ Am� i

A#i
¼ I liÞ#i#i :

�
ð11Þ



1 Note that the largest singular value is the largest negative eigenvalue of
the curvature and represents the largest rate of change of the gradient
locally.
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When t gets large, the matrix exponential disappears; because
the curvature is negative definite and we get a conventional
Newton scheme

Dli ¼ �IðliÞ�1
#i#i IðliÞ#i : ð12Þ

Together with the expression for the conditional covariance in
Eq. (7), this update furnishes a variational scheme under the
Laplace approximation

ð13Þ
Note that this scheme rests on, and only on, the specification of

the energy function L(ϑ) implied by a generative model.

Regularising variational updates
In some instances deviations from the quadratic form assumed

for the variational energy I(ϑi) under the Laplace approximation
can confound a simple Newton ascent. This can happen when the
curvature of the objective function is badly behaved (e.g., when
the objective function becomes convex, the curvatures can
become positive and the ascent turns into a descent). In these
situations some form of regularisation is required to ensure a
robust ascent. This can be implemented by augmenting Eq. (10)
with a decay term

m� i ¼ IðliÞ#i � vDli: ð14Þ

This effectively pulls the search back towards the expansion
point provided by the previous iteration and enforces a local
exploration. Integration to the fixed point gives a classical
Levenburg–Marquardt scheme (cf. Eq. (11))

Dli ¼ �J�1m� i

¼ ðvI � IðliÞ#i#iÞ�1IðliÞ#i

J ¼ IðliÞ#i#i � vI ð15Þ

where v is the Levenburg–Marquardt regularisation. However, the
dynamic formulation affords a simpler alternative, namely temporal
regularisation. Here, instead of constraining the search with a decay
term, one can abbreviate it by terminating the ascent after some
suitable period t=v; from Eq. (11)

Dli ¼ ðexpðvJÞ�IÞJ�1m� i

¼ ðexpðvIðliÞ#i#iÞ � IÞIðliÞ�1
#i#i IðliÞ#i

J ¼ IðliÞ#i#i ð16Þ
This has the advantage of using the local gradients and
curvatures while precluding large excursions from the expansion
point. In our implementations v=1/η is based on the 2-norm of the
curvature η for both regularisation schemes. The 2-norm is the
largest singular value and, in the present context, represents an
upper bound on rate of convergence of the ascent (cf. a Lyapunov
exponent).1 Terminating the ascent prematurely is reminiscent of
“early stopping” in the training of neural networks in which the
number of weights far exceeds the sample size (e.g., Nelson and
Illingworth, 1991, p. 165). It is interesting to note that “early
stopping” is closely related to ridge regression, which is another
perspective on Levenburg–Marquardt regularisation.

A comparative example using Levenburg–Marquardt and tem-
poral regularisation is provided in Fig. 1 and suggests, in this
example, temporal regularisation is better. Either approach can be
implemented in the VB scheme by simply regularising the
Newton update if the variational energy I(ϑi) fails to increase
after each iteration. We prefer temporal regularisation because it
is based on a simpler heuristic and, more importantly, is straight-
forward to implement in dynamic schemes using high-order
temporal derivatives.

A note on dynamic models
The second reason we have formulated the ascent as a time-

dependent process is that it can be used to invert dynamic models.
In this instance, the integration time in Eq. (16) is determined by
the interval between observations. This is the approach taken in our
variational treatment of dynamic systems; namely, dynamic
expectation maximisation or DEM (introduced briefly in Friston,
2005 and implemented in spm_DEM.m). DEM produces condi-
tional densities that are a continuous function of time and avoids
many of the limitations of discrete schemes based on incremental
Bayes (e.g., extended Kalman filtering). In dynamic models the
energy is a function of the parameters and their high-order motion;
i.e., I(ϑi)→ I(ϑi, ϑ

.
i,…,t). This entails the extension of the

variational density to cover this motion, using generalised co-
ordinates q(ϑi)→q(ϑi,ϑ

.
i,…,t). This approach will be described

fully in a subsequent paper. Here we focus on static models.
Having established the operational equations for VB under the

Laplace approximation we now look at their application to some
specific models.

Variational Bayes for nonlinear models

Consider the generative model with additive error y=G(θ)+
ε(λ). Gaussian assumptions about the errors or innovations p(ε)=
N(0,Σ(λ)) furnish a likelihood p(y|θ,λ)=N(G(θ),Σ(λ)). In this
example, we can consider the parameters as falling into two sets
ϑ={θ,λ} such that q(ϑ)=q(θ)q(λ), where q(θ)=N(μθ,Σθ) and
q(λ)=N(μλ,Σλ). We will also assume Gaussian priors p(θ)=
N(ηθ,Πθ−1) and p(λ)=N(ηλ,Πλ−1). We will refer to the two sets as
the parameters and hyperparameters. These likelihood and priors
define the energy L(ϑ)= ln p(y|θ,λ)+ ln p(θ)+ ln p(λ). Note that
Gaussian priors are not too restrictive because both G(θ) and Σ(λ)
can be nonlinear functions that embody a probability integral
transform (i.e., can implement a re-parameterisation in terms of
non-Gaussian priors).



Fig. 1. Examples of Levenburg–Marquardt and temporal regularisation. The left panel shows an image of the landscape defined by the objective function F(θ1,θ2)
of two parameters (upper panel). This was chosen to be difficult for conventional schemes; exhibiting curvilinear valleys and convex regions. The right panel shows
the ascent trajectories, over 256 iterations (starting at 8, −10), superimposed on a contour plot of the landscape. In these examples the regularisation parameter was
the 2-norm of the curvature evaluated at each update. Note how the ascent goes off in the wrong direction with no regularisation (Newton). The regularisation
adopted by Levenburg–Marquardt makes its progress slow, in relation to the temporal regularisation, so that it fails to attain the maximum after 256 iterations.
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Given n samples, p parameters and h hyperparameters the
energy and its derivatives are

L #ð Þ ¼ � 1

2
eTS�1eþ 1

2
ln jS�1j � n

2
ln 2p

� 1
2
ehTCheh þ 1

2
ln jChj � p

2
ln 2p

� 1
2
ekTCkek þ 1

2
ln jCkj � h

2
ln 2p ð17Þ

e ¼ GðlhÞ � y

eh ¼ lh � gh

ek ¼ lk � gk

and

LðlÞh ¼ �GT
hS

�1e�Cheh

LðlÞhh ¼ �GT
hS

�1Gh �Ch

L
�
l
�
ki ¼ � 1

2
tr Pi ee

T � S
� �� ��Ck

id e
k

L
�
l
�
kkij ¼ � 1

2
tr Pij ee

T � R
� �� �� 1

2
tr PiSPjS
� ��Ck

ij ð18Þ

Pi ¼ AS�1

Aki
Pij ¼ A2S�1

AkiAkj

Note that we have ignored second-order terms that depend on
Gθθ, under the assumption that the generative model is only weakly
nonlinear. The requisite gradients and curvatures are

IðhÞhk ¼ Lðh; lkÞhk þ
1

2
tr SkAk
� �

IðkÞki ¼ Lðlh; kÞki þ
1

2
tr ShCi
� �

IðhÞhhkl ¼ Lðh; lkÞhhkl þ
1
2
tr SkBkl
� �

IðkÞkkij ¼ Lðlh; kÞkkij þ
1
2
tr ShDij
� �

Ak
ij ¼ �GT

hd kPije Ci ¼ �GT
hPiGh

Bkl
ij ¼ �GT

hd kPijGhd l Dij ¼ �GT
hPijGh

ð19Þ
where Gθ·k denotes the kth column of Gθ. These enter the VB
scheme in Eq. (13), giving the two-step scheme

ð20Þ

The negative free energy for these models is

F ¼ � 1
2
eTS�1eþ 1

2
lnjS�1j � n

2
ln 2p
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� 1
2
ehTCheh þ 1

2
lnjChj þ 1

2
lnjShj

� 1
2
ekTCkek þ 1

2
lnjCkj þ 1

2
lnjSkj ð21Þ

In principle, these equations cover a large range of models and
will work provided the true posterior is unimodal (and roughly
Gaussian). The latter requirement can usually be met by a suitable
transformation of parameters. In the next section, we consider a
further simplification of our assumptions about the variational
density and how this leads to expectation maximisation.
2 We are assuming that there are no hyperpriors on the hyperparameters
so that terms involving Πλ can be ignored.
Expectation maximisation for nonlinear models

There is a key distinction between θ and λ in the generative
model above: The parameters λ are hyperparameters in the sense,
like the variational parameters, they parameterise a density. In
many instances their conditional density per se is uninteresting. In
variational expectation maximisation EM, we ignore uncertainty
about the hyperparameters. In this case, the free energy is
effectively conditioned on λ and reduces to

Fk ¼ ln p yjkð Þ � D q hð Þtp hjy;kð Þð Þ
¼ � 1

2
eTS�1eþ 1

2
lnjS�1j � n

2
ln 2p

� 1
2
ehTCheh þ 1

2
lnjChj þ 1

2
lnjShj: ð22Þ

Here, Fλ≤ ln p(y|λ) becomes a lower bound on the log like-
lihood of the hyperparameters. This means the variational step
updating the hyperparameters maximises the likelihood of the
hyperparameters ln p(y|λ) and becomes an M-step. In this context,
Eq. (20) simplifies because we can ignore the terms that involve Σλ

and Πλ to give

ð23Þ
Expectation–maximisation or EM is an iterative parameter re-

estimation procedure devised to estimate the parameters and
hyperparameters of a model. It was introduced as an iterative method
to obtain maximum likelihood estimators with incomplete data
(Hartley, 1958) andwas generalised byDempster et al. (1977). Strictly
speaking, EM refers to schemes inwhich the conditional density of the
E-step is known exactly, obviating the need for fixed-form
assumptions. This is why we used the term ‘variational EM’ above.

In terms of the VB scheme, the M-step for μλ=maxI(λ) is
unchanged because I(λ) does not depend on Σλ. The remaining
variational steps (i.e., E-steps) are simplified because one does not
have to average over the conditional density q(λ). This ensuing
scheme is that described in Friston (2002) for nonlinear system
identification and is implemented in spm_nlsi.m. Although this
scheme is applied to time series it actually treats the underlying
model as static, generating finite-length data sequences. This
routine is used to identify hemodynamic models in terms of
biophysical parameters for regional responses and dynamic causal
models (DCMs) of distributed responses in a variety of applica-
tions; e.g., fMRI (Friston et al., 2003), EEG (David et al., 2006),
MEG (Kiebel et al., 2006) and mean-field models of neuronal
activity (Harrison et al., 2005).

A formal equivalence
A key point here is that VB and EM are exactly the same when

Pij=0. In this instance the matrices A, B andD in Eq. (19) disappear.
This means the VB-step for the parameters does not depend on Σλ

and becomes formally identical to the E-step. Because the VB-step
for the hyperparameters is already the same as the M-step (apart
from the loss of hyperpriors) the two schemes converge. One can
ensure Pij=0 by adopting a hyper-parameterisation, which renders
the precision linear in the hyperparameters; for example, a linear
mixture of precision components Qi (see Appendix 1). This
resulting variational scheme is used by the SPM5 version of
spm_nlsi.m for nonlinear system identification.

The second key point that follows from this analysis is that one
can adjust the EM free energy to approximate the log-evidence, as
described next.

Accounting for uncertainty about the hyperparameters
The EM free energy in Eq. (22) discounts uncertainty about the

hyperparameters because it is conditioned upon them. This is a
well-recognised problem, sometimes referred to as the over-
confidence problem, for which a number of approximate solutions
have been suggested (e.g., Kass and Steffey, 1989). Here we
describe a solution that appeals to the variational framework within
which EM can be treated.

If we treat EM as an approximate variational scheme, we can
adjust the EM free energy to give the variational free energy
required for model comparison and averaging. By comparing Eqs.
(21) and (22) we can express the variational free energy in terms of
Fλ and an extra term2

F ¼ Fk þ 1
2
lnjSkj

Sk
ij ¼ �LðlÞ�1

kk ð24Þ

where the expression for L(μ)λλ comes from Eq. (18). Intuitively,
the extra term encodes the conditional information (i.e., entropy)
about the models covariance components. The log-evidence will
only increase if there is conditional information about the extra
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component. Adding redundant components will have no effect on
F (see the section below on automatic model selection). This term
can be regarded as additional Occam factor (Mackay and Takeuchi,
1996).

Note that even when conditional uncertainty about the hyper-
parameters has no effect on the conditional density of the parameters
(e.g., when the precisions are linear in the hyperparameters—see
above) this uncertainty can still have a profound effect on model
selection because it is an important component of the free energy and
therefore the log-evidence for a particular model.

Adjusting the EM free energy to approximate the log-evidence
is important because of the well-known connections between EM
for linear models and restricted maximum likelihood. This
connection suggests that ReML could also be used to evaluate
the log-evidence and therefore be used for model selection. We
now consider ReML as a special case of EM.

Restricted maximum likelihood for linear models

In the case of general linear models G(θ)=Gθ with additive
Gaussian noise and no priors on the parameters (i.e., Πθ=0) the
free energy reduces to

Fh ¼ ln p yjkð Þ � D q hð Þtp hjy;kð Þð Þ

¼ � 1
2
eTS�1eþ 1

2
lnjS�1j � n

2
ln 2pþ 1

2
lnjShj: ð25Þ

Critically, the dependence on q(θ) can be eliminated using the
closed form solutions for the conditional moments

lh ¼ ShGTS�1y

Rh ¼ ðGTS�1GÞ�1

to eliminate the divergence term and give

Fh ¼ ln pðyjkÞ
¼ � 1

2
tr S�1RyyTRT
� �þ 1

2
lnjS�1j � n

2
ln 2p� 1

2
lnjGTS�1Gj

e ¼ Ry

R ¼ I � GðGTS�1GÞ�1GTS�1 ð26Þ

This free energy is also known as the ReML objective function
(Harville, 1977). ReML or restricted maximum likelihood was
introduced by Patterson and Thompson in 1971 as a technique for
estimating variance components, which accounts for the loss in
degrees of freedom that result from estimating fixed effects
(Harville, 1977). The elimination makes the free energy a simple
function of the hyperparameters and, effectively, the EM scheme
reduces to a single M-step or ReML-step
ð27Þ
Notice that the energy has replaced the variational energy because
they are the same: from Eq. (6) I(ϑ)=L(λ). This is a result of
eliminating q(θ) from the variational density. Furthermore, the
curvature has been replaced by its expectation to render the
Newton decent a Fisher–Scoring scheme using

hRyyTRT i ¼ RSRT ¼ S� GSh
qG

T ¼ RS: ð28Þ

To approximate the log-evidence we can adjust the ReML free
energy, after convergence, as with the EM free energy

F ¼ Fh þ 1
2
lnjSkj

Sk ¼ �hLðlÞkki�1
: ð29Þ

The conditional covariance of the hyperparameters uses the
same curvature as the ascent in Eq. (27). Being able to compute the
log-evidence from ReML is useful because ReML is used widely
in an important class of models, namely hierarchical models
reviewed next.

Restricted maximum likelihood for hierarchical linear models

Parametric empirical Bayes
The application of ReML to the linear models of the previous

section did not accommodate priors on the parameters. However,
one can generally absorb these priors into the error covariance
components using a hierarchical formulation. This enables the
use of ReML to identify models with full or empirical priors.
Hierarchical linear models are equivalent to parametric empirical
Bayes models (Efron and Morris, 1973) in which empirical
priors emerge from conditional independence of the errors
ε(i) ~N(0,Σ(i)):

yð1Þ ¼
hð1Þ ¼ Gð1Þhð2Þ þ eð1Þ

hð2Þ¼ Gð2Þhð3Þ þ eð2Þ

v
hðnÞ ¼ eðnÞ

u

yð1Þ ¼ eð1Þ

þ Gð1Þeð2Þ

þ Gð1ÞGð2Þeð3Þ

v
þ Gð1Þ N Gðn�1ÞhðnÞ

ð30Þ

In hierarchical models, the random terms model uncertainly
about the parameters at each level and Σ(λ)(i) are treated as prior
covariance constraints on θ(i). Hierarchical models of this sort
are very common and underlie all classical mixed effects
analyses of variance.3 ReML identification of simple two-level
models like

yð1Þ ¼ Gð1Þhð2Þ þ eð1Þ

hð2Þ ¼ eð2Þ ð31Þ

is a useful way to impose shrinkage priors on the parameters
and covers early approaches (e.g., Stein shrinkage estimators) to
recent developments, such as relevance vector machines (e.g.,
3 For an introduction to EM algorithms in generalised linear models, see
Fahrmeir and Tutz (1994). This text provides an exposition of EM and PEB
in linear models, usefully relating EM to classical methods (e.g., ReML
p. 225).



4 Note that we have retained the residual forming matrix R, despite the
fact that there are no parameters. This is because in practice one usually
models confounds as fixed effects at the first level. The residual forming
matrix projects the data onto the null space of these confounds.
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Tipping, 2001). Relevance vector machines represent a Bayesian
treatment of support vector machines, in which the second-level
covariance Σ(λ)(2) has a component for each parameter. Most of
the ReML estimates of these components shrink to zero. This
means the columns of G(1) whose parameters have zero mean
and variance can be eliminated, providing a new model with
sparse support. This is also known as automatic relevance
determination (ARD; MacKay, 1995a,b) and will be illustrated
below.

Estimating these models through their covariances Σ(i) with
ReML corresponds to empirical Bayes. This estimation can
proceed in one of two ways: First, we can augment the model
and treat the random terms as parameters to give

y ¼ Jhþ e

y ¼

yð1Þ

0

v

0

2
6664

3
7775 J ¼

Kð2Þ : : : KðnÞ

�I

O
�I

2
6664

3
7775 e ¼

eð1Þ

eð2Þ

v

eðnÞ

2
6664

3
7775 h ¼

eð2Þ

v

hðnÞ

2
64

3
75

KðiÞ ¼j
i

j¼1
Gðj�1Þ

S ¼
Sð1Þ

O
SðnÞ

2
4

3
5

ð32Þ

with G(0) = I. This reformulation is a nonhierarchical model with no
explicit priors on the parameters. However, the ReML estimates of
Σ(λ)(i) are still the empirical prior covariances of the parameters θ(i)

at each level. If Σ(i) is known a priori, it simply enters the scheme
as a known covariance component. This corresponds to a full
Bayesian analysis with known or full priors for the level in
question.

spm_peb.m uses this reformulation and Eq. (27) for estimation.
The conditional expectations of the parameters are recovered by
recursive substitution of the conditional expectations of the errors
into Eq. (30) (cf. Friston, 2002). spm_peb.m uses a computation-
ally efficient substitution

1
2
tr PiR yyT � S

� �
RT

� � ¼ 1
2
yTRTPiRy� 1

2
tr PiRSRT
� � ð33Þ

to avoid computing the potentially large matrix yyT. We have
used this scheme extensively in the construction of posterior
probability maps or PPMs (Friston and Penny, 2003) and
mixed-effect analysis of multi-subject studies in neuroimaging
(Friston et al., 2005). Both these examples rest on hierarchical
models, using hierarchical structure over voxels and subjects,
respectively.

Classical covariance component estimation
An equivalent identification of hierarchical models rests on an

alternative and simpler reformulation of Eq. (30) in which all the
hierarchically induced covariance components K(i)TΣ(i)K(i)T are
treated as components of a compound error

y ¼ e

y ¼ yð1Þ

e ¼
Xn
i¼1

KðiÞeðiÞ

S ¼
Xn
i¼1

KðiÞTSðiÞKðiÞT : ð34Þ

The ensuing ReML estimates of Σ(λ)(i) can be used to compute
the conditional density of the parameters in the usual way. For
example, the conditional expectation and covariance of the ith level
parameters θ(i) are

lhðiÞ ¼ ShðiÞKðiÞTS
~�1

y

ShðiÞ ¼ KðiÞTS
~�1

KðiÞ þ SðiÞ�1
� ��1

S
~ ¼

X
j p i

KðjÞTSðjÞKðjÞT ð35Þ

where Σ
~
represents the ReML estimate of error covariance,

excluding the level of interest. This component Σ(i) =Σ(λ)(i) is
treated as an empirical prior on θ(i). spm_ReML.m uses Eq. (27) to
estimate the requisite hyperparameters. Critically, it takes as an
argument the matrix yyT. This may seem computationally
inefficient. However, there is a special but very common case
where dealing with yyT is more appropriate than dealing with y
(cf. the implementation using Eq. (33) in spm_peb.m):

This is when there are r multiple observations that can be
arranged as a matrix Y=[y1,…,yr]. If these observations are
independent then we can express the covariance components of the
vectorised response in terms of Kronecker tensor products

y ¼ vec Yf g ¼ e

e ¼
Xn
i ¼ 1

I � KðiÞeðiÞ

cov eðiÞ
n o

¼ I � SðiÞ: ð36Þ

This leads to a computationally efficient scheme employed by
spm_ReML.m, which uses the compact forms4

Lki ¼ � 1
2
tr I � PiRð Þ yyT � I � S

� �
I � RT
� �� �

¼ � r
2
tr PiR

1
r
YYT � S

� �
RT

� �

hLkkiji ¼ � 1
2
tr I � PiRSPjRS
� �

¼ � r
2
tr PiRSPjRS
� �

: ð37Þ

Critically, the update scheme is a function of the sample
covariance of the data (1/r)YYT and can be regarded as a



Fig. 2. A hierarchical linear model. (A) The form of the model with two
levels. The first level has a single error covariance component, whereas the
second has two. The second level places constraints on the parameters of the
first, through the second-level covariance components. Conditional estima-
tion of the hyperparameters, controlling these components, corresponds to
an empirical estimate of their prior covariance (i.e., empirical Bayes).
Because there is no second level design matrix the priors shrink the
conditional estimates towards zero. These are known as shrinkage priors. (B)
The design matrix and covariance components used to generate 128
realisations of the response variable y, using hyperparameters of unity for all
components. The design matrix comprised random Gaussian variables.
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covariance component estimation scheme. This can be useful in
two situations:

First, if the augmented form in Eq. (32) produces prohibitively
long vectors. This can happen when the number of parameters is
much greater than the number of responses. This is a common
situation in underdetermined problems. An important example is
source reconstruction in electroencephalography, where the
number of sources is much greater than the number of
measurement channels (see Phillips et al., 2005, for an
application that uses spm_ReML.m in this context). In these
cases one can form conditional estimates of the parameters using
the matrix inversion lemma and again avoid inverting large (p×p)
matrices.

lhðiÞ ¼ SðiÞKðiÞTS
~�1

Y

ShðiÞ ¼ SðiÞ � SðiÞKðiÞTS
~�1

KðiÞSðiÞ

S
~ ¼

Xn
i ¼ 1

KðiÞTSðiÞKðiÞT : ð38Þ

The second situation is where there are a large number of
realisations. In these cases it is much easier to handle the second-
order matrices of the data YY T than the data Y itself. An important
application here is the estimation of nonsphericity over voxels in
the analysis of fMRI time-series (see Friston et al., 2002, for this
use of spm_ReML.m). Here, there are many more voxels than
scans and it would not be possible to vectorise the data. However,
it is easy to collect the sample covariance over voxels and partition
it into nonspherical covariance components using ReML.

In the case of sequential correlations among the errors
cov{ε(i)} =V�Σ(i) one simply replaces YY T with YV − 1Y T.
Heuristically, this corresponds to sequentially whitening the ob-
servations before computing their second order statistics. We have
used this device in the Bayesian inversion of models of evoked
and induced responses in EEG/MEG (Friston et al., 2006).

In summary, hierarchical models can be identified through
ReML estimates of covariance components. If the response vector
is relatively small it is generally more expedient to reduce the
hierarchical form by augmentation, as in Eq. (32), and use Eq. (33)
to compute the gradients. When the augmented form becomes too
large, because there are too many parameters, reformulation in
terms of covariance components is computationally more efficient
because the gradients can be computed from the sample covariance
of the data. The latter formulation is also useful when there are
multiple realisations of the data because the sample covariance,
over realisations, does not change in size. This leads to very fast
Bayesian inversion. Both approaches rest on estimating covariance
components that are induced by the observation hierarchy. This
enforces a hyper-parameterisation of the covariances, as opposed to
precisions (see Appendix 1).

Model selection with ReML

This section contains a brief demonstration of model selection
using ReML and its adjusted free energy. In these examples, we
use the covariance component formulation (spm_ReML.m) as in
Eq. (34), noting exactly the same results would be obtained with
augmentation (spm_peb.m). We use a simple hierarchical two-level
linear model, implementing shrinkage priors, because this sort of
model is common in neuroimaging data analysis and represents the
simplest form of empirical Bayes. The model is described in Fig. 2.
Briefly it has eight parameters that cause a 32-variiate response.
The parameters are drawn from a multivariate Gaussian that was a
mixture of two known covariance components. Data were
generated repeatedly (128 samples) using different parameters for
each realization. This model can be regarded as generating fMRI
data over 32 scans, each with 128 voxels; or EEG data from 32
channels over 128 time bins. These simulations are provided as a
proof of concept and illustrate how one might approach numerical
validation in the context of other models.

The free energy can, of course, be used for model selection
when models differ in the number and deployment of parameters.
This is because both F and F θ are functions of the number of
parameters and their conditional uncertainty. This can be shown by
evaluating the free energy as a function of the number of model
parameters, for the same data. The results of this sort of evaluation
are seen in Fig. 3 and demonstrate that model selection correctly
identifies a model with eight parameters. This was the model used
to generate the data (Fig. 2). In this example, we used a simple
shrinkage prior on all parameters (i.e., Σ(2) =λ(2)I) during the
inversions.

The critical issue is whether model selection will work when
the models differ in their hyperparameterisation. To address this,
we analysed the same data, produced by two covariance
components at the second level, with models that comprised an
increasing number of second-level covariance components (Fig. 4).
These components can be regarded as specifying the form of
empirical priors over solution space (e.g., spatial constraints in an
EEG source reconstruction problem). The results of these
simulations show that the adjusted free energy F correctly
identified the model with two components. Conversely, the
unadjusted free energy F θ rose progressively as the number of
components and accuracy increased. See Fig. 5.



Fig. 3. Model selection in terms of parameters using ReML. The data
generated by the eight-parameter model in Fig. 2 were analysed with ReML
using a series of models with an increasing numbers of parameters. These
models were based on the first p columns of the design matrix above. The
profile of free energy clearly favours the model with eight parameters,
corresponding to the design matrix (dotted line in upper panel) used to
generate the data.

Fig. 4. Covariance components used to analyse the data generated by the
model in Fig. 2. The covariance components are shown at the second level
(upper panels) and after projection onto response space (lower panel) with
the eight-parameter model. Introducing more covariance components creates
a series models with an increasing number of hyperparameters, which we
examined using model selection in Fig. 5. These covariance components
were leading diagonal matrices, whose elements comprised a mean-adjusted
discrete cosine set.

Fig. 5. Model selection in terms of hyperparameters using ReML. (A) The
free energy was computed using the data generated by the model in Fig. 2
and a series of models with an increasing number of hyperparameters. The
ensuing free energy profiles (adjusted—left; unadjusted—right) are shown
as a function of the number of second-level covariance components used
(from the previous figure). The adjusted profile clearly identified the correct
model with two second-level components. (B) Conditional estimates (white)
and true (black) hyperparameter values with 90% confidence intervals for
the correct (3-component; left) and redundant (9-component; right) models.
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The lower panel in Fig. 5 shows the hyperparameter estimates
for two models. With the correctly selected model the true values
fall within the 90% confidence interval. However, when the model
is over-parameterised, with eight second-level components, this is
not the case. Although the general profile of hyperparameters has
been captured, this suboptimum model has clearly overestimated
some hyperparameters and underestimated others.

Validation using MCMC
Finally, to establish that the variational approximation to the

log-evidence is veridical, we computed ln p(y|ϑ) using a standard
Monte Carlo–Markov chain (MCMC) procedure, described in
Appendix 2. MCMC schemes are computationally intensive but
allow one to sample from the posterior distribution p(ϑ|y) without
making any assumptions about its form. These samples can then be
used to estimate the marginal likelihood using, in this instance, a
harmonic mean (see Appendix 2). These resulting estimates are not
biased by the mean-field and Laplace approximations implicit in
the variational scheme and can be used to asses the impact of these
approximations on model comparison. The sampling estimates of
free energy are provided in Fig. 6 (upper panels) for the eight
models analysed in Fig. 5. The profile of true [sampling] log-
evidences concurs with the free-energy profile in a pleasing way
and suggests that the approximations entailed by the variational



Fig. 6. Log-evidence or marginal likelihoods for the models in Fig. 5
estimated by ReML under the Laplace approximation (left) and a harmonic
mean, based on samples from the posterior density using a Metropolis–
Hasting sampling algorithm (right). These results should be compared with
the free-energy approximations in the first panel of the previous figure
(Fig. 5). Details of the sampling scheme can be found Appendix 2. The
lower panels compare the two estimates of the conditional density in terms
of their expectations and covariances. The agreement is self-evident.

5 In which covariances are hyper-parameterised as a linear mixture of
covariance components.
6 Assuming μλ=ηλ, where the prior mean ηλ shrinks the conditional

mean towards minus infinity (and the scale parameter to zero).
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approach do not lead to inaccurate model selection, under these
linear models. Furthermore, the sampled posterior p(λ|y) of the
largest model (with eight second-level covariance components) is
very similar to the Laplace approximation q(λ) as judged by their
first two moments (Fig. 6; lower panels).

Automatic model selection (AMS)

Hitherto, we have looked at model selection in terms of
categorical comparisons of model evidence. However, the log-
evidence is the same as the objective function used to optimise
q(ϑi) for each model. Given that model selection and inversion
maximise the same objective function; one might ask if inversion
of an over-parameterised model finds the optimal model
automatically. In other words, does maximising the free energy
switch off redundant parameters and hyperparameters by setting
their conditional density q(ϑi) to a point mass at zero; i.e., μi→0
and Σi→0. Most fixed-form variational schemes do this; however,
this is precluded in classical5 ReML because the Laplace
approximation admits improper, negative, covariance components,
when these components are small. This means classical schemes
cannot switch off redundant covariance components. Fortunately, it
is easy to finesse this problem by applying the Laplace assumption
to λ=lnα, where α are scale parameters encoding the expression of
covariance components. This renders the form of q(a) log-normal
and places a positivity constraint on a.

Log-normal hyperpriors
Consider the hyper-parameterisation

S ¼
X
i

expðkiÞQi ð39Þ

with priors p(λ)=N(ηλ,Πλ −1

). This corresponds to a transformation
in which scale parameters ai=exp(λi) control the expression of
each covariance component, Qi. To first order, the conditional
variance of each scale parameter is

Sa
i ¼

Aai
Aki

Sk
i
Aai
Aki

�����
k ¼ lki

¼ lki S
~
i lai : ð40Þ

This means that when μi
α=exp(μi

λ)→0 we get Σi
a→0, which is

necessary for automatic model selection. In this limit, the
conditional covariance Σi

λ is given by Eqs. (7) and (18)

Sk ¼ �L�1
kk ¼ Ck�1 ð41Þ

because Pi=Pij→0 when exp(μi
λ)→0 (see Appendix 1). In short,

by placing log-normal hyperpriors on αi, we can use a conventional
EM or ReML scheme for AMS. In this case, the conditional
uncertainty about covariance components shrinks with their
expectation, so that we can be certain they do not contribute to
the model. It is simple to augment the ReML scheme and free
energy to include hyperpriors (cf. Eq. (27))

ð42Þ

F ¼ Fh þ 1
2
lnjSkj þ 1

2
lnjCkj � 1

2
ekTCkek

Note, that adding redundant covariance components to the
model does not change the free energy because the entropy
associated with conditional uncertainty is offset exactly by the
prior uncertainty they induce; due to the equality in Eq. (41).6

This means that conventional model selection will show that all
over-parameterised models are equally optimal. This is intuitive
because the inversion has already identified the optimal model.
Fig. 7 shows the hyperparameter estimates for the model



Fig. 7. Hyperparameter estimates for the model described in Fig. 5; with an
increasing number of second-level covariance components. The upper panel
show the conditional estimates with a classical hyper-parameterisation and
the lower panels show the results with log-normal hyperpriors before (lower)
and after (middle) log-transformation. True values are shown as filled bars
and 90% confidence intervals are shown in light grey.
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described in Fig. 5; with eight second-level covariance compo-
nents. The upper panel shows the results with a classical hyper-
parameterisation and the lower panels show the results with log-
normal hyperpriors (before and after log-transformation). Note
that hyperpriors are necessary to eliminate unnecessary compo-
nents. In this example (and below) we used relatively flat
hyperpriors; p(λ)=N(−16,32).
Fig. 8. Automatic relevance determination using ReML and the models
reported in Fig. 3. The upper panel shows that the free energy reaches a
maximum with the correct number of parameters and remains there, even
when redundant parameters are added. The lower panel shows the conditional
estimates (white bars) of the parameters (for the first sample) using Eq. (35).
90% confidence intervals are shown in light grey. These estimates are from an
over-parameterised model with 16 parameters. The true values are depicted
as filled bars. Note that ARD switches off the last eight redundant parameters
(outside the box) and has implicitly performed a model selection.
Automatic relevance determination (ARD)
When automatic model selection is used to eliminate redundant

parameters, it is known as automatic relevance determination
(ARD). In ARD one defines an empirical prior on the parameters
that embodies the notion of uncertain relevance. This enables the
inversion to infer which parameters are relevant and which are not
(MacKay, 1995a,b). This entails giving each parameter its own
shrinkage prior and estimating an associated scale parameter. In
the context of linear models, this is implemented simply by adding
a level to induce empirical shrinkage priors on the parameters.
ReML (with hyperpriors) can then be used to switch off redundant
parameters by eliminating their covariance components at the first
level. We provide an illustration of this in Fig. 8, using the models
reported in Fig. 3. The lower panel shows the conditional
estimates of the parameters using Eq. (35) for the over-
parameterised model with 16 parameters. Note that ARD with
ReML correctly shrinks and switches off the last eight redundant
parameters and has implicitly performed AMS. The upper panel
shows that the free energy of all models, with an increasing
number of parameters, reaches a maximum at the correct
parameterisation and stays there even when redundant parameters
(i.e., components) are added.

Discussion

We have seen that restricted maximum likelihood is a special
case of expectation maximisation and that expectation max-
imisation is a special case of variational Bayes. In fact, nearly
every routine used in neuroimaging analysis (certainly in SPM5;
http://www.fil.ion.ucl.ac.uk/spm) is a special case of variational
Bayes, from ordinary least squares estimation to dynamic causal
modelling. We have focussed on adjusting the objective
functions used by EM and ReML to approximate the variational
free energy under the Laplace approximation. This free energy is
a lower bound approximation (exact for linear models) to the
log-evidence, which plays a central role in model selection and
averaging. This means one can use computationally efficient
schemes like ReML for both model selection and Bayesian
inversion.

http://www.fil.ion.ucl.ac.uk/spm
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Variational Bayes and the Laplace approximation

Variational inference finds itself between the conventional post
hoc Laplace approximation and sampling methods (see Adami,
2003). At one extreme, the post hoc Laplace approximation,
although simple, can be inaccurate and unwieldy in a high-
dimensional setting (requiring large numbers of second-order
derivatives). At the other extreme, we can approximate the
evidence using numerical techniques such as MCMC methods
(e.g., the Metropolis–Hastings algorithm used above). However,
these are computationally intensive. Variational inference attempts
to approximate the integrand to make the integral tractable. The
basic idea is to bound the integral, reducing the integration
problem to an optimisation problem, i.e., making the bound as
tight as possible. No parameter estimation is required and the
integral is optimised directly. The Kullback–Leibler cross-entropy
or divergence measures the disparity between the true and
approximate posterior and quantifies the loss of information
incurred by the approximation. Variational Bayes under the
Laplace approximation entails two approximations to the condi-
tional density. The first is the factorisation implicit in the mean
field approximation and the second in the Laplace assumption
about the ensuing factors. Both can affect the estimation of the
evidence.

Mean-field factorisation

Although a mean field factorisation of the posterior distribution
may seem severe, one can regard it as replacing stochastic
dependencies among ϑi with deterministic dependencies between
their relevant moments (see Beal, 1998). The advantage of ignoring
how fluctuations in ϑi induce fluctuations in ϑi (and vice-versa) is
that we can obtain analytical free-form or fixed-form approxima-
tions to the log-evidence. These ideas underlie mean-field
approximations from statistical physics, where lower-bounding
variational approximations were conceived (Feynman, 1972). Using
the bound for model selection and averaging rests on assumptions
about the tightness of that bound: for example, the log-Bayes factor
comparing two models m and m′ is

ln
pðyjmÞ
pðyjmVÞ ¼ F � F Vþ D q #ð Þtp #jy;mð Þð Þ

� D qV #ð Þtp #jy;mVð Þð Þ: ð39Þ
When we perform model selection by comparing the free

energies, F–F ′, we are assuming that the tightness or divergence
of the two approximations are the same. Unfortunately, it is
nontrivial to predict analytically how tight a particular bound is; if
this were possible, we could estimate the marginal likelihood
more accurately (Beal and Ghahramani, 2003). However, as
illustrated above, sampling methods can be used to validate the
free-energy estimates of log-evidence for a particular class of
model. See Girolami and Rogers (2005) for an example of
comparing Laplace and variational approximations to exact
Inference via Gibbs sampling in the context of multinomial probit
regression with Gaussian process priors.
The Laplace approximation

These arguments also apply to the Laplace approximation for
each mean-field partition q(ϑi). However, this approximation is
less severe for the models considered here. In the context of linear
models, q(θ) is exactly Gaussian. Even for nonlinear or dynamic
models there are several motivations for a Gaussian approxima-
tion. First, the large number of observations, encountered typically
in neuroimaging, render the posterior nearly Gaussian, around its
mode (Beal and Ghahramani, 2003). Second, Gaussian assump-
tions about errors and empirical priors in hierarchical models are
motivated easily by the central limit theorem entailed by the
averaging implicit in most imaging applications.

Priors and model selection

The log-evidence, and ensuing model selection, can depend
on the choice of priors. This is an important issue because
model selection could be dominated by the priors entailed by
different models. This becomes acute when the priors change
systematically with the model. An example of this is dynamic
causal modelling, in which shrinkage priors are used to ensure
stable dynamics. These priors become tighter as the number of
connections among neuronal sources increases. This example is
discussed in Penny et al. (2004), where the use of approxima-
tions to the log-evidence (Akaike and Bayesian information
criteria; AIC and BIC) are used to provide consistent evidence
in favour of one model over another. The AIC and BIC depend
less on the priors. Generally, however, sensitivity to prior
assumptions can be finessed by adopting noninformative
hyperpriors. This involves optimising the priors per se, with
respect to the free energy, by introducing hyperparameters that
encode the prior density. The use of flat hyperpriors, on these
hyperparameters, enables model comparison that is not con-
founded by prior assumptions: The section on AMS provided an
example of this, which speaks to the usefulness of hierarchical
models and empirical priors: In the example used above, the
models differed only in the number of covariance components,
each with flat hyperpriors on their expression.

In a subsequent publication (Henson et al., in preparation), we
will illustrate the use of automatic model selection using ReML in
the context of distributed source reconstruction. This example uses
MEG data to localise responses to face processing and shows that
a relatively simple model of both sensor noise and source-space
priors supervenes over more elaborate models.
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Appendix A

A.1. Hyper-parameterising covariances

This appendix discusses briefly the various hyper-parameter-
isations one can use for the covariances of random effects. Recall
that the variational scheme and EM become the same when
Pij=∂

2Σ/∂λi∂λj=0. One can ensure Pij=0 by adopting a hyper-
parameterisation, where the precision is linear in the hyperpara-
meters; for example, a linear mixture of precision components Qi.
Consider the more general parameterisation of precisions

S�1 ¼
X
i

f ðkiÞQi
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Pi ¼ f VðkiÞQi

Pij ¼ 0 i p j
f WðkiÞQi i ¼ j

	
ðA:1Þ

Where f (λi) is any analytic function. The simplest is f (λi)=
λiZ f ′Z 1= f ″=0. In this case VB and EM are formally identical.
However, this allows negative contributions to the precisions,
which can lead to improper covariances. Using f (λi)=exp
(λi)Z f ″= f ′= f precludes improper covariances. This hyper-para-
meterisation effectively implements a log-normal hyperprior, which
imposes scale-invariant positivity constraints on the precisions.
This is formally related to the use of conjugate [gamma] priors for
scale parameters like f (λi) (cf. Berger, 1985), when they are
noninformative. Both imply a flat prior on the log-precision, which
means its derivatives with respect to ln f (λi)=λi vanish (because it
has no maximum). In short, one can either place a gamma prior on
f (λi) or a normal prior on ln f (λi)=λi. These hyperpriors are the
same when uninformative.

However, there are many models where is necessary to hyper-
parameterise in terms of linear mixtures of covariance components

S ¼
X
i

f ðkiÞQi

Pi ¼ �f VðkiÞS�1QiS�1

Pij ¼
2PiSPj i p j

2PiSPi þ f WðkiÞ
f VðkiÞ Pi i ¼ j

8<
: ðA:2Þ

This is necessary when hierarchical generative models induce
multiple covariance components. These are important models
because they are central to empirical Bayes. See Harville (1977,
p. 322) for comments on the usefulness of making the covariances
linear in the hyperparameters; i.e., f(λi)=λiZ f ′= 1Z f ″=0.

An important difference between these two hyper-parameterisa-
tions is that the linear mixture of precisions is conditionally convex
(Mackay and Takeuchi, 1996), whereas themixture of covariances is
not. This means there may be multiple optima for the latter. See
Mackay and Takeuchi (1996) for further covariance hyper-
parameterisations and an analysis of their convexity. Interested
readers may find the material in Leonard and Hsu (1992) useful
further reading.

Appendix B

B.1. Estimating the marginal likelihood via MCMC sampling and
the harmonic mean identity

Following Raftery et al. (2006); consider data y, a likelihood
function p(y|ϑ,m) for a model m and a prior distribution p(ϑ|m).
The integrated or marginal likelihood is

pðyjmÞ ¼
Z

pðyj#;mÞpð#jmÞd#: ðA:3Þ

The integrated or marginal likelihood is the normalising
constant for the product of the likelihood and the prior in forming
the posterior density p(ϑ|y). Evaluating the marginal likelihood can
present a difficult computational problem, which has been the
focus of this note. Newton and Raftery (1994) showed that the
marginal likelihood can be expressed as an expectation with
respect to the posterior distribution of the parameters, thus
motivating an estimate based on a Monte Carlo sample from the
posterior. By Bayes theorem

1

pðyjmÞ ¼
Z

pð#jy;mÞ
pðyj#;mÞ d# ¼ E

1

pðyj#;mÞ jy
	 


ðA:4Þ

Eq. (A.4) says that the marginal likelihood is the posterior
harmonic mean of the likelihood. This suggests that the integrated
likelihood can be approximated by the sample harmonic mean of
the likelihoods

p yjmð Þc 1
N

XN
i ¼ 1

1
pðyj#i;mÞ

" #�1

ðA:5Þ

based on N samples of ϑi from the posterior distribution. These
samples can come from a standard MCMC implementation, for
example a Metropolis–Hastings scheme.
B.2. Metropolis–Hastings (MH) sampling

MH involves the construction of a Markov chain whose
equilibrium distribution is the desired posterior distribution. At
equilibrium, a sample from the chain is a sample from the
posterior. Note that the posterior distribution reconstructed in this
way will not be constrained to be Gaussian or factorise over mean-
field partitions, thereby circumventing the approximations of the
variational scheme described in the main text.

This algorithm has the following recursive form, starting with
an initial value ϑ0 of the parameters (i.e., the prior expectation):

1. Propose ϑi+ 1 from pð#i þ 1j#iÞ

2. Calculate the ratio a ¼ Lð#i þ 1Þpð#i þ 1j#iÞ
Lð#iÞpð#ij#i þ 1Þ ðA:6Þ

3. Accept or reject

#i þ 1 ¼ #i þ 1 a > 1
#i with probability 1� a otherwise

	

Where L(ϑi)=p(y,ϑ|m) is defined in Eq. (17). We use 256
‘burn-in’ iterations and 216 samples. The proposal density was
π(ϑi+ 1|ϑi)=N(ϑi, (1/32)I). This symmetric density is convenient
because the proposal densities π(ϑi+1|ϑi)= π(ϑi|ϑi+1) in step 2
cancel, leading to a very simple algorithm.
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