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Chapter 1

General Linear Models I

1.1 Maximum Likelihood Estimation

We can learn the mean and variance of a Gaussian distribution

using the Maximum Likelihood (ML) framework as follows. A

Gaussian variable xn has the PDF

p(xn) =
1

(2πσ2)1/2
exp

(
−(x− µ)2

2σ2

)
(1.1)

which is also called the likelihood of the data point. Given

N Independent and Identically Distributed (IID) (it is often

assumed that the data points, or errors, are independent and

come from the same distribution) samples y = [y1, y2, .., yN ] we

have

p(y) =

N∏
n=1

p(yn) (1.2)

which is the likelihood of the data set. We now wish to set µ

and σ2 so as to maximise this likelihood. For numerical reasons

(taking logs gives us bigger numbers) this is more conveniently

achieved by maximising the log-likelihood (note: the maximum

11



12 CHAPTER 1. GENERAL LINEAR MODELS I

is given by the same values of µ and σ)

L ≡ log p(y) = −N
2

log 2π − N

2
log σ2 −

N∑
n=

(yn − µ)2

2σ2
(1.3)

The optimal values of µ and σ are found by setting the deriva-

tives dL
dµ and dL

dσ to zero. This gives

µ =
1

N

N∑
n=1

yn (1.4)

and

σ2 =
1

N

N∑
n=1

(yn − µ)2 (1.5)

We note that the last formula is different to the usual formula

for estimating variance

σ2 =
1

N − 1

N∑
n=1

(xn − µ)2 (1.6)

because of the difference in normalisation. The last estimator

of variance is preferred as it is an unbiased estimator (see later

section on bias and variance).

If we had an input-dependent mean, µn = wxn, then the op-

timal value for w can be found by maximising L. As only the

last term in equation 1.3 depends on w this therefore corre-

sponds to minimisation of the squared errors between µn and

yn. This provides the connection between ML estimation and

Least Squares (LS) estimation; ML reduces to LS for the case

of Gaussian noise.
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1.2 Correlation and Regression

1.2.1 Correlation

The covariance between two variables x and y is measured as

σxy =
1

N − 1

N∑
n=1

(xi − µx)(yi − µy) (1.7)

where µx and µy are the means of each variable. Note that

σyx = σxy. Sometimes we will use the notation

V ar(x, y) = σxy (1.8)

If x tends to be above its mean when y is above its mean then

σxy will be positive. If they tend to be on opposite sides of

their means σxy will be negative. The correlation or Pearson’s

correlation coefficient is a normalised covariance

r =
σxy
σxσy

(1.9)

such that −1 ≤ r ≤ 1, a value of −1 indicating perfect neg-

ative correlation and a value of +1 indicating perfect positive

correlation; see Figure 1.1. A value of 0 indicates no correla-

tion. The strength of a correlation is best measured by r2 which

takes on values between 0 and 1, a value near to 1 indicating

strong correlation (regardless of the sign) and a value near to

zero indicating a very weak correlation.

1.2.2 Linear regression

We now look at modelling the relationship between two vari-

ables x and y as a linear function; given a collection of N data
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(a) (b)

Figure 1.1: (a) Positive correlation, r = 0.9 and (b) Negative correlation, r = −0.7.
The dotted horizontal and vertical lines mark µx and µy.

points {xi, yi}, we aim to estimate yi from xi using a linear

model

ŷi = axi + b (1.10)

where we have written ŷ to denote our estimated value. Re-

gression with one input variable is often called univariate linear

regression to distinguish it from multivariate linear regression

where we have lots of inputs. The goodness of fit of the model

to the data may be measured by the least squares cost function

E =

N∑
i=1

(yi − ŷi)2 (1.11)

The values of a and b that minimize the above cost function can

be calculated by setting the first derivatives of the cost func-

tion to zero and solving the resulting simultaneous equations

(derivatives are used to find maxima and minima of functions).

The result is derived as follows. We can find the slope a and

offset b by minising the cost function

E =

N∑
i=1

(yi − axi − b)2 (1.12)
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Differentiating with respect to a gives

∂E

∂a
= −2

N∑
i=1

xi(yi − axi − b) (1.13)

Differentiating with respect to b gives

∂E

∂b
= −2

N∑
i=1

(yi − axi − b) (1.14)

By setting the above derivatives to zero we obtain the normal

equations of the regression. Re-arranging the normal equations

gives

a

N∑
i=1

x2
i + b

N∑
i=1

xi =

N∑
i=1

xiyi (1.15)

and

a

N∑
i=1

xi + bN =

N∑
i=1

yi (1.16)

By substituting the mean observed values µx and µy into the

last equation we get

b = µy − aµx (1.17)

Now let

Sxx =

N∑
i=1

(xi − µx)2 (1.18)

=

N∑
i=1

x2
i −Nµ2

x

(1.19)
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and

Sxy =

N∑
i=1

(xi − µx)(yi − µy) (1.20)

=

N∑
i=1

xiyi −Nµxµy

(1.21)

Substiting for b into the first normal equation gives

a
N∑
i=1

x2
i + (µy − aµx)

N∑
i=1

xi =

N∑
i=1

xiyi (1.22)

Re-arranging gives

a =

∑N
i=1 xiyi − µy

∑N
i=1 xi∑N

i=1 x
2
i + µx

∑N
i=1 xi

(1.23)

=

∑N
i=1 xiyi −Nµxµy∑N
i=1 x

2
i + Nµ2

x

=

∑N
i=1(xi − µx)(yi − µy)∑N

i=1(xi − µx)2

=
σxy
σ2
x

To summarise, the solutions are

a =
σxy
σ2
x

(1.24)

and

b = µy − aµx (1.25)

where µx and µy are the mean observed values of the data and

σ2
x and σxy are the input variance and input-output covariance.
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(a) (b)

Figure 1.2: The linear regression line is fitted by minimising the vertical distance
between itself and each data point. The estimated lines are (a) ŷ = 0.9003x+ 0.2901
and (b) ŷ = −0.6629x+ 4.9804.

This enables least squares fitting of a regression line to a data

set as shown in Figure 1.2.

The model will fit some data points better than others; those

that it fits well constitute the signal and those that it does’nt fit

well constitute the noise. The strength of the noise is measured

by the noise variance

σ2
e =

1

N − 1

N∑
i=1

(yi − ŷi)2 (1.26)

and the strenth of the signal is given by σ2
y − σ2

e . The signal-

to-noise ratio is therefore (σ2
y − σ2

e)/σ
2
e .

Splitting data up into signal and noise components in this man-

ner (ie. breaking down the variance into what the model ex-

plains and what it does not) is at the heart of statistical pro-

cedures such as analysis of variance (ANOVA) [24].

1.2.3 Relation to correlation

The correlation measure r is intimately related to the linear re-

gression model. Indeed (by substituting σxy from equation 4.57
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into equation 1.24) r may be expressed as

r =
σx
σy
a (1.27)

where a is the slope of the linear regression model. Thus, for ex-

ample, the sign of the slope of the regression line defines the sign

of the correlation. The correlation is, however, also a function

of the standard deviation of the x and y variables; for example,

if σx is very large, it is possible to have a strong correlation even

though the slope may be very small.

The relation between r and linear regression emphasises the

fact that r is only a measure of linear correlation. It is quite

possible that two variables have a strong nonlinear relationship

(ie. are nonlinearly correlated) but that r = 0. Measures of

nonlinear correlation will be discussed in a later lecture.

The strenth of correlation can also be expressed in terms of

quantites from the linear regresssion model

r2 =
σ2
y − σ2

e

σ2
y

(1.28)

where σ2
e is the noise variance and σ2

y is the variance of the

variable we are trying to predict. Thus r2 is seen to measure

the proportion of variance explained by a linear model, a value

of 1 indicating that a linear model perfectly describes the rela-

tionship between x and y.

1.2.4 Finding the uncertainty in estimating the slope

The data points may be written as

yi = ŷi + ei (1.29)

= axi + b + ei
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where the noise, ei has mean zero and variance σ2
e . The mean

and variance of each data point are

E(yi) = axi + b (1.30)

and

V ar(yi) = V ar(ei) = σ2
e (1.31)

We now calculate the variance of the estimate a. From earlier

we see that

a =

∑N
i=1(xi − µx)(yi − µy)∑N

i=1(xi − µx)2
(1.32)

Let

ci =
(xi − µx)∑N
i=1(xi − µx)2

(1.33)

We also note that
∑N

i=1 ci = 0 and
∑N

i=1 cixi = 1. Hence,

a =

N∑
i=1

ci(yi − µy) (1.34)

=

N∑
i=1

ciyi − µy
N∑
i=1

ci

(1.35)

The mean estimate is therefore

E(a) =

N∑
i=1

ciE(yi)− µy
N∑
i=1

ci (1.36)

= a
N∑
i=1

cixi + b
N∑
i=1

ci − µy
N∑
i=1

ci

= a

(1.37)
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The variance is

V ar(a) = V ar(
N∑
i=1

ciyi − µy
N∑
i=1

ci) (1.38)

The second term contains two fixed quantities so acts like a

constant. Hence,

V ar(a) = V ar(
N∑
i=1

ciyi) (1.39)

=

N∑
i=1

c2
iV ar(yi)

= σ2
e

N∑
i=1

c2
i

=
σ2
e∑N

i=1(xi − µx)2

=
σ2
e

(N − 1)σ2
x

1.3 Inference

When we estimate the mean and variance from small samples

of data our estimates may not be very accurate. But as the

number of samples increases our estimates get more and more

accurate and as this number approaches infinity the sample

mean approaches the true mean or population mean. In what

follows we refer to the sample means and variances as m and s

and the population means and standard deviations as µ and σ.

Hypothesis Testing: Say we have a hypothesis H which is

The mean value of my signal is 32. This is often referred
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to as the null hypothesis or H0. We then get some data and

test H which is then either accepted or rejected with a certain

probability or significance level, p. Very often we choose p =

0.05 (a value used throughout science).

We can do a one-sided or a two-sided statistical test depending

on exactly what the null hypothesis is. In a one-sided test our

hypothesis may be (i) our parameter is less than x or (ii) our

parameter is greater than x. For two-sided tests our hypothesis

is of the form (iii) our parameter is x. This last hypothesis can

be rejected if the sample statistic is either much smaller or much

greater than it should be if the parameter truly equals x.

1.3.1 Regression

In a linear regression model we are often interested in whether

or not the gradient is significantly different from zero or other

value of interest.

To answer the question we first estimate the variance of the

slope and then perform a t-test. In the appendix we show that

the variance of the slope is given by 1

σ2
a =

σ2
e

(N − 1)σ2
x

(1.40)

We then calculate the t-statistic

t =
a− ah
σa

(1.41)

where ah is our hypothesized slope value (eg. ah may be zero)

and look up p(t) with N − 2 DF (we have used up 1DF to
1When estimating σ2

x we should divide by N − 1 and when estimating σ2
e we should divide by

N − 2.
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estimate the input variance and 1DF to estimate the noise vari-

ance). In the data plotted in Figure 1.2(b) the estimated slope is

a = −0.6629. From the data we also calculate that σa = 0.077.

Hence, to find out if the slope is significantly non-zero we com-

pute CDFt(t) where t = −0.6629/0.077 = −8.6. This has a

p-value of 10−13 ie. a very significant value. To find out if the

slope is significantly different from −0.7 we calculate CDFt(t)

for t = (−0.6629 + 0.7)/0.077 = 0.4747 which gives a p-value

of 0.3553 ie. not significantly different (again, we must bear in

mind that we need to do a two-sided test; see earlier).

1.3.2 Correlation

Because of the relationship between correlation and linear re-

gression we can find out if correlations are significantly non-zero

by using exactly the same method as in the previous section; if

the slope is significantly non-zero then the corresponding corre-

lation is also significantly non-zero.

By substituting a = (σy/σx)r (this follows from equation 1.24

and equation 1.9) and σ2
e = (1 − r2)σ2

y (from equation 1.28)

into equation 1.40 and then σa into equation 1.41 we get the

test statistic 2

t =
r
√
N − 2√
1− r2

(1.42)

which has N − 2 DF.

For example, the two signals in Figure 1.3(a) have, over the

N = 50 given samples, a correlation of r = 0.8031 which gives

t = 9.3383 and a p-value of 10−12. We therefore reject the

hypothesis that the signals are not correlated; they clearly are.
2Strictly, we should use σ2

e = N−1
N−2 (1− r2)σ2

y to allow for using N − 2 in the denominator of σ2
e .



1.4. LINEAR ALGEBRA 23

(a) (b)

Figure 1.3: Two signals (a) sample correlation r = 0.8031 and (b) sample correlation,
r=0.1418. Strong correlation; by shifting and scaling one of the time series (ie. taking
a linear function) we can make it look like the other time series.

The signals in Figure 1.3(b) have a correlation of r = 0.1418

over the N = 50 given samples which gives t = 0.9921 and a

p-value of p = 0.1631. We therefore accept the null hypothesis

that the signals are not correlated.

1.4 Linear algebra

1.4.1 Transposes and Inner Products

A collection of variables may be treated as a single entity by

writing them as a vector. For example, the three variables x1,

x2 and x3 may be written as the vector

x =

 x1

x2

x3

 (1.43)

Bold face type is often used to denote vectors (scalars - single

variables - are written with normal type). Vectors can be writ-

ten as column vectors where the variables go down the page or

as row vectors where the variables go across the page (it needs

to be made clear when using vectors whether x means a row

vector or a column vector - most often it will mean a column
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vector and in our text it will always mean a column vector,

unless we say otherwise). To turn a column vector into a row

vector we use the transpose operator

xT = [x1, x2, x3] (1.44)

The transpose operator also turns row vectors into column vec-

tors. We now define the inner product of two vectors

xTy = [x1, x2, x3]

 y1

y2

y3

 (1.45)

= x1y1 + x2y2 + x3y3

=

3∑
i=1

xiyi

which is seen to be a scalar. The outer product of two vectors

produces a matrix

xyT =

 x1

x2

x3

 [y1, y2, y3] (1.46)

=

 x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3


An N × M matrix has N rows and M columns. The ijth

entry of a matrix is the entry on the jth column of the ith row.

Given a matrixA (matrices are also often written in bold type)

the ijth entry is written as Aij. When applying the transpose

operator to a matrix the ith row becomes the ith column. That

is, if

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (1.47)
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then

AT =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

 (1.48)

A matrix is symmetric if Aij = Aji. Another way to say this

is that, for symmetric matrices, A = AT .

Two matrices can be multiplied if the number of columns in the

first matrix equals the number of rows in the second. Multiply-

ing A, an N ×M matrix, by B, an M ×K matrix, results in

C, an N×K matrix. The ijth entry in C is the inner product

between the ith row in A and the jth column in B. As an

example[
2 3 4

5 6 7

] 1 3 7 2

4 3 4 1

5 6 4 2

 =

[
34 39 42 15

64 75 87 30

]
(1.49)

Given two matrices A and B we note that

(AB)T = BTAT (1.50)

1.4.2 Properties of matrix multiplication

Matrix multiplication is associative

(AB)C = A(BC) (1.51)

distributive

A(B +C) = AB +AC (1.52)

but not commutative

AB 6= BA (1.53)
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1.4.3 Covariance matrices

In the previous chapter the covariance, σxy, between two vari-

ables x and y was defined. Given p variables there are p × p
covariances to take account of. If we write the covariances be-

tween variables xi and xj as σij then all the covariances can be

summarised in a covariance matrix which we write below for

p = 3

C =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3

 (1.54)

The ith diagonal element is the covariance between the ith vari-

able and itself which is simply the variance of that variable;

we therefore write σ2
i instead of σii. Also, note that because

σij = σji covariance matrices are symmetric.

We now look at computing a covariance matrix from a given

data set. Suppose we have p variables and that a single obser-

vation xi (a row vector) consists of measuring these variables

and suppose there are N such observations. We now make a

matrixX by putting each xi into the ith row. The matrixX is

therefore an N × p matrix whose rows are made up of different

observation vectors. If all the variables have zero mean then

the covariance matrix can then be evaluated as

C =
1

N − 1
XTX (1.55)

This is a multiplication of a p × N matrix, XT , by a N × p
matrix,X , which results in a p×p matrix. To illustrate the use

of covariance matrices for time series, figure 1.4 shows 3 time
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Figure 1.4: Three time series having the covariance matrix C1 and mean vector m1

shown in the text. The top and bottom series have high covariance but none of the
other pairings do.

series which have the following covariance relation

C1 =

 1 0.1 1.6

0.1 1 0.2

1.6 0.2 2.0

 (1.56)

and mean vector

m1 = [13, 17, 23]T (1.57)

1.4.4 Diagonal matrices

A diagonal matrix is a square matrix (M = N) where all the

entries are zero except along the diagonal. For example

D =

 4 0 0

0 1 0

0 0 6

 (1.58)

There is also a more compact notation for the same matrix

D = diag([4, 1, 6]) (1.59)
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If a covariance matrix is diagonal it means that the covari-

ances between variables are zero, that is, the variables are all

uncorrelated. Non-diagonal covariance matrices are known as

full covariance matrices. If V is a vector of variances V =

[σ2
1, σ

2
2, σ

2
3]T then the corresponding diagonal covariance matrix

is V d = diag(V ).

1.4.5 The correlation matrix

The correlation matrix, R, can be derived from the covariance

matrix by the equation

R = BCB (1.60)

where B is a diagonal matrix of inverse standard deviations

B = diag([1/σ1, 1/σ2, 1/σ3]) (1.61)

1.4.6 The identity matrix

The identity matrix is a diagonal matrix with ones along the di-

agonal. Multiplication of any matrix, X by the identity matrix

results in X . That is

IX = X (1.62)

The identity matrix is the matrix equivalent of multiplying by

1 for scalars.

1.4.7 Matrix inverse

Given a matrix X its inverse X−1 is defined by the properties

X−1X = I (1.63)

XX−1 = I
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where I is the identity matrix. The inverse of a diagonal matrix

with entries dii is another diagonal matrix with entries 1/dii.

This satisfies the definition of an inverse, eg. 4 0 0

0 1 0

0 0 6

 1/4 0 0

0 1 0

0 0 1/6

 =

 1 0 0

0 1 0

0 0 1

 (1.64)

More generally, the calculation of inverses involves a lot more

computation. Before looking at the general case we first con-

sider the problem of solving simultaneous equations. These

constitute relations between a set of input or independent vari-

ables xi and a set of output or dependent variables yi. Each

input-output pair constitutes an observation. In the following

example we consider just N = 3 observations and p = 3 dimen-

sions per observation

2w1 +w2 + w3 = 5

4w1 −6w2 = −2

−2w1 +7w2 + 2w3 = 9

which can be written in matrix form 2 1 1

4 −6 0

−2 7 2

 w1

w2

w3

 =

 5

−2

9

 (1.65)

or in matrix form

Xw = y (1.66)

This system of equations can be solved in a systematic way by

subtracting multiples of the first equation from the second and

third equations and then subtracting multiples of the second

equation from the third. For example, subtracting twice the

first equation from the second and −1 times the first from the
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third gives  2 1 1

0 −8 −2

0 8 3

 w1

w2

w3

 =

 5

−12

14

 (1.67)

Then, subtracting −1 times the second from the third gives 2 1 1

0 −8 −2

0 0 1

 w1

w2

w3

 =

 5

−12

2

 (1.68)

This process is known as forward elimination. We can then

substitute the value for w3 from the third equation into the sec-

ond etc. This process is back-substitution. The two processes

are together known as Gaussian elimination. Following this

through for our example we get w = [1, 1, 2]T .

When we come to invert a matrix (as opposed to solve a sys-

tem of equations as in the previous example) we start with the

equation

AA−1 = I (1.69)

and just write down all the entries in the A and I matrices in

one big matrix  2 1 1 1 0 0

4 −6 0 0 1 0

−2 7 2 0 0 1

 (1.70)

We then perform forward elimination 3 until the part of the ma-

trix corresponding to A equals the identity matrix; the matrix

on the right is then A−1 (this is because in equation 1.69 if A

becomes I then the left hand side is A−1 and the right side
3We do not perform back-substitution but instead continue with forward elimination until we get

a diagonal matrix.
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must equal the left side). We get 1 0 0 12
16

−5
16

−6
16

0 1 0 4
8

−3
8
−2
8

0 0 1 −1 1 1

 (1.71)

This process is known as the Gauss-Jordan method. For more

details see Strang’s excellent book on Linear Algebra [44] where

this example was taken from.

Inverses can be used to solve equations of the form Xw = y.

This is achieved by multiplying both sides by X−1 giving

w = X−1y (1.72)

Hence,  w1

w2

w3

 =

 12
16

−5
16

−6
16

4
8

−3
8
−2
8

−1 1 1

 5

−2

9

 (1.73)

which also gives w = [1, 1, 2]T .

The inverse of a product of matrices is given by

(AB)−1 = B−1A−1 (1.74)

Only square matrices are invertible because, for y = Ax, if y

and x are of different dimension then we will not necessarily

have a one-to-one mapping between them.

1.4.8 Orthogonality

The length of a d-element vector x is written as ||x|| where

||x||2 =

d∑
i=1

x2
i (1.75)

= xTx
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Two vectors x and y are orthogonal if

Figure 1.5: Two vectors x and y. These vectors will be orthogonal if they obey
Pythagoras’ relation ie. that the sum of the squares of the sides equals the square of
the hypoteneuse.

||x||2 + ||y||2 = ||x− y||2 (1.76)

That is, if

x2
1 + ...+x2

d+y2
1 + ...+y2

d = (x1−y1)2 + ...+(xd−yd)2 (1.77)

Expanding the terms on the right and re-arranging leaves only

the cross-terms

x1y1 + ..... + xdyd = 0 (1.78)

xTy = 0

That is, two vectors are orthogonal if their inner product is zero.

1.4.9 Angles between vectors

Given a vector b = [b1, b2]T and a vector a = [a1, a2]T we can



1.4. LINEAR ALGEBRA 33

Figure 1.6: Working out the angle between two vectors.

work out that

cosα =
a1

||a||
(1.79)

sinα =
a2

||a||

cos β =
b1

||b||

sin β =
b2

||b||
(1.80)

Now, cosδ = cos(β − α) which we can expand using the trig

identity

cos(β − α) = cos β cosα + sin β sinα (1.81)

Hence

cos(δ) =
a1b1 + a2b2

||a||||b||
(1.82)

More generally, we have

cos(δ) =
aTb

||a||||b||
(1.83)
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Because, cosπ/2 = 0, this again shows that vectors are orthog-

onal for aTb = 0. Also, because | cos δ| ≤ 1 where |x| denotes

the absolute value of x we have

|aTb| ≤ ||a||||b|| (1.84)

which is known as the Schwarz Inequality.

1.4.10 Projections

The projection of a vector b onto a vector a results in a projec-

tion vector p which is the point on the line a which is closest to

the point b. Because p is a point on a it must be some scalar

Figure 1.7: The projection of b onto a is the point on a which is closest to b.

multiple of it. That is

p = wa (1.85)

where w is some coefficient. Because p is the point on a clos-

est to b this means that the vector b− p is orthogonal to a.
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Therefore

aT (b− p) = 0 (1.86)

aT (b− wa) = 0

Re-arranging gives

w =
aTb

aTa
(1.87)

and

p =
aTb

aTa
a (1.88)

We refer to p as the projection vector and to w as the projec-

tion.

1.5 Multiple Regression

A good practical introduction to the material on regression is

presented by Kleinbaum et al. [24]. More details of matrix

manipulations are available in Weisberg [47] and Strang has a

great in-depth intro to linear algebra [44]. See also relevant

material in Numerical Recipes [42]. See Chatfield’s book on

multivariate analysis for more details [9].

For a multivariate linear data set, the dependent variable yi is

modelled as a linear combination of the input variables xi and

an error term 4

yi = xiw + ei (1.89)

where xi is a row vector, w is a column vector and ei is an

error. The overall goodness of fit can be assessed by the least
4The error term is introduced because, very often, given a particular data set it will not be

possible to find an exact linear relationship between xi and yi for every i. We therefore cannot
directly estimate the weights as X−1y.
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squares cost function

E =

N∑
i=1

(yi − ŷi)2 (1.90)

where ŷi = xiw.

1.5.1 Estimating the weights

The least squares cost function can be written in matrix nota-

tion as

E = (y −Xw)T (y −Xw) (1.91)

whereX is an N-by-p matrix whose rows are made up of differ-

ent input vectors and y is a vector of targets. The weight vector

that minimises this cost function can be calculated by setting

the first derivative of the cost function to zero and solving the

resulting equation.

By expanding the brackets and collecting terms (using the ma-

trix identity (AB)T = BTAT we get

E = yTy − 2wTXTy +wTXTXw (1.92)

The derivative with respect to w is 5

∂E

∂w
= −2XTy + 2XTXw (1.93)

Equating this derivative to zero gives

(XTX)w = XTy (1.94)

which, in regression analysis, is known as the ’normal equation’.

Hence,

ŵ = (XTX)−1XTy (1.95)
5From matrix calculus [27] we know that the derivative of cTBc with respect to c is (BT +B)c.

Also we note that XTX is symmetric.
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This is the general solution for multivariate linear regression 6.

It is a unique minimum of the least squares error function (ie.

this is the only solution).

Once the weights have been estimated we can then estimate the

error or noise variance from

σ2
e =

1

N − 1

N∑
i=1

(yi − ŷi)2 (1.96)

1.5.2 Understanding the solution

If the inputs are zero mean then the input covariance matrix

multiplied by N-1 is

Cx = XTX (1.97)

The weights can therefore be written as

ŵ = C−1
x X

Ty (1.98)

ie. the inverse covariance matrix times the inner products of

the inputs with the output (the ith weight will involve the inner

product of the ith input with the output).

Single input

For a single input C−1
x = 1/(N − 1)σ2

x1
and XTy = (N −

1)σx1y. Hence

ŵ1 =
σx1y

σ2
x1

(1.99)

This is exactly the same as the estimate for the slope in linear

regression (first lecture). This is re-assuring.
6In practice we can use the equivalent expression ŵ = X+1y where X+1 is the pseudo-inverse

[44]. This method is related to Singular Value Decomposition and is discussed later.
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Uncorrelated inputs

For two uncorrelated inputs

C−1
x =

[ 1
(N−1)σ2

x1
0

0 1
(N−1)σ2

x2

]
(1.100)

We also have

XTy =

[
(N − 1)σx1,y

(N − 1)σx2,y

]
(1.101)

The two weights are therefore

ŵ1 =
σx1y

σ2
x1

(1.102)

ŵ2 =
σx2y

σ2
x2

Again, these solutions are the same as for the univariate linear

regression case.

General case

If the inputs are correlated then a coupling is introduced in the

estimates of the weights; weight 1 becomes a function of σx2y

as well as σx1y

ŵ =

[
σ2
x1

σx1x2

σx1x2 σ2
x2

]−1 [
σx1,y

σx2,y

]
(1.103)

1.5.3 Inference

Some of the inputs in a linear regression model may be very

useful in predicting the output. Others, not so. So how do
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we find which inputs or features are useful ? This problem is

known as feature selection.

The problem is tackled by looking at the coefficients of each

input (ie. the weights) and seeing if they are significantly non-

zero. The procedure is identical to that described for univariate

linear regression.

The only added difficulty is that we have more inputs and more

weights, but the procedure is basically the same. Firstly, we

have to estimate the variance on each weight. This is done in

the next section. We then compare each weight to zero using a

t-test.

Functions of random vectors

For a vector of random variables, z, and a matrix of constants,

C, and a vector of constants, d, we have

V ar(Cz + d) = C[V ar(z)]CT (1.104)

where, here, Var() denotes a covariance matrix. This is a gen-

eralisation of the result for scalar random variables V ar(cz) =

c2V ar(z).

The covariance between a pair of random vectors is given by

V ar(C1z,C2z) = C1[V ar(z)]CT
2 (1.105)

The weight covariance matrix

Different instantiations of target noise will generate different

estimated weight vectors according to equation 1.95. For the

case of Gaussian noise we do not actually have to compute the



40 CHAPTER 1. GENERAL LINEAR MODELS I

weights on many instantiations of the target noise and then

compute the sample covariance 7; the corresponding weight co-

variance matrix is given by the equation

Σ = V ar((XTX)−1XTy) (1.106)

Substituting y = Xŵ + e gives

Σ = V ar((XTX)−1XTXw + (XTX)−1XTe) (1.107)

This is in the form of V ar(Cz + d) (see earlier) with d being

given by the first term which is constant, C being given by

(XTX)−1XT and z being given by e. Hence,

Σ = (XTX)−1XT [V ar(e)][(XTX)−1XT ]T (1.108)

= (XTX)−1XT (σ2
eI)[(XTX)−1XT ]T

= (XTX)−1XT (σ2
eI)X(XTX)−1

Re-arranging further gives

Σ = σ2
e(X

TX)−1 (1.109)

In the appendix we show that this can be evaluated as

Σ = σ2
e(X

TX)−1 (1.110)

The correlation in the inputs introduces a correlation in the

weights; for uncorrelated inputs the weights will be uncorre-

lated. The variance of the jth weight, wj, is then given by the
7But this type of procedure is the basis of bootstrap estimates of parameter variances. See [13].
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jth diagonal entry in the covariance matrix

σ2
wj

= Σjj (1.111)

To see if a weight is significantly non-zero we then compute

CDFt(t) (the cumulative density function; see earlier lecture)

where t = wj/σwj and if it is above some threshold, say p =

0.05, the corresponding feature is removed.

Note that this procedure, which is based on a t-test, is exactly

equivalent to a similar procedure based on a partial F-test (see,

for example, [24] page 128).

If we do remove a weight then we must recompute all the other

weights (and variances) before deciding whether or not the other

weights are significantly non-zero. This usually proceeds in a

stepwise manner where we start with a large number of features

and reduce them as necessary (stepwise backward selection) or

gradually build up the number of features (stepwise forward

selection) [24].

Note that, if the weights were uncorrelated we could do fea-

ture selection in a single step; we would not have to recompute

weight values after each weight removal. This provides one

motivation for the use of orthogonal transforms in which the

weights are uncorrelated. Such transforms include Fourier and

Wavelet transforms as we shall see in later lectures.

1.5.4 Equivalence of t-test and F-test for feature selection

When adding a new variable xp to a regression model we can

test to see if the increase in the proportion of variance explained
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is significant by computing

F =
(N − 1)σ2

y

[
r2(y, ŷp)− r2(y, ŷp−1)

]
σ2
e(p)

(1.112)

where r2(y, ŷp) is the square of the correlation between y and

the regression model with all p variables (ie. including xp) and

r2(y, ŷp−1) is the square of the correlation between y and the

regression model without xp. The denominator is the noise vari-

ance from the model including xp. This statistic is distributed

according to the F-distribution with v1 = 1 and v2 = N−p−2

degrees of freedom.

This test is identical to the double sided t-test on the t-statistic

computed from the regression coefficient ap, described in this

lecture (see also page 128 of [24]). This test is also equivalent to

seeing if the partial correlation between xp and y is significantly

non-zero (see page 149 of [24]).

1.5.5 Example

Suppose we wish to predict a time series x3 from two other time

series x1 and x2. We can do this with the following regression

model 8

x3 = w0 + w1x1 + w2x2 (1.113)

and the weights can be found using the previous formulae. To

cope with the constant, w0, we augment the X vector with an

additional column of 1’s.

We analyse data having covariance matrix C1 and mean vector

m1 (see equations 1.57 and 1.56 in an earlier lecture). N = 50
8Strictly, we can only apply this model if the samples within each time series are independent (see

later). To make them independent we can randomize the time index thus removing any correlation
between lagged samples. We therefore end up with a random variables rather than time series.
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Figure 1.8: Three time series having the correlation matrix C1 and mean vector m1

shown in the text. The dotted line shows the value of the third time series as predicted
from the other two using a regression model.

data points were generated and are shown in Figure 1.8. The

weights were then estimated from equation 1.95 as

ŵ = [w1, w2, w0]T (1.114)

= [1.7906,−0.0554, 0.6293]T

Note that w1 is much bigger than w2. The weight covariance

matrix was estimated from equation 1.110 as

Σ =

 0.0267 0.0041 −0.4197

0.0041 0.0506 −0.9174

−0.4197 −0.9174 21.2066

 (1.115)

giving σw1 = 0.1634 and σw2 = 0.2249. The corresponding

t-statistics are t1 = 10.96 and t2 = −0.2464 giving p-values

of 10−15 and 0.4032. This indicates that the first weight is

significantly different from zero but the second weight is not ie.

x1 is a good predictor of x3 but x2 is not. We can therefore

remove x2 from our regression model.

Question: But what does linear regression tell us about the
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data that the correlation/covariance matrix does’nt ? Answer:

Partial correlations.

1.5.6 Partial Correlation

Remember (see eg. equation 1.28 from lecture 1), the square

of the correlation coefficient between two variables x1 and y is

given by

r2
x1y

=
σ2
y − σ2

e(x1)

σ2
y

(1.116)

where σ2
e(x1) is the variance of the errors from using a linear

regression model based on x1 to predict y. Writing σ2
y = σ2

e(0),

ie. the error with no predictive variables

r2
x1y

=
σ2
e(0)− σ2

e(x1)

σ2
e(0)

(1.117)

When we have a second predictive variable x2, the square of the

partial correlation between x2 and y is defined as

r2
x2y|x1

=
σ2
e(x1)− σ2

e(x1, x2)

σ2
e(x1)

(1.118)

where σ2
e(x1, x2) is the variance of the errors from the regression

model based on x1 and x2. It’s the extra proportion of variance

in y explained by x2. It’s different to r2
x2y

because x2 may be

correlated to x1 which itself explains some of the variance in y.

After controlling for this, the resulting proportionate reduction

in variance is given by r2
x2y|x1

. More generally, we can define pth

order partial correlations which are the correlations between two

variables after controlling for p variables.

The sign of the partial correlation is given by the sign of the

corresponding regression coefficient.
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Relation to regression coefficients

Partial correlations are to regression coefficients what the corre-

lation is to the slope in univariate linear regression. If the par-

tial correlation is significantly non-zero then the corresponding

regression coefficient will also be. And vice-versa.
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Chapter 2

General Linear Models II

2.1 Generalised Inverse

For GLM

y = Xβ + e

where X is a N × k design matrix and p(e) = N(0, σ2IN), we

can estimate the coefficients from the normal equations

(XTX)β = XTy

If rank of X , denoted r(X), is k (ie. full rank) then XTX has

an inverse (it is ‘nonsingular’) and

β̂ = (XTX)−1XTy

But if r(x) < k we can have Xβ1 = Xβ2 (ie. same predictions)

with β1 6= β2 (different parameters). The parameters are then

not therefore ‘unique’, ‘identifiable’ or ‘estimable’.

For example, a design matrix sometimes used in the Analysis

47
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of Variance (ANOVA)

X =



1 0 1

1 0 1

1 0 1

0 1 1

0 1 1

0 1 1

0 1 1


(2.1)

has k = 3 columns but rank r(X) = 2 ie. only two linearly

independent columns (any column can be expressed as a linear

combination of the other two).

For models such as these XTX is not invertible, so we must

resort to the generalised inverse, X−. This is defined as any

matrix X− such that XX−X = X . It can be shown that in

the general case

β̂ = (XTX)−XTy (2.2)

= X−y

If X is full-rank, XTX is invertible and X− = (XTX)−1XT .

There are many generalise inverses. We would often choose the

pseudo-inverse (pinv in MATLAB)

β̂ = X+y (2.3)

Take home message: avoid rank-deficient designs. If X is full

rank, then X+ = X− = (XTX)−1XT .
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2.2 Estimating error variance

An unbiased estimate for the error variance σ2 can be derived

as follows. Let

Xβ̂ = Py

where P is the projection matrix

P = X(XTX)−XT (2.4)

= XX−

Py projects the data y into the space of X . P has two impor-

tant properties (i) it is symmetric P T = P , (ii) PP=P . This

second property follows from it being a projection. If what is

being projected is already in X space (ie. Py) then looking for

that component of it that is in X space will give the same thing

ie. PPy = Py.

Then residuals are

ê = y −Xβ̂ (2.5)

= (I − P )y

= Ry

whereR = IN−XX− is the residual-forming matrix. Remem-

ber, ê is that component of the data, orthogonal to the ‘space’

X . Ry is another projection matrix, but one that projects the

data y into the orthogonal complement of X . Similarly, R has

the two properties (i) RT = R and (ii) RR = R.

We now look seek an unbiased estimator of the variance by first

looking at the expected sum of squares

E[êT ê] = E[yTRTRy] (2.6)

= E[yTRy]
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We now use the standard result: If p(a) = N(µ, V ) then

E[aTBa] = µTBµ + Tr(BV )

So, if p(y) = N(Xβ̂, σ2IN) then

E[yTRy] = β̂TXTRXβ̂ + Tr(σ2R) (2.7)

= β̂T (XTX −XTXX−X)β̂ + Tr(σ2R)

= Tr(σ2(I − P ))

= σ2(N − r(P ))

= σ2(N − k)

So, an unbiased estimate of the variance is

σ̂2 = (yTRy)/(N − k) (2.8)

= RSS/(N − k)
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where the RSS is ‘Residual Sum of Squares’. Remember, the

ML variance estimate is

σ̂2
ML = (yTRy)/N

2.3 Comparing nested GLMs

Full model:

y = X0β0 + X1β1 + e

Reduced model:

y = X0β0 + e0

Consider the test-statistic

f =
(RSSred −RSSfull)/(k − p)

RSSfull/(N − k)

where ’Residual Sum of Squares (RSS)’ are

RSSfull = êT ê

RSSred = êT0 ê0

We can re-write in terms of ‘Extra Sum of Squares’

f =
ESS/(k − p)

RSSfull/(N − k)

where

ESS = RSSred −RSSfull
We can compute these quantities using

RSSfull = yTRy (2.9)

RSSred = yTR0y
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We expect the denominator to be

E[RSSfull/(N − k)] = σ2 (2.10)

and, under the null (β1 = 0), we have σ2
0 = σ2 and therefore

expect the numerator to be

E[(RSSred −RSSfull)/(k − p)] = σ2 (2.11)

where r(R0 − R) = k − p (mirroring the earlier expectation

calculation). Under the null, we therefore expect a test statistic

of unity

< f >=
σ2

σ2

as both numerator and denominator are unbiased estimates of

error variance. We might naively expect to get a numerator of

zero, under the null. But this is not the case because, in any

finite sample, ESS will be non zero. When we then divide by

(k − p) we get E[ESS/(k − p)] = σ2.

When the full model is better we get a larger f value.

2.4 Partial correlation and R2

The square of the partial correlaton coefficient

R2
y,X1|X0

=
RSSred −RSSfull

RSSred
(2.12)

is the (square) of the correlation between y and X1β1 after

controlling for the effect of X0β0. Abbreviating the above to

R2, the F-statistic can be re-written as

f =
R2/(k − p)

(1−R2)/(N − k)
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Model comparison tests are identical to tests of partial correla-

tion.

In X0 explains no variance eg. it is a constant or empty matrix

then

R2 =
Y TY − Y TRY

Y TY
(2.13)

which is the proportion of variance explained by the model with

design matrix X . More generally, if X0 is not the empty matrix

then R2 is that proportion of the variability unexplained by the

reduced model X0 that is explained by the full model X .

2.5 Examples
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2.6 How large must f be for a ‘significant’ improve-

ment ?

Under the null (β1 = 0), f follows an F -distribution with k−p
numerator degrees of freedom (DF) and N − k denominator

DF.

Info on PDFs and transforming them.
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2.7 Contrasts

We can also compare nested models using contrasts. This is

more efficient, as we only need to estimate parameters of the

full model.

For a contrast matrix C we wish to test the hypothesis CTβ =

0. This can correspond to a model comparison, as before, if C

is chosen appropriately. But it is also more general, as we can

test any effect which can be expressed as

CTβ = HTXβ

for some H . This defines a space of estimable contrasts.

The contrast C defines a subspace Xc = XC. As before, we

can think of the hypothesis CTβ = 0 as comparing a full model,

X , versus a reduced model which is now given by X0 = XC0

where C0 is a contrast orthogonal to C ie.

C0 = Ik − CC−

A test statistic can then be generated as before where R0 =

IN −X0X
−
0 , M = R0 −R and

f =
yTMy/r(M)

yTRy/r(R)

In fMRI, the use of contrasts allows us to test for (i) main effects

and interactions in factorial designs, (ii) choice of hemodynamic

basis sets. Importantly, we do not need to refit models.

The numerator can be calculated efficiently as

yTMy = ĉT
[
CT (XTX)−C

]−
ĉ (2.14)

where ĉ = CT β̂ is the estimated effect size. See Christensen

[10] for details.
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2.8 Hemodynamic basis functions

If C(t, u) is the ‘Canonical’ basis function for event offset u

then, using a first-order Taylor series approximation

C(t, u0 + h) ≈ C(t, u0) + h
dC(t, u)

du
(2.15)

≈ C(t, u0) + hD(t, u0)

where the derivative is evaluated at u = u0. This will allow

us to accomodate small errors in event timings, or earlier/later

rises in the hemodynamic response.
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Chapter 3

Random Field Theory

3.1 Inference for random fields

A random field is a set of random variables defined at every

point in space. To find out if our z-score is ‘significant’ we

need to find out the probability of getting a score that size (or

greater) in the abscence of signal. In the absence of signal,

we have just error fields. In brain imaging the error fields are

spatially correlated and can be described by stochastic processes

over space.

63
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Figure 3.1: Face data: U1 effect.
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3.1.1 Family Wise Error

We wish to find the probability, under the null hypothesis, that

the maximum statistic over the field is larger than some thresh-

old u. That is

p(Umax > u|H0) (3.1)

This is the probability of a Family Wise Error (FWE). An FWE

is a false positive anywhere in the image.
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3.2 Gaussian processes

A stochastic process x(v) is a Gaussian process if for any N

samples the joint distribution p(x(v1), x(v2), ..., x(vN)) is a mul-

tivariate Gaussian.

A Gaussian random field/process has a Gaussian distribution

at every point and at every collection of points.

Gaussian processes (GPs) are therefore defined by a mean func-

tion m(v) and a covariance function

r(u, v) = E
(
[x(u)−m(u)]T [x(v)−m(v)]

)
(3.2)

A Gaussian process is stationary if r(u, v) = r(u− v). We can

then write the covariance function as r(d) where d = r− v. In

what follows we will assume the mean function to be zero at

all points. GPs and their properties are then defined solely by

their covariance function.
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3.2.1 Example 1

A Gaussian covariance function is given by

r(d) = σ2 exp

(
− d2

2s2

)
(3.3)

with power σ2 = 0.5 and smoothness s2 = 0.12
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Figure 3.2: 100 realisations of a Gaussian process with previous Gaussian covariance
function. See also NETLAB demo.

3.2.2 Power and roughness

For stationary processes, the distribution of the max statistic is

determined solely by the power and roughness.

The power or variance of a stationary zero-mean Gaussian pro-

cess is given by the covariance function at lag 0

E(|x(v)|2) = rx(0) (3.4)

Given any Gaussian process we can create a new one by taking

derivatives eg. y = x′(v) = dx(v)/dv. Using Fourier methods

(see eg. page 325 in [34]) or making use of symmetry properties

of the covariance function (see eg. page 314 in [34]) it can be

shown that the covariance function of y is given by

ry(v) = −r′′x(v) (3.5)

The power of the stochastic process y is

E(|y(v)|2) = ry(0) (3.6)
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Combining this with the result above shows that variance of the

slope is given by

E(|dx(v)

dv
|2) = −r′′x(0) (3.7)

The ‘roughness’, λ is then given by the following ratio

λ1/2 =
−r′′x(0)

r(0)
(3.8)

For unit power fields we have λ1/2 = −r′′x(0). The ‘smoothness’

is defined as the inverse of the roughness.

For the results that follow, the covariance function can be chosen

arbitrarily. However, some results are simplified if the covari-

ance function has a particular form. For example, the covari-

ance function could itself be Gaussian.

3.2.3 Gaussian covariance function

A Gaussian covariance function is given by

r(d) = σ2 exp

(
− d2

2s2

)
(3.9)

At distance 0, r(0) = σ2. Spatial derivatives are then given by

r′(d) = − d
s2
r(d) (3.10)

Hence, r′(0) = 0. The second derivative is given by

r
′′
(d) = − d

s2
×− d

s2
r(d)− 1

s2
r(d) (3.11)

=

(
d2 − s2

s4

)
r(d)
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Figure 3.3: Crossings of a 1D field

Re-arranging shows that the roughness is given by,

λ1/2 = −r
′′
(0)

r(0)
(3.12)

=
1

s2

The roughness of a GP with a Gaussian CF is therefore 1/s2.

The smoothness is then the square of the length scale s.

3.3 Crossings of one-dimensional processes

In a stationary 1-dimensional zero-mean Gaussian field the ex-

pected number of crossings, Nc, in the interval [0, 1] of the level

u is (page 606, [34])

E(Nc) = px(u)E(|x′(t)|) (3.13)

That is the density at u multiplied by the expected slope. The

density is the usual Gaussian

px(u) =
1

(2π)1/2σ
exp

(
− u2

2σ2

)
(3.14)
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Figure 3.4: Crossings of a rougher higher power 1D field

and it can be shown that

E(|x′(t)|)2 =
−2r

′′
(0)

π
(3.15)

The crossing density is therefore

E(Nc) =
λ1/2

πσ
exp

(
− u2

2σ2

)
(3.16)

The expected number of upcrossings, Nu, is therefore half that

(see also page 67, [1])

E(Nu) =
λ1/2

2πσ
exp

(
− u2

2σ2

)
(3.17)

where σ2 = E(|x(v)|2) = r(0) is the power and λ1/2 = −r′′(0) is

the roughness. So, the greater the roughness the more upcross-

ings we expect. At high thresholds, u, E(c) is the probability

that the maximum of the process is larger than u.
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3.4 Multi-dimensional processes

We assume standard Gaussian variates at each location (ie. σ =

r(0) = 1). We first define an excursion set as the set of voxels

where the statistical field exceeds a fixed threshold u.

3.4.1 Euler characteristic

See eg. [48]. The Euler characteristic, c, counts the number

of disconnected components minus the number of ‘holes’ plus

the number of ‘hollows’. For high thresholds u the holes and

hollows disappear and c counts the number of local maxima.

For large x the Euler characteristic, c, approaches the number

of local maxima. Raising the threshold further either the global

maxima is above threshold or it is not. So the expected value

of c is then the probability that the global maximum exceeds

the threshold u.

3.4.2 Expected Euler characteristic

The expected value of c for an N -dimensional stationary Gaus-

sian process is given by (page 111 [1])

E[c] = V |Λ|1/2(2π)−(N+1)/2b(N, u) exp

(
−u

2

2

)
(3.18)

where

b(N, u) =

(N−1)/2∑
j=0

(−1)j
(2j)!

j!2j
uN−1−2j (3.19)

This general result rests on a theorem from differential topology

known as Morse’s theorem. Results for dimensions N < 3 can



3.4. MULTI-DIMENSIONAL PROCESSES 73

Figure 3.5: Thresholding a 2D field
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be derived without this.

For N = 1 we have b(N, u) = 1

E[c] = V
λ1/2

2π
exp

(
−u

2

2

)
(3.20)

which is the same result as earlier for the expected number of

upcrossings (assuming V = 1, σ = 1).

For N = 2 (eg. brain slice) we have b(N, u) = u and

E[c] = V |Λ|1/2(2π)−3/2u exp

(
−u

2

2

)
(3.21)

For N = 3 (eg. brain volume) we have b(N, u) = u2 − 1 and

E[c] = V |Λ|1/2(2π)−2(u2 − 1) exp

(
−u

2

2

)
(3.22)

3.4.3 Gaussian smoothing

One can create a Gaussian process by convolving IID Gaussian

noise with a Gaussian kernel (ie. a Gaussian with covariance

matrix Λ−1. For a 3D field, if the principal axes of Λ coincide

with the x, y and z directions then the off-diagonal elements of Λ

are zero. If fx, fy and fz are the Full Width at Half Maximums

(FWHMs) in the x, y and z directions then the roughness is

given by [51]

|Λ|1/2 = (fxfyfz)
−1(4 ln 2)3/2 (3.23)

If we then define the number of resels as

R =
V

fxfyfz
(3.24)
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Figure 3.6:

then for volumetric data we can write (see eg. [])

E[c] = R(4 ln 2)3/2(2π)−2(u2 − 1) exp

(
−u

2

2

)
(3.25)

The above formula only applies to stationary Gaussian fields

with Gaussian CFs (these can be created by smoothing IID data

with a Gaussian kernel). But because roughness is a property

at zero lag, in practice the above formula works well if the

covariance function at zero lag is similar to that of a Gaussian

CF. It does’nt matter what the tails of the CF look like. So

the result can be used for non-Gaussian covariance functions as

long as the above holds [50].

3.4.4 Slice data
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Figure 3.7:
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Figure 3.8:
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Figure 3.9:
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Figure 3.10:
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3.5 Further issues

3.5.1 Estimating roughness

Roughness can be estimated using numerical derivatives of the

residuals in each of the x, y and z directions. These are then

averaged over different residual images (SPM uses 64). These

are stored as a Resels Per Voxel (RPV) image, then averaged

over voxels [51]. See eg. face data.

3.5.2 Discretisation

The application of continuous theory to data sampled at discrete

points requires that voxel size be eg. 3 times as small as the

smoothness of the field. The theory in [51] also requires the

search region to be considerably larger than the smoothness

(see below).

3.5.3 Non-Gaussian processes

The results have been extended to t, χ2 and F random fields

[50]. This extension also provides accurate approximations for

small search volumes (see Small Volume Correction (SVC) but-

ton in SPM). In this work Worsley derives the ‘unified formula’

E(c) =

3∑
N=1

RN(V )pN(u) (3.26)

where N is the dimension of the field, V is the search volume,

RN(V ) is the number of resels in dimension V , and pN(V ) is

the EC density for threshold u. The above equation can be

solved for u to find the appropriate threshold.
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3.5.4 Inferences about extent

For a given level u, one can work out the probability that the

extent of an activation is greater than k. This is known as a

cluster-level inference [14].

3.5.5 Nonstationary fields

The assumption of stationarity is reasonable for PET or smoothed

fMRI data. But functional data projected onto unfolded or flat-

tened cortical surfaces or anatomical data such as deformation

vectors are highly non-isotropic. Such data can be dealt with by

warping voxel coordinates so the effective FWHM is constant

[49]. The method has a minor impact on height inferences but

a major impact on extent inferences. It is therefore most useful

for eg. cluster-level inference for VBM.
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Chapter 4

Multivariate Models

4.1 Linear algebra

4.1.1 Orthogonal Matrices

The set of vectors q1..qk are orthogonal if

qTj qk =
0 j 6= k

djk j = k
(4.1)

If these vectors are placed in columns of the matrix Q then

QTQ = QQT = D (4.2)

4.1.2 Orthonormal Matrices

The set of vectors q1..qk are orthonormal if

qTj qk =
0 j 6= k

1 j = k
(4.3)

If these vectors are placed in columns of the matrix Q then

QTQ = QQT = I (4.4)

83
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Hence, the transpose equals the inverse

QT = Q−1 (4.5)

The vectors q1..qk are said to provide an orthonormal ba-

sis. This means that any vector can be written as a linear

combination of the basis vectors. A trivial example is the two-

dimensional cartesian coordinate system where q1 = [1, 0]T (the

x-axis) and q2 = [0, 1]T (the y-axis). More generally, to repre-

sent the vector x we can write

x = x̃1q1 + x̃2q2 + ... + x̃dqd (4.6)

To find the appropriate coefficients x̃k(the co-ordinates in the

new basis), multiply both sides by qTk . Due to the orthonormal-

ity property all terms on the right disappear except one leaving

x̃k = qTkx (4.7)

The new coordinates are the projections of the data onto the

basis functions (re. definition of projections in earlier lecture,

there is no denominator since qTk qk = 1). In matrix form,

equation 4.6 can be written as x = Qx̃ which therefore has the

solution x̃ = Q−1x. But given that Q−1 = QT we have

x̃ = QTx (4.8)

So for orthonormal bases, eg. Fourier or wavelets, data can

be transformed from data to parameter space and vice-versa

without inverse operators (not so for GLM with arbitrary design

matrix).
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4.1.3 Determinants

The determinant of a two-by-two matrix

A =

[
a b

c d

]
(4.9)

is given by

det(A) = ad− bc (4.10)

The determinant of a three-by-three matrix

A =

 a b c

d e f

g h i

 (4.11)

is given by

det(A) = a det

([
e f

h i

])
−b det

([
d f

g i

])
+c det

([
d e

g h

])
Determinants are important because of their properties. In par-

ticular, if two rows of a matrix are equal then the determinant

is zero eg. if

A =

[
a b

a b

]
(4.12)

then

det(A) = ab− ba = 0 (4.13)

In this case the transformation from x = [x1, x2]T to y =

[y1, y2]T given by

Ax = y (4.14)

reduces two pieces of information (x1 and x2) to one piece of

information

y = y1 = y2 = ax1 + bx2 (4.15)
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In this case it is not possible to reconstruct x from y; the

transformation is not invertible - the matrix A does not have

an inverse and the value of the determinant provides a test for

this: If det(A) = 0 the matrixA is not invertible; it is singular.

Conversely, if det(A) 6= 0 then A is invertible.

Another important property of determinants is that they mea-

sure the ‘volume’ of a matrix. For a 3-by-3 matrix the three

rows of the matrix form the edges of a cube. The determinant

is the volume of this cube. For a d-by-d matrix the rows form

the edges of a ‘parallepiped’. Again, the determinant is the

volume.

We also write

det(A) = |A| (4.16)

4.1.4 Eigenanalysis

The square matrix A has eigenvalues λ and eigenvectors q if

Aq = λq (4.17)

Therefore

(A− λI)q = 0 (4.18)

To satisfy this equation either q = 0, which is uninteresting, or

the matrix A − λI must reduce q to the null vector (a single
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point). For this to happen A− λI must be singular. Hence

det(A− λI) = 0 (4.19)

Eigenanalysis therefore proceeds by (i) solving the above equa-

tion to find the eigenvalues λi and then (ii) substituting them

into equation 4.17 to find the eigenvectors. For example, if

A =

[
4 −5

2 −3

]
(4.20)

then

det(A− λI) = (4− λ)(−3− λ)− (−5)(2) = 0 (4.21)

which can be rearranged as

λ2 − λ− 2 = 0 (4.22)

(λ + 1)(λ− 2) = 0

Hence the eigenvalues are λ = −1 and λ = 2. Substituting

back into equation 4.17 gives an eigenvector q1 which is any

multiple of [1, 1]T . Similarly, eigenvector q2 is any multiple of

[5, 2]T .

We now note that the determinant of a matrix is also equal to

the product of its eigenvalues

det(A) =
∏
k

λk (4.23)

We also define the Trace of a matrix as the sum of its diagonal

elements

Tr(A) =
∑
k

akk (4.24)

and note that it is also equal to the sum of the eigenvalues

Tr(A) =
∑
k

λk (4.25)

Eigenanalysis applies only to square matrices.
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4.1.5 Diagonalization

If we put the eigenvectors into the columns of a matrix

Q =


| | . |
| | . |
q1 q2 . qd
| | . |
| | . |

 (4.26)

then, because, Aqk = λkqk, we have

AQ =


| | . |
| | . |
λ1q1 λ2q2 . λdqd
| | . |
| | . |

 (4.27)

If we put the eigenvalues into the matrix Λ then the above

matrix can also be written as QΛ. Therefore,

AQ = QΛ (4.28)

Pre-multiplying both sides by Q−1 gives

Q−1AQ = Λ (4.29)

This shows that any square matrix can be converted into a

diagonal form (provided it has distinct eigenvalues; see eg. [44]

p. 255).

4.1.6 Spectral Theorem

For any real symmetric matrix all the eigenvalues will be real

and there will be d distinct eigenvalues and orthogonal eigen-

vectors. They can be normalised and placed into the matrix Q.
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Since Q is now orthonormal we have Q−1 = QT . Hence

QTAQ = Λ (4.30)

Pre-multiplying by Q and post-multiplying by QT gives

A = QΛQT (4.31)

which is known as the spectral theorem. It says that any

real, symmetric matrix can be represented as above where the

columns of Q contain the eigenvectors and Λ is a diagonal ma-

trix containing the eigenvalues, λi. Equivalently,

A =


| | . |
| | . |
q1 q2 . qd
| | . |
| | . |




λ1

λ2

λd



− − q1 − −
− − q2 − −
. . . .

− − qd − −

(4.32)

This can also be written as a summation

A =

d∑
k=1

λkqkq
T
k (4.33)

This provides a particularly efficient way to compute powers of

matrices

Ak = QΛkQT (4.34)

This is particularly useful for solving multivariate difference and

differential equations (see later lecture). Using the above with

k = −1 shows det(A−1) = 1/ det(A).
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4.1.7 Quadratic Forms

The quadratic function

f (x) = a11x
2
1 + a12x1x2 + a21x2x1 + ... + addx

2
d (4.35)

can be written in matrix form as

f (x) = [x1, x2, ..., xd]


a11 a12 a1d

a21 a22 a2d

ad1 ad2 add



x1

x2

.

xd

 (4.36)

which is written compactly as

f (x) = xTAx (4.37)

If f (x) > 0 for any non-zero x then A is said to be positive-

definite. Similarly, if f (x) ≥ 0 then A is positive-semi-definite.

If we substitute A = QΛQT and x = Qy where y are the

projections onto the eigenvectors, then we can write

f (x) = yTΛy (4.38)

=
∑
i

y2
i λi

Hence, for positive-definiteness we must therefore have λi > 0

for all i (ie. positive eigenvalues).

4.2 Principal Component Analysis

Given a set of data vectors {xn} we can construct a covariance

matrix

C =
1

N

∑
n

(xn − x̄)(xn − x̄)T (4.39)
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or, if we construct a matrix X with rows equal to xn− x̄ then

C =
1

N
XTX (4.40)

Because covariance matrices are real and symmetric we can

apply the spectral theorem

C = QΛQT (4.41)

If the eigenvectors (columns ofQ) are normalised to unit length,

they constitute an orthonormal basis. If the eigenvalues are

then ordered in magnitude such that λ1 ≥ λ2 ≥ ... ≥ λd then

the decomposition is known as Principal Component Analysis

(PCA). The projection of a data point xn onto the principal

components is

yn = QTxn (4.42)

The mean projection is

ȳ = QT x̄ (4.43)

The covariance of the projections is given by the matrix

Cy =
1

N

∑
n

(yn − ȳ)(yn − ȳ)T (4.44)

Substituting in the previous two expressions gives

Cy =
1

N

∑
n

QT (xn − x̄)(xn − x̄)TQ (4.45)

= QTCQ

= Λ

where Λ is the diagonal eigenvalue matrix with entries λk (σ2
k =

λk). This shows that the variance of the kth projection is given

by the kth eigenvalue. Moreover, it says that the projections
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are uncorrelated. PCA may therefore be viewed as a linear

transform

y = QTx (4.46)

which produces uncorrelated data.

4.2.1 The Multivariate Gaussian Density

In d dimensions the general multivariate normal probability

density can be written

p(x) =
1

(2π)d/2|C|1/2
exp

(
−1

2
(x− x̄)TC−1(x− x̄)

)
(4.47)

where the mean x̄ is a d-dimensional vector, C is a d×d covari-

ance matrix, and |C| denotes the determinant of C. Because

the determinant of a matrix is the product of its eigenvalues

then for covariance matrices, where the eigenvalues correspond

to variances, the determinant is a single number which repre-

sents the total volume of variance. The quantity

M(x) = (x− x̄)TC−1(x− x̄) (4.48)

which appears in the exponent is called the Mahalanobis dis-

tance from x to x̄.

4.2.2 Singular Value Decomposition

The eigenvalue-eigenvector factorisation (see equation 4.31)

A = QΛQT (4.49)

applies to real symmetric matrices only. There is an equivalent

factorisation for rectangular matrices, having N rows and d
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(a) (b)

Figure 4.1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with
µ = [1, 1]T and C11 = C22 = 1 and C12 = C21 = 0.6 ie a positive correlation of
r = 0.6.

columns, called Singular Value Decomposition (SVD)

A = Q1DQ
T
2 (4.50)

whereQ1 is an orthonormalN -by-N matrix,Q2 is an orthonor-

mal d-by-d matrix,D is a diagonal matrix of dimension N -by-d

and the kth diagonal entry in D is known as the kth singular

value, σk.

If we substitute the SVD of A into ATA, after some rearrang-

ing, we get

ATA = Q2D
TDQT

2 (4.51)

which is of the form A = QΛQT where Q = Q2 and Λ =

DTD. This shows that the columns of Q2 contain the eigen-

vectors of ATA and that D contains the square roots of the

corresponding eigenvalues. Similarly, by substituting the SVD

of A into AAT we can show that the columns of Q1 are the

eigenvectors of AAT .
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Relation to PCA

Given a data matrix X constructed as before (see PCA sec-

tion), except that the matrix is scaled by a normalisation factor√
1/N , then XTX is equivalent to the covariance matrix C.

If we therefore decompose X using SVD, the principal compo-

nents will apear inQ2 and the square roots of the corresponding

eigenvalues will appear in D.

Therefore we can implement PCA in one of two ways (i) com-

pute the covariance matrix and perform an eigendecomposition

or (ii) use SVD directly on the (normalised) data matrix.

See eg. alan_svd.m.
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4.2.3 PET verbal fluency data

Subject scanned under two alternating conditions (i) word gen-

eration and (ii) word shadowing. Six repetitions of each. GLM

analysis to select voxels showing significant variation over the

12 scans. Zero mean voxel activities over scans.

Create matrix M of dimension Nscans×Nvoxels. Application of

SVD

USV T = M (4.52)

places temporal components (eigenvariates) in columns of U

and spatial components (eigenimages) in columns of V . Di-

agonal elements in S show that first mode accounts for 64%

variance, second 16%.

First eigenimage has positive loadings in anterior cingulate, left

DLPFC, Broca’s area, thalamic nuclei and cerebellum (regions

showing higher activity in generation than shadowing). Nega-

tive loadings bitemporally and in posterior cingulate.

4.2.4 Summarising regional activity

See region_svd.m
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4.3 Structural Equation Modelling

Structural Equation Models (SEMs) comprise a set of regions

and a set of directed connections. Importantly, a causal seman-

tics is ascribed to these connections where an arrow from A to

B means that A causes B. Causal relationships are thus not

inferred from the data but are assumed a-priori [35].

We consider networks comprising N regions in which the activ-

ity at time t is given by the N×1 vector yt. If there are T time

points and Y is an N × T data matrix comprising t = 1..T

such vectors then the likelihood of the data is given by

p(Y |θ) =

T∏
t=1

p(yt|θ) (4.53)

where θ are the parameters of an SEM.
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The second SEM equation specifies the generative model at time

t

p(yt|θ) = N (yt; 0,Σ(θ)) (4.54)

which denotes that the activities are zero mean Gaussian vari-

ates with a covariance, Σ(θ), that is a function of the connectiv-

ity matrix θ. The form of this function is specified implicitly by

the regression equation that describes how activity in one area

is related to activity in other areas via a set of path coefficients,

M , as

yt = Myt + et (4.55)

where et are zero mean Gaussian innovations or errors of covari-

ance R. Typically R will be a diagonal matrix and we write the

error variance in region i as σ2
i . Regions are connected together

via the N×N path coefficient matrix M where the Mij denotes

a connection from region j to region i. The parameters of an

SEM, θ, are the unknown elements of M and R. Re-write as

yt = (IN −M)−1et (4.56)

This form is particularly useful as it shows us how to generate

data from the model. Firstly, we generate the Gaussian variates

et and then pre-multiply by (IN −M)−1. This is repeated for

each t. This form also allows us to express the covariance of yt
as a function of θ

Σ(θ) = (IN −M)−1R(IN −M)−T (4.57)

4.3.1 Estimation

Given a set of parameters θ we can compute the likelihood of a

data set from equations 4.53, 4.54 and 4.57. Given a data set
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one can therefore find the connectivity matrix that maximises

the (log) likelihood using standard optimisation methods [42].

L(θ) = −T
2

log |Σ(θ)| − NT

2
log 2π − 1

2

T∑
t=1

yTt Σ(θ)−1yt

If we define the sample covariance as

S =
1

T

T∑
t=1

yty
T
t (4.58)

then, by noting that the last term is a scalar and that the trace

of a scalar is that same scalar value, and using the circularity

property of the trace operator (that is, Tr(AB) = Tr(BA)), we

can write

L(θ) = −T
2

log |Σ(θ)| − NT

2
log 2π − T

2
Tr(SΣ(θ)−1)

If we use unbiased estimates of the sample covariance matrix

then we replace T ’s in the above equation by T − 1’s. If we

now also drop those terms that are not dependent on the model

parameters we get

L(θ) = −T − 1

2

(
log |Σ(θ)| + Tr(SΣ(θ)−1)

)
(4.59)

Maximum likelihood estimates can therefore be obtained by

maximising the above function.

4.3.2 Inference

Statistical inference is based on the likelihood ratio for compar-

ing models i and j is

Rij =
p(Y |θ,m = i)

p(Y |θ,m = j)
(4.60)
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If L(θi) and L(θj) are the corresponding log-likelihoods then

the log of the likelihood ratio is

logRij = L(θi)− L(θj) (4.61)

Under the null hypothesis that the models are identical, and

for large T, −2 logRij is distributed as a chi-squared variable

having degrees of freedom equal to the difference in number of

parameters between the models (see p.265 in [7]). This only

applies to nested models.

A special case of the above test arises when one wishes to eval-

uate the goodnees of fit of a single model. We will denote this

as ‘model 1’. This can be achieved by comparing the likeli-

hood of model 1 to the likelihood of the least restrictive (most

complex) model one could possibly adopt (‘model 0’) with co-

variance equal to the sample covariance ie. Σ(θ) = S. The has

likelihood

L0 = −T − 1

2

(
log |S| + Tr(SS−1)

)
(4.62)

= −T − 1

2
(log |S| + N)

(4.63)

The corresponding (log) likelihood ratio is

logR10 = −T − 1

2

(
log |Σ(θ)| + Tr(SΣ(θ)−1)− log |S| −N

)
(4.64)

which in turn has a corresponding chi-squared value

χ2 = (T − 1)F (θ) (4.65)

where

F (θ) = log |Σ(θ)| + Tr(SΣ(θ)−1)− log |S| −N (4.66)
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The corresponding degrees of freedom are equal to the degrees

of freedom in model 0, k, minus the degrees of freedom in

model 1, q. For an N-dimensional covariance matrix there are

k=N(N+1)/2 degrees of freedom. For model 1, q equals the

total number of connectivity and variance parameters to be es-

timated. The associate χ2 test provides a way of assessing if an

SEM fits the data sufficiently.

For more general model comparisons the χ2 statistic associated

with the LR test can be written as

χ2 = (T − 1)(F (θ1)− F (θ2)) (4.67)

4.3.3 Attention to visual motion fMRI data

We first use a feedforward architecture. The null model has all

parameters fixed between conditions giving k = 8 (two path

coefficients and six error variance parameters). The alternative

model allows V1-V5 to change giving q = 9. The alternative

model fits better (p = 0.003).

But in comparison to the sample covariance, where k = N(N+

1)/2 = 6 degrees of freedom per data set and two data sets (two

conditions) ie. k = 12, the alternative model is sig. different

(p < 1e− 5). It is therefore not a good model of the data.
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We now use a recpirocal architecture. The null model has all

parameters fixed between conditions giving k = 10. The al-

ternative model allows V1-V5 to change giving q = 11. The

alternative model fits better (p = 9e− 6).

In comparison to the sample covariance, where k = 12, the

alternative model is not sig. different (p = 0.05) (well, its

borderline !). It is therefore an acceptable model of the data.

As compared to the feedforward model, the correlations be-

tween V1 and SPC are modelled more accurately (at a minor

cost of not modelling V1-V5 and V5-SPC correlations quite so

accurately).
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Chapter 5

Variance Components

5.1 GLMs with multiple covariance components

Given the usual GLM

y = Xβ + e (5.1)

where β are the true but unknown parameters, and Cov(e) =

V (λ) is the error covariance parameterised by unknown param-

eters λ ie. ‘hyperparameters’. These more general models are

useful for eg. (a) fMRI analysis allowing for correlated errors

and (b) analysis of data from a group of subjects.

We now address two questions

• If we know V how do we estimate β ?

• How do we estimate V ?

The two answers are (i) WLS and (ii) ReML.

107
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5.2 Weighted Least Squares

If we know V then we can estimate β by maximising the likeli-

hood

L = −N
2

log 2π − 1

2
log |V | − 1

2
(y −Xβ)TV −1(y −Xβ)

We can derive the normal equations in the usual way, by setting

the appropriate derivatives to zero.

dL

dβ
= XTV −1y −XTV −1Xβ

This leads to the solution

β̂ML = (XTV −1X)−1XTV −1y (5.2)

This is often referred to as Weighted Least Squares (WLS),

β̂ML = β̂WLS.

For isotropic error covariance V = λI , β̂ML = β̂OLS, the Ordi-

nary Least Squares (OLS) solution

β̂OLS = (XTX)−1XTy (5.3)

5.3 Restricted Maximum Likelihood (ReML)

If we don’t know V we can estimate it using ReML. In Maxi-

mum Likelihood (ML), λ are estimated by maximising the like-

lihood

p(y|β, λ) (5.4)

The idea behind ReML is to find λ that maximise the restricted

likelihood

p(y|λ) (5.5)
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This does not depend on the parameters β. We can write it as

p(y|λ) =

∫
p(y|β, λ)dβ (5.6)

We will now use a quadratic identity, derived in the following

section, to solve the integral.

5.3.1 Quadratic Identity

Let yt = Xβ be the true, but unknown, mean data values. And

ŷ = Xβ̂ be the predictions of the fitted model

Then

(y −Xβ)TV −1(y −Xβ) = (y − yt)TV −1(y − yt) (5.7)

= (y − yt + ŷ − ŷ)TV −1(y − yt + ŷ − ŷ)

= (y − ŷ)TV −1(y − ŷ)

+ (−yt + ŷ)TV −1(−yt + ŷ)

= (y − ŷ)TV −1(y − ŷ)

+ (yt − ŷ)TV −1(yt − ŷ)

= (y −Xβ̂)TV −1(y −Xβ̂)

+ (Xβ −Xβ̂)TV −1(Xβ −Xβ̂)

= (y −Xβ̂)TV −1(y −Xβ̂)

+ (β − β̂)T (XTV −1X)(β − β̂)

So, we have shown that

(y −Xβ)TV −1(y −Xβ) = (y −Xβ̂)TV −1(y −Xβ̂) (5.8)

+ (β − β̂)T (XTV −1X)(β − β̂)

The second term depends on the parameters β but the first does

not.
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5.3.2 ReML integral

For an N × p full-rank design matrix, the likelihood is

p(y|β, λ) = (2π)−N/2|V |−1/2 exp

(
1

2
(y −Xβ)TV −1(y −Xβ)

)
(5.9)

Using our quadratic identity we can write

p(y|β, λ) = (2π)−N/2|V |−1/2 (5.10)

× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)
× exp

(
1

2
(β − β̂)T (XTV −1X)(β − β̂)

)
The restricted likelihood is then given by

p(y|λ) =

∫
p(y|β, λ)dβ (5.11)

= (2π)−N/2|V |−1/2

× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)
×
∫

exp

(
1

2
(β − β̂)T (XTV −1X)(β − β̂)

)
dβ

= (2π)−N/2|V |−1/2

× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)
× (2π)p/2|XTV −1X|−1/2

where we’ve noted that the integral is just the normalising con-

stant for a multivariate Gaussian. Taking logs gives the ReML
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objective function

LR(λ) = log p(y|λ) (5.12)

= −N − p
2

log 2π − 1

2
log |V | − 1

2
log |XTV −1X|

− 1

2
(y −Xβ̂)TV −1(y −Xβ̂)

This does not depend on the parameters β. It does depend on

β̂, but we can substitute in expressions for this from earlier, so

that LR is just a function of X , y and λ.

5.3.3 Single variance component

For a single variance component

V (λ) = λQ (5.13)

an analytic expression for λ can be found

Maximum Likelihood

The likelihood function is

L(λ) = −1

2
log |V | − 1

2
rTV −1r + ... (5.14)

where the residuals are r = y−Xβ. The gradient with respect

to λ is

g = −1

2
Tr(V −1Q) +

1

2
rTV −1QV −1r (5.15)

For a single variance component we get the estimate

λ =
rTQ−1r

N
(5.16)

For isotropic errors Q = I we have

λ =
rTr

N
(5.17)
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This is biased.

ReML

We write gR = dLR(λ)
dλ as the gradient of the ReML function.

This can be shown to be

gR = −1

2
Tr(PQ) +

1

2
yTP TQPy (5.18)

where the projection matrix P = V −1RWLS and

RWLS = I −X(XTV −1X)−1XTV −1 (5.19)

It’s the same as the ML gradient but with P instead of V −1.

We are working in a subspace of V −1 that is orthogonal to the

WLS estimates.

Setting g = 0 gives

λ =
rTQ−1r

Tr(R)
(5.20)

where

R = I −X(XTQ−1X)−1XTQ−1 (5.21)

is the residual forming matirx and r = Ry are the residuals.

If Q = I , ie. isotropic error, R = I −X(XTX)−1XT and

λ =
rTr

N − k
(5.22)

which is an unbiased estimate of the error variance (unlike the

ML estimate).
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5.3.4 Linear constraints

If the error covariance takes the following form

V (λ) =
∑
k

λkQk (5.23)

where Qk is a known matrix and λk is the kth unknown hy-

perparameter, then λ can be found by maximising the ReML

objective function. This could be implemented by any optimi-

sation method eg. one could follow the gradient g where

gk = −1

2
Tr(PQk) +

1

2
yTP TQkPy (5.24)

A better algorithm, based on Fisher scoring, has been derived by

Harville [20]. See also Friston et al. [17][15] for applications to

brain imaging. This algorithm is implemented in spm_reml.m.
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5.3.5 fMRI time series

Correlated fMRI time series can be dealt with by having eg.

two covariance components: one for the additive noise, Q1, and

a second for the temporal autocorrelation, Q2. Q2 is based on

a first-order autoregressive model et = aet−1 + zt with a fixed

coefficient a = 0.2. Variations in a can be accomodated by

specifying a third basis function Q3 which is a Taylor expansion

of Q2 [15].
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5.4 Hierarchical General Linear Models

Given the hierarchical model (eg. 3 levels)

y = X1β1 + e1 (5.25)

β1 = X2β2 + e2

β2 = X3β3 + e3

In the analysis of group data this can enable us, for example,

to relate population effects, β3, to subject effects β2 to session

effects β1. The vector y contains the data from all trials in all

sessions from all subjects.

The error covariances at each level C3, C2 and C1 describe

between-subject variance, between-session variance and between-

trial variance.

We can substitute from β2 into the second equation, then β1

into the first to give a collapsed model

y = Xβ3 + e (5.26)

where

X = X1X2X3 (5.27)

e = e1 + X1e2 + X1X2e3

The error covariance, Cov(e) = C is

C = C1 + X1C2X
T
2 + X1X2C3X

T
2 X

T
1 (5.28)

The hierarchical structure introduces this particular structure

into the error covariance of the collapsed model.
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We can then run ReML to estimate the variance components

λ (parameters of C). The population effect is then estimated

using WLS in the usual way.
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Figure 5.1: Synthetic data illustrating the probability model underlying random effects
analysis. The dotted line is the Gaussian distribution underlying the second level
model with mean β2, the population effect, and variance σ2

b , the between-subject vari-
ance. The mean subject effects, β1(i), are drawn from this distribution. The solid
lines are the Gaussians underlying the first level models with means β1(i) and vari-
ances σ2

w. In this example the within-subject/between-trial variance is the same for
all subjects. The crosses are the observed effects yij which are drawn from the solid
Gaussians.

5.4.1 Example

Two-level hierarchical model

y = X1β1 + e1 (5.29)

β1 = X2β2 + e2

where β1 contains subject effects, β2 the population effect. The

errors are between-trial errors e1 and between-subject errors e2.

In brain imaging such a model is known as a Random-Effects

(RFX) analysis, as the subject effects are viewed as random

variables (there is a between-subject error). The aim is to make

an inference about the population effect.
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5.4.2 Summary statistic approach

This involves simply taking a Summary Statistic (SS) eg. the

mean, from one level and using it as data for the level above. For

‘balanced designs’, this gives us the correct results on average

[37]. This requires the same number of trials per subject and the

same between-trial error variance. The two-level hierarchical

model is approximated as two separate single level models

y = X1β̂1 + e1 (5.30)

β̂1 = X2β2 + e2

The first level effects are estimated for each subject, saved as

‘contrast images’ and entered as data for a separate 2nd-level

model.
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5.5 fMRI data from multiple sessions

This section compares RFX analysis as implemented using SS

versus ReML. The dataset comprises 1,200 images that were

acquired in 10 sessions of 120 scans each. These data have been

described elsewhere [16].

Each session contained a different number of events, so strictly,

violates SS assumptoions. The experimental design involved

30-second epochs of single word streams and a passive listening

task. The words were concrete, monosyllabic nouns presented

at a number of different rates. The word rate was varied pseudo-

randomly over epochs within each session. Further details of the

paradigm and analysis details are given in [18]. The results of

the SS and ReML analyses have been thresholded at p < 0.05,

corrected for the entire search volume.
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Figure 5.2: Within-session variance as (a) assumed by SS and (b) estimated using
ReML. This shows that within-session variance can vary by up to a factor of four,
although this makes little difference to the final inference.

Figure 5.3: SPMs showing the effect of words in the population using (a) SS and (b)
ReML approaches.
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Chapter 6

Bayesian Methods

6.1 Contents

Bayes rule for

• Gaussians

• General Linear Models

and Parametric Empirical Bayes (PEB). Application to M/EEG

source localisation.

123
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Given probabilities p(A), p(B), and the joint probability p(A,B),

we can write the conditional probabilities

p(B|A) =
p(A,B)

p(A)

p(A|B) =
p(A,B)

p(B)

Eliminating p(A,B) gives Bayes rule

p(B|A) =
p(A|B)p(B)

p(A)
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Figure 6.1: Bayes rule for univariate Gaussians. The two solid curves show the
probability densities for the prior m0 = 20, p0 = 1 and the likelihood mD = 25 and
pD = 3. The dotted curve shows the posterior distribution with m = 23.75 and p = 4.
The posterior is closer to the likelihood because the likelihood has higher precision.

6.1.1 Gaussians

’Precision’ is inverse variance eg. variance of 0.1 is precision of

10.

For a Gaussian prior with mean m0 and precision p0, and a

Gaussian likelihood with mean mD and precision pD the poste-

rior is Gaussian with

p = p0 + pD

m =
p0

p
m0 +

pD
p
mD

So, (1) precisions add and (2) the posterior mean is the sum of

the prior and data means, but each weighted by their relative

precision.
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6.1.2 Bayesian GLM

If p(x) = N(m,Σ) then

p(x) ∝ exp

(
−1

2
(x−m)TΣ−1(x−m)

)
(6.1)

A Bayesian GLM is defined as

y = Xβ + e1 (6.2)

β = µ + e2

where the errors are zero mean Gaussian with covariances Cov[e1] =

C1 and Cov[e2] = C2.

p(y|β) ∝ exp
(
−1

2(y −Xβ)TC−1
1 (y −Xβ)

)
(6.3)

p(β) ∝ exp
(
−1

2(β − µ)TC−1
2 (β − µ)

)
The posterior distribution is then

p(β|y) ∝ p(y|β)p(β) (6.4)

Taking logs and keeping only those terms that depend on β

gives
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log p(β|y) = −1

2
(y −Xβ)TC−1

1 (y −Xβ) (6.5)

− 1

2
(β − µ)TC−1

2 (β − µ) + ..

= −1

2
βT (XTC−1

1 X + C−1
2 )β

+ βT (XTC−1
1 y + C−1

2 µ) + ..

Taking logs of the Gaussian density p(x) in equation 6.2 and

keeping only those terms that depend on x gives

log p(x) = −1

2
xTΣ−1x + xTΣ−1m + .. (6.6)

Comparing equation 6.5 with terms in the above equation

shows that

p(β|y) = N(m,Σ) (6.7)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)
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Figure 6.2: GLMs with two parameters. The prior (dashed line) has mean µ = [0, 0]T

(cross) and precision C−1
1 = diag([1, 1]). The likelihood (dotted line) has mean XTy =

[3, 2]T (circle) and precision (XTC−1
1 X)−1 = diag([10, 1]). The posterior (solid line)

has mean m = [2.73, 1]T (cross) and precision Σ−1 = diag([11, 2]). In this example,
the measurements are more informative about β(1) than β(2). This is reflected in
the posterior distribution.
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6.1.3 Augmented Form

From before

p(β|y) = N(m,Σ) (6.8)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)

This can also be written as

Σ−1 = X̄TV −1X̄ (6.9)

m = Σ(X̄TV −1ȳ)

where

X̄ =

[
X

I

]
(6.10)

V =

[
C1 0

0 C2

]
ȳ =

[
y

µ

]
where we’ve augmented the data matrix with prior expecta-

tions. Estimation in a Bayesian GLM is therefore equivalent to

Maximum Likelihood estimation (ie. for IID covariances this

is the same as Weighted Least Squares) with augmented data.

Our prior beliefs can be thought of as extra data points.

6.2 Parametric Empirical Bayes

For a Bayesian GLM

y = Xβ + e1 (6.11)

β = µ + e2
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with linear covariance constraints

C1 =
∑
i

λiQi (6.12)

C2 =
∑
j

λjQj

the covariance components can be estimated using ReML (last

lecture). We can then make inferences about intermediate level

parameters eg. β using Bayes rule (earlier in this lecture).

Also, the ReML algorithm can be reformulated into two steps

(i) estimation the posterior distribution over β’s and (ii) hy-

perparameter estimation (λ’s). This reformulation is known

as Parametric Empirical Bayes (PEB). The difference is that,

in ReML, step (i) is embedded into step (ii). For ReML the

goal is to estimate variance components, for PEB the goal is to

estimate (intermediate level) parameters.

PEB is a special case of an Expectation-Maximisation (EM) al-

gorithm where (i) E-Step: estimate posterior distribution over

β’s (ii) M-Step: update λ’s. PEB/ReML are specific to lin-

ear Gaussian models but EM is generic, ie. there is an EM

algorithm for mixture models, hidden Markov models etc.
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For hierarchical linear models the PEB/EM algorithm is

• E-Step: Update distribution over parameters β

Σ−1 = X̄TV −1X̄ (6.13)

m = Σ(X̄TV −1ȳ)

• M-Step: Update hyperparameters λi (and therefore V ) by

following gradient gi

r = ȳ − X̄m (6.14)

gi = −1

2
Tr(V −1Qi) +

1

2
Tr(ΣX̄TV −1QiV

−1X̄)

+
1

2
rTV −1QiV

−1r

The M-Step is identical to ReML (last lecture) as the gradient

can be expressed as

gi = −1

2
Tr(PQi) +

1

2
yTP TQiPy (6.15)

P = V −1 − V −1X̄(X̄TV −1X̄)−1X̄TV −1

Whether or not EM or ReML is more computationally efficient

for estimating variance components depends on the sparsity of

the covariance constraints Qi. For more details (and Fisher

scoring implementation) see [17].
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Figure 6.3: EM and ReML estimate hyperparameters λi by following the gradient to
the (local) maximum.

6.2.1 Global Shrinkage Priors

Used in eg. fMRI analysis [15]. Special case of hierarchical

model

y = Xβ + e1 (6.16)

β = µ + e2

with 20 voxels and 10 data points per voxel

X = I20 ⊗ 110 (6.17)

C1 =

20∑
i=1

1

vi
Qi

C2 =
1

α
I20

(6.18)

The parameter β(i) encodes the effect size at voxel i. This

model assumes that across the brain (i) average effect size is
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Figure 6.4: Across the 20-voxel brain (i) average effect size is zero, µ = 0, the vari-
ability of responses follows a Gaussian with precision α. True effect sizes (red circles).

zero, µ = 0, and (ii) the variability of responses follows a Gaus-

sian with precision α. Hyperparameters are λ = {vi, α}.
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Figure 6.5: Data at each voxel are normally distributed about the effect size at that
voxel with precision λi eg. voxels 2, 5 and 15 have noisier data than others.

Figure 6.6: Previous graph but with sample means (blue crosses) also at each voxel.
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Figure 6.7: Sample means (also ML estimates - blue crosses) and true effect sizes (red
circles). Estimation error =0.71.

For this model the PEB algorithm has a simple form. By setting

the gradients gi to zero we can get the following updates for the

hyperparameters λ = {vi, α}.

β(i) =
γi
N

N∑
n=1

yin (6.19)

1

vi
=

1

N − γi

N∑
n=1

(yin − β(i))2

γi =
Nvi

Nvi + α

1

α
=

1∑
i γi

V∑
i=1

β(i)2

where yin is the nth scan at the ith voxel, γi is the ratio of the

data precision to the posterior precision.
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Figure 6.8: After PEB iteration 3

Without a prior, γi = 1 we get

1

vi
=

1

N − 1

N∑
n=1

(yin − β(i))2 (6.20)

This is the familiar ’unbiased’ estimate, if we only have to esti-

mate variance components at a single level. The PEB updates

partition the total degrees of freedom N into those used to es-

timate first or second level hyperparameters.

See code em1.m.
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Figure 6.9: After PEB iteration 7. Estimation error =0.34.

On average, across the brain, PEB is more accurate than ML.

It does better at most voxels at the expense of being worse at

a minority eg. voxel 2.

For most voxels we have γi = 0.9, but for the noisy voxels 2,

15 and 18 we have γi = 0.5. PEB thus relies more on prior

information where data are unreliable.
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6.2.2 EEG Source Reconstruction

To ‘reconstruct’ EEG data at a single time point use the model

y = Xβ + e1 (6.21)

β = µ + e2

where X is a lead-field matrix transforming Current Source

Density (CSD) β at V voxels in brain space into EEG voltages

y at S electrodes. For more on this see eg. [3].

C1 =
∑
i

λiQi (6.22)

C2 =
∑
j

λjQj

(6.23)

where Qi defines structure of sensor noise, and Qj source noise

ie. uncertainty in sources. In the application that follows we

use Qi = I and Qj = L, a ‘Laplacian’ matrix set up so that we

expect the squared difference between neighboring voxels to be

λj ie. this enforces a smoothness constraint.

The data in this analysis is from [22].
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Figure 6.10: Subjects are presented images of faces and scrambled faces and are asked
to make symmetry judgements.

Figure 6.11: Electrode voltages at 160ms post-stimulus, y. This is an Event-Related
Potential (ERP), the result of averaging the responses to many (86) trials.
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Figure 6.12: Voltages at two different electrodes for faces (blue) and scrambled faces
(red). These are Event-Related Potentials (ERPs), the result of averaging the re-
sponses to many (86) trials.
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Figure 6.13: Estimate of CSD, β. Computed as the CSD difference for faces minus
scrambled faces.
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Chapter 7

Model Comparison

7.1 Contents

Making inferences about models

• Bayes factors

• Evidence for Bayesian GLMs

• Multimodal imaging

• Bayesian Model Averaging

• Nonlinear M/EEG source localisation.

143
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7.2 Bayes Factors

Bayes rule for data y and ‘model’ or ‘hypothesis’ i

p(m = i|y) =
p(y|m = i)p(m = i)

p(y)

In this context, p(y|m = i), is known as the evidence for model

i. Similarly for model j

p(m = j|y) =
p(y|m = j)p(m = j)

p(y)

Dividing one by the other gives

p(m = i|y)

p(m = j|y)
=
p(y|m = i)

p(y|m = j)
× p(m = i)

p(m = j)

This is the fundamental relationship

PosteriorOdds = BayesFactor × PriorOdds

The Bayes factor is a ratio of model evidences. It tells you how

the odds have changed. It can be written BFij.
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Figure 7.1: Cognitive processes, m, described in BrainMap database.

7.2.1 Inferring cognitive processes

Poldrack[41] considers the relationship between engagement of

cognitive processes, m, and activation of brain regions y. For

example, using the BrainMap database, the frequency of lan-

guage studies, L, that give rise to Broca activations (20mm

ROI at x = −37, y = 18, z = 18mm) can be used to estimate

p(y = B|m = L) =
p(y = B,m = L)

p(m = L)
(7.1)

=
166

869
= 0.191



146 CHAPTER 7. MODEL COMPARISON

Simiarly, given the number of non-language studies, L̄, that also

activate Broca’s area

p(y = B|m = L̄) =
p(y = B,m = L̄)

p(m = L̄)
(7.2)

=
199

2353
= 0.085

This gives rise to a Bayes factor

BFL,L̄ =
p(y = B|m = L)

p(y = B|m = L̄)
(7.3)

=
0.191

0.085
= 2.3

That is, after seeing a Broca activation, the odds that a language

process has been engaged are larger by a factor 2.3.

For equal prior odds p(m = L) = p(m = L̄) = 0.5, the poste-

rior probability of language processes given a Broca activation

is

p(m = L|y = B) =
p(y = B|m = L)p(m = L)

p(y = B|m = L)p(m = L) + p(y = B|m = L̄)p(m = L̄)

=
0.191

0.191 + 0.085
= 0.69
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Figure 7.2: Effect of ROI size on posterior probability. Power of reverse inference is
increased using smaller, more selective regions.
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Figure 7.3: Hierarchical generative model in which members of a model class, indexed
by m, are considered as part of the hierarchy. Typically, m indexes the structure of
the model. This might be the connectivity pattern in a dynamic causal model or set of
anatomical or functional constraints in a source reconstruction model. Once a model
has been chosen from the distribution p(m), its parameters are generated from the
parameter prior p(θ|m) and finally data is generated from the likelihood p(y|θ,m).

7.3 Making inferences about models
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Figure 7.4: In Bayesian Model Selection (BMS), the posterior model probability
p(m|y), is used to select a single ‘best’ model. In Bayesian Model Averaging (BMA),
inferences are based on all models and p(m|y) is used as a weighting factor. Only in
BMA, are parameter inferences based on the correct marginal density p(θ|y).

7.4 Evidence for Bayesian GLMs

For a Bayesian GLM

y = Xβ + e1 (7.4)

β = µ + e2

with linear covariance constraints

C1 =
∑
i

λiQi (7.5)

C2 =
∑
j

λjQj

From lecture 6 we know that the posterior distribution over

regression coefficients is

Σ−1 = X̄TV −1X̄ (7.6)

β̂ = Σ(X̄TV −1ȳ)
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where

X̄ =

[
X

I

]
(7.7)

V =

[
C1 0

0 C2

]
ȳ =

[
y

µ

]

where we’ve augmented the data matrix with prior expecta-

tions.

We’ll assume that we’ve run PEB and so have estimated param-

eters, β̂, and hyperparameters, λ̂. We now wish to compute the

model evidence p(y|m).

From lecture 5 we know that

p(y|λ,m) = (2π)−N/2|V |−1/2 (7.8)

× exp

(
1

2
(ȳ − X̄β̂)TV −1(ȳ − X̄β̂)

)
× |X̄TV −1X̄|−1/2
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By substuting in the expressions for V , ȳ and X̄ and taking

logs we can write the log evidence as

log p(y|λ,m) = Accuracy(m)− Complexity(m) (7.9)

where

Accuracy(m) = −1

2
log |C1| −

1

2
(y −Xβ̂)TC−1

1 (y −Xβ̂)

Complexity(m) =
1

2
log |C2| −

1

2
log |Σ| + 1

2
(µ− β̂)TC−1

2 (µ− β̂)

The second term is referred to as ‘complexity’ because eg. the

quadratic term scales with the number of parameters in the

model. A model with high evidence must therefore provide a

good trade-off between accuracy and complexity.

This trade-off is also employed in other more ad-hoc model

selection schemes eg. AIC and BIC have complexity terms em-

bodying fixed costs for each parameter of 1 (AIC) and 1
2 logN .

See eg. [39] for more details.
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Figure 7.5: Approximating the hyperparameter uncertainty with a Gaussian in log
space.

7.4.1 Integrating out hyperparameters

To get the evidence p(y|m) we must integrate out the uncer-

tainty in the hyperparameters λ.

p(y|m) =

∫
p(y|λ,m)dλ (7.10)

To do this we’ll assume that the hyperparameters have a Gaus-

sian distribution about their estimated value, λ̂. As the hyper-

parameters must be positive we’ll assume that this distribution

is in log space. If we have a single hyperparameter then

p(y|λ,m) = p(y|λ̂,m) exp

(
−(log λ− log λ̂)2

2σ2
log λ

)
(7.11)
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where σ2
log λ is our uncertainty (variance) in the (log) estimated

hyperparamater. We can then evaluate the integral to give

p(y|m) = p(y|λ̂,m)(2π)1/2σlog λ (7.12)

The last terms are just the normalising constant for the Gaus-

sian density. This expression for the evidence takes into account

uncertainty in the estimation of the hypeparameters. If we have

H hyperparameters then we get

p(y|m) = p(y|λ̂,m)(2π)H/2
H∏
h=1

σlog λh (7.13)

7.5 Multimodal Imaging

Source reconstruction of EEG using fMRI location priors [29].

To ‘reconstruct’ EEG data at a single time point use the model

y = Xβ + e1 (7.14)

β = µ + e2

where X is a lead-field matrix transforming Current Source

Density (CSD) β at V voxels in brain space into EEG voltages

y at S electrodes. We use µ = 0.

C1 =
∑
i

λiQi (7.15)

C2 =
∑
j

λjQj

where Qi defines structure of sensor noise, and Qj source noise

ie. uncertainty in sources. In the application that follows we use

Qi = I andQj = L, a ‘Laplacian’ or ‘smoothness’ matrix set up
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Figure 7.6: Inflated cortical representation of (a) two simulated source locations
(‘valid’ prior) and (b) ‘invalid’ prior location.

so that we expect the squared difference between neighboring

voxels to be λj. Also consider extra Qj’s to incorporate valid

and invalid location priors from eg. fMRI [29].
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Figure 7.7: Inflated cortical representation of representative source reconstructions
using (a) smoothness prior, (b) smoothness and valid priors and (c) smoothness,
valid and invalid priors. The reconstructed values have been normalised between -1
and 1.
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7.6 Nonlinear source reconstruction

Trujillo-Barreto et al. [45] describe a nonlinear source recon-

struction algorithm based on combining reconstructions from

a very large number of different models m = 1..M , using

Bayesian Model Averaging (BMA)

p(β|y) =
∑
m

p(β|y,m)p(m|y) (7.16)

where p(β|y,m) is the estimated CSD from modelm and p(m|y)

is the posterior probability of model m. If all models are equi-

likely apriori then p(m|y) = p(y|m). We therefore need to

• Fit model m to get CSD estimates

• Estimate model evidence p(y|m)

• Search model space M

Model space contains M = 271 models. There’s no point fitting

models that will have a low evidence. Use a greedy search

strategy where eg. at search iteration i our model contains

regions 13, 40-45 and 62. Add/delete a region chosen uniformly

at random and select it for iteration i+ 1 if evidence is higher.

Keep all models with evidence greater than 1/20th of max so

far - this is Occam’s window of models.
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Figure 7.8: 3D segmentation of 71 structures of the Probabilistic MRI Atlas developed
at the Montreal Neurological Institute. As shown in the color scale, brain areas
belonging to different hemispheres were segmented separately.

Figure 7.9: Different arrays of sensors used in the simulations. EEG-19 represents
the 10/20 electrode system; EEG-120 is obtained by extending and refining the 10/20
system; and MEG-151 corresponds to the spatial configuration of MEG sensors in the
helmet of the CTF System Inc.
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Figure 7.10: Spatial distributions of the simulated primary current densities. A)
Simultaneous activation of two sources at different depths: one in the right Occipital
Pole and the other in the Thalamus (OPR+TH). B) Simulation of a single source in
the Thalamus (TH).

Figure 7.11: 3D reconstructions of the absolute values of BMA and cLORETA solu-
tions for the OPR+TH source case. The first column indicates the array of sensors
used in each simulated data set. The maximum of the scale is different for each case.
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Figure 7.12: 3D reconstructions of the absolute values of BMA and cLORETA solu-
tions for the TH source case. The first column indicates the array of sensors used in
each simulated data set.
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Chapter 8

Spectral Estimation

8.1 Contents

• Sinusoidal models

• Fourier transform

• Welch’s method

• Multitaper method

• Multivariate spectral analysis

• Source reconstruction of MEG Gamma activity

8.1.1 Sines and cosines

Sines and cosines can be understood in terms of the vertical and hori-
zontal displacement of a fixed point on a rotating wheel; the wheel has
unit length and rotates anti-clockwise. The angle round the wheel is
measured in degrees or radians (0 − 2π; for unit radius circles the cir-
cumference is 2π, radians tell us how much of the circumference we’ve
got). If we go round the wheel a whole number of times we end up
in the same place, eg.cos 4π = cos 2π = cos 0 = 1. Frequency, f , is
the number of times round the wheel per second. Therefore, given
x = cos(2πft), x = 1 at t = 1/f, 2/f etc. For x = cos(2πft+Φ) we get
a head start (lead) of Φ radians. Negative frequencies may be viewed
as a wheel rotating clockwise instead of anti-clockwise.

161
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8.1.2 Sampling and aliasing

If we assume we have samples of the signal every Ts seconds and in
total we have N such samples then Ts is known as the sampling period
and Fs = 1/Ts is the sampling frequency in Hertz (Hz) (samples per
second). The nth sample occurs at time t[n] = nTs = n/Fs. The cosine
of sampled data can be written

x[n] = cos(2πft[n]) (8.1)

At a sampling frequency Fs the only unique frequencies are in the range
0 to (Fs/2)Hz. Any frequencies outside this range become aliases of one
of the unique frequencies.

For example, if we sample at 8Hz then a -6Hz signal becomes indistin-
guishable from a 2Hz signal. More generally, if f0 is a unique frequency
then its aliases have frequencies given by

f = f0 + kFs (8.2)

where k is any positive or negative integer, eg. for f0 = 2 and Fs = 8
the two lowest frequency aliases, given by k = −1 and k = 1, are −6Hz
and 10Hz.

8.2 Sinusoidal models

If our time series has a periodic component in it we might think about
modelling it with the equation

x[n] = R0 +Rcos(2πft[n] + Φ) + e[n] (8.3)

where R0 is the offset (eg. mean value of x[n]), R is the amplitude of
the sine wave, f is the frequency and Φ is the phase. Because of the
trig identity

cos(A+B) = cosA cosB − sinA sinB (8.4)

the model can be written in an alternative form

x[n] = R0 + a cos(2πft[n]) + b sin(2πft[n]) + e[n] (8.5)

where a = R cos(Φ) and b = −R sin(Φ). This is the form we consider
for subsequent analysis.
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Figure 8.1: Aliases The figure shows a 2Hz cosine wave and a -6Hz cosine wave
as solid curves. At sampling times given by the dotted lines, which correspond to a
sampling frequency of 8Hz, the −6Hz signal is an alias of the 2Hz signal. Other
aliases are given by equation 8.2.
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8.2.1 Fitting the model

If we let x = [x(1), x(2), ..., x(N)]T , w = [R0, a, b]
T , e = [e1, e2, ..., eN ]T

and

A =


1 cos2πft[1] sin2πft[1]
1 cos2πft[2] sin2πft[2]
1 cos2πft[3] sin2πft[3]
.. .. ..
1 cos2πft[N ] sin2πft[N ]

 (8.6)

then the model can be written in the matrix form

x = Aw + e (8.7)

which is in the standard form of a multivariate linear regression prob-
lem. The solution is therefore

w = (ATA)−1ATx (8.8)

8.2.2 But sinewaves are orthogonal

We restrict ourselves to a frequency fp which is an integer multiple of
the base frequency

fp = pFb (8.9)

where p = 1..N/2 and

fb =
Fs
N

(8.10)

eg. for Fs = 100 and N = 100 (1 seconds worth of data), fb = 1Hz and
we can have fp from 1Hz up to 50Hz1. The orthogonality of sinewaves
is expressed in the following equations

N∑
n=1

cos 2πfkt[n] =
N∑
n=1

sin 2πfkt[n] = 0 (8.11)

N∑
n=1

cos 2πfkt[n] sin 2πflt[n] = 0 (8.12)

1To keep things simple we don’t allow fp where p = N/2; if we did allow it we’d get N and 0 in
equations 8.13 and 8.14 for the case k = l. Also we must have N even.
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Figure 8.2: Orthogonality of sinewaves Figure (top) shows cos 2π3fbt[n] and
cos 2π4fbt[n], cosines which are 3 and 4 times the base frequency fb = 1Hz. For
any two integer multiples k, l we get

∑N
n=1 cos2πfkt[n]cos2πflt[n] = 0. This can be

seen from Figure (bottom) which shows the product cos2π3fbt[n]cos2π4fbt[n]. Because
of the trig identity cosAcosB = 0.5cos(A+ B) + 0.5cos(A− B) this looks like a 7Hz
signal superimposed on a 1Hz signal. The sum of this signal over a whole number of
cycles can be seen to be zero; because each cos term sums to zero. If, however, k or l
are not integers the product does not sum to zero and the orthogonality breaks down.

N∑
n=1

cos 2πfkt[n] cos 2πflt[n] =
0 k 6= l
N/2 k = l

(8.13)

N∑
n=1

sin 2πfkt[n] sin 2πflt[n] =
0 k 6= l
N/2 k = l

(8.14)

The results depend on the fact that all frequencies that appear in the
above sums are integer multiples of the base frequency; see figure 8.2.

This property of sinewaves leads to the result

ATA = D (8.15)
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where D is a diagonal matrix. The first entry is N (from the inner
product of two columns of 1’s of length N ; the 1’s are the coefficients
of the constant term R0) and all the other entries are N/2. A matrix
Q for which

QTQ = D (8.16)

is said to be orthogonal. Therefore our A matrix is orthogonal. Hence

w = D−1ATx (8.17)

which is simply a projection of the signal onto the basis matrix, with
some pre-factor . Given that w = [a, b, R0]

T we can see that, for ex-
ample, a is computed by simply projecting the data onto the second
column of the matrix A, eg.

a =
2

N

N∑
n=1

cos(2πft)xt (8.18)

Similarly,

b =
2

N

N∑
n=1

sin(2πft)xt (8.19)

R0 =
1

N

N∑
n=1

xt (8.20)

We applied the simple sinusoidal model to a ‘sunspot data set’ as fol-
lows. We chose 60 samples between the years 1731 and 1790 (because
there was a fairly steady mean level in this period). The sampling rate
Fs = 1Year. This gives a base frequency of fb = 1/60. We chose our
frequency f = pfb with p=6; giving a complete cycle once every ten
years. This gave rise to the following estimates; R0 = 53.64, a = 39.69
and b = −2.36.

8.2.3 Fourier Series

We might consider that our signal consists of lots of periodic com-
ponents in which case the multiple sinusoidal model would be more
appropriate

x(t) = R0 +

p∑
k=1

Rk cos(2πfkt+ Φk) + et (8.21)
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Figure 8.3: Sunspot index (solid line) and prediction of it from a simple sinusoidal
model (dotted line).
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where there are p sinusoids with different frequencies and phases. In
a discrete Fourier series there are p = N/2 such sinusoids having fre-
quencies

fk =
kFs
N

(8.22)

where k = 1..N/2 and Fs is the sampling frequency. Thus the frequen-
cies range from Fs/N up to Fs/2. The Fourier series expansion of the
signal x(t) is

x(t) = R0 +

N/2∑
k=1

Rk cos(2πfkt+ Φk) (8.23)

Notice that there is no noise term. Because of the trig identity

cos(A+B) = cosA cosB − sinA sinB (8.24)

this can be written in the form

x(t) = a0 +

N/2∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) (8.25)

where ak = Rk cos(Φk) and bk = −Rk sin(Φk). Alternatively, we have
R2
k = a2

k + b2
k and Φ = tan−1(bk/ak). Equivalently, we can write the nth

sample as

x[n] = a0 +

N/2∑
k=1

ak cos(2πfkt[n]) + bk sin(2πfkt[n]) (8.26)

where t[n] = nTs.

The important things to note about the sinusoids in a Fourier series are
(i) the frequencies are equally spread out, (ii) there are N/2 of them
where N is the number of samples, (iii) Given Fs and N the frequencies
are fixed. Also, note that in the Fourier series ‘model’ there is no noise.

The Fourier coefficients can be computed by a generalisation of the
process used to compute the coefficients in the simple sinusoidal model.

ak =
2

N

N∑
n=1

cos(2πfkt[n])x[n] (8.27)

Similarly,

bk =
2

N

N∑
n=1

sin(2πfkt[n])x[n] (8.28)



8.2. SINUSOIDAL MODELS 169

Figure 8.4: Signal (solid line) and components of the Fourier series approximation∑p
k=1Rkcos(2πfk+Φk) (dotted lines) with (a) p = 1, (b) p = 2, (c) p = 3 and (d) p =

11 where we have ordered the components according to amplitude. The corresponding
individual terms are (e) R2 = 0.205,f = 3.75 and Φ = 0.437, (f) R2 = 0.151, f = 2.5
and Φ = 0.743, (g) R2 = 0.069, f = 11.25 and Φ = 0.751 and (h) R2 = 0.016,
f = 7.5 and Φ = −0.350.

a0 =
1

N

N∑
n=1

x[n] (8.29)

These equations can be derived as follows. To find, for example, ak,
multiply both sides of equation 8.26 by cos(2πfkt[n]) and sum over n.
Due to the orthogonality property of sinusoids (which still holds as
all frequencies are integer multiples of a base frequency) all terms on
the right go to zero except for the one involving ak. This just leaves
ak(N/2) on the right giving rise to the above formula.
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8.3 Complex numbers

8.3.1 Power series

A function of a variable x can often be written in terms of a series of
powers of x. For the sin function, for example, we have

sinx = a0 + a1x+ a2x
2 + a3x

3 + ... (8.30)

We can find out what the appropriate coefficients are as follows. If we
substitite x = 0 into the above equation we get a0 = 0 since sin0 = 0
and all the other terms disappear. If we now differentiate both sides of
the equation and substitute x = 0 we get a1 = 1 (because cos 0 = 1 =
a1). Differentiating twice and setting x = 0 gives a2 = 0. Continuing
this process gives

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ ... (8.31)

Similarly, the series representations for cosx and ex can be found as

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ ... (8.32)

and

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ ... (8.33)

More generally, for a function f(x) we get the general result

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + ... (8.34)

where f ′(0), f ′′(0) and f ′′′(0) are the first, second and third derivatives
of f(x) evaluated at x = 0. This expansion is called a Maclaurin series.

So far, to calculate the coefficients in the series we have differentiated
and substituted x = 0. If, instead, we substitute x = a we get

f(x) = f(a)+(x−a)f ′(a)+
(x− a)2

2!
f ′′(a)+

(x− a)3

3!
f ′′′(a)+ ... (8.35)

which is called a Taylor series.
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8.3.2 Complex numbers

Very often, when we try to find the roots of an equation, we may end
up with our solution being the square root of a negative number. For
example, the quadratic equation

ax2 + bx+ c = 0 (8.36)

has solutions

x =
−b±

√
b2 − 4ac

2a
(8.37)

If b2−4ac < 0 we need the square root of a negative number. To handle
this, mathematicians have defined the number

i =
√
−1 (8.38)

allowing all square roots of negative numbers to be defined in terms
of i, eg

√
−9 =

√
9
√
−1 = 3i. These numbers are called imaginary

numbers to differentiate them from real numbers.

Finding the roots of equations, eg. the quadratic equation above, re-
quires us to combine imaginary numbers and real numbers. These
combinations are called complex numbers. For example, the equation

x2 − 2x+ 2 = 0 (8.39)

has the solutions x = 1 + i and x = 1− i which are complex numbers.

A complex number z = a+ bi has two components; a real part and an
imaginary part which may be written

a = Re{z} (8.40)

b = Im{z}
The absolute value of a complex number is

R = Abs{z} =
√
a2 + b2 (8.41)

and the argument is

θ = Arg{z} = tan−1
(
b

a

)
(8.42)

The two numbers z = a + bi and z∗ = a − bi are known as complex
conjugates; one is the complex conjugate of the other. When multiplied
together they form a real number. The roots of equations often come
in complex conjugate pairs.
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8.3.3 Complex vectors

The transpose, xT , becomes a ‘Hermitian’ transpose, xH , which is the
usual transpose but the elements become conjugates. This means that
the length of a vector (squared) is now xHx instead of xTx.

8.3.4 Complex exponentials

If we take the exponential function of an imaginary number and write
it out as a series expansion, we get

eiθ = 1 +
iθ

1!
+
i2θ2

2!
+
i3θ3

3!
+ ... (8.43)

By noting that i2 = −1 and i3 = i2i = −i and similarly for higher
powers of i we get

eiθ =

[
1− θ2

2!
+ ...

]
+ i

[
θ

1!
− θ3

3!
+ ...

]
(8.44)

Comparing to the earlier expansions of cos θ and sin θ we can see that

eiθ = cos θ + i sin θ (8.45)

which is known as Euler’s formula. Similar expansions for e−iθ give the
identity

e−iθ = cos θ − i sin θ (8.46)

We can now express the sine and cosine functions in terms of complex
exponentials

cos θ =
eiθ + e−iθ

2
(8.47)

sin θ =
eiθ − e−iθ

2i

8.3.5 DeMoivre’s theorem

By using the fact that

eiθeiθ = eiθ+iθ (8.48)
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(a property of the exponential function and exponents in general eg.
5353 = 56) or more generally

(eiθ)k = eikθ (8.49)

we can write
(cosθ + i sin θ)k = coskθ + isinkθ (8.50)

which is known as DeMoivre’s theorem.

8.3.6 Argand diagrams

Any complex number can be represented as a complex exponential

a+ bi = Reiθ = R(cosθ + i sin θ) (8.51)

and drawn on an Argand diagram. Multiplication of complex num-
bers is equivalent to rotation in the complex plane (due to DeMoivre’s
Theorem).

(a+ bi)2 = R2ei2θ = R2(cos2θ + i sin 2θ) (8.52)

8.4 Discrete Fourier Transform

Fourier series can be expressed in terms of complex exponentials. This
representation leads to an efficient method for computing the coeffi-
cients. We can write the cosine terms as complex exponentials

ak cos(2πfkt[n]) = ak
exp(i2πfkt[n]) + exp(−i2πfkt[n])

2
(8.53)

where i2 = −1. Picture this as the addition of two vectors; one above
the real axis and one below. Together they make a vector on the real
axis which is then halved.

We can also write the sine terms as

bk sin(2πfkt[n]) = bk
exp(i2πfkt[n])− exp(−i2πfkt[n])

2i
(8.54)

Picture this as one vector above the real axis minus another vector
below the real axis. This results in a purely imaginary (and positive)
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vector. The result is halved and then multiplied by the vector exp(3π/2)
(−i, from multplying top and bottom by i) which provides a rotation
to the real axis.

Adding them (and moving i to the numerator by multiplying bk top
and bottom by i) gives

1

2
(ak − bki) exp(i2πfkt[n]) +

1

2
(ak + bki) exp(−i2πfkt[n]) (8.55)

Note that a single term at frequency k has split into a complex com-
bination (the coefficients are complex numbers) of a positive frequency
term and a negative frequency term. Substituting the above result into
equation 8.26 and noting that fkt[n] = kn/N we get

x[n] = a0+
1

2

N/2∑
k=1

(ak−bki) exp(i2πkn/N)+
1

2

N/2∑
k=1

(ak+bki) exp(−i2πkn/N)

(8.56)
If we now let

X̃(k) =
N

2
(ak − bki) (8.57)

and note that for real signals X̃(−k) = X̃∗(k) (negative frequencies
are reflections across the real plane, ie. conjugates) then the (ak + bki)
terms are equivalent to X̃(−k). Hence

x[n] = a0+
1

2N

N/2∑
k=1

X̃(k) exp(i2πkn/N)+
1

2N

N/2∑
k=1

X̃(k) exp(−i2πkn/N)

(8.58)
Now, because X̃(N − k) = X̃(−k) (this can be shown by considering
the Fourier transform of a signal x[n] and using the decomposition
exp(−i2π(N−k)n/N) = exp(−i2πN/N) exp(i2πkn/N) where the first
term on the right is unity) we can write the second summation as

x[n] = a0+
1

2N

N/2∑
k=1

X̃(k) exp(i2πkn/N)+
1

2N

N−1∑
k=N/2

X̃(k) exp(−i2π(N−k)n/N)

(8.59)
Using the same exponential decomposition allows us to write

x[n] = a0 +
1

N

N−1∑
k=1

X̃(k) exp(i2πkn/N) (8.60)
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If we now let X(k+ 1) = X̃(k) then we can absorb the constant a0 into
the sum giving

x[n] =
1

N

N∑
k=1

X(k) exp(i2π(k − 1)n/N) (8.61)

which is known as the Inverse Discrete Fourier Transform (IDFT). The
terms X(k) are the complex valued Fourier coefficients. We have the
relations

a0 = Re{X(1)} (8.62)

ak =
2

N
Re{X(k + 1)}

bk =
−2

N
Im{X(k + 1)}

The complex valued Fourier coefficients can be computed by first noting
the orthogonality relations

N∑
n=1

exp(i2π(k − 1)n/N) =
N k = 1,±(N + 1),±(N + 2)
0 otherwise

If we now multiply equation 8.61 by exp(−i2πln/N), sum from 1 to N
and re-arrange we get

X(k) =
N∑
n=1

x(n) exp(−i2π(k − 1)n/N) (8.63)

= DFT (x)

which is the Discrete Fourier Transform (DFT).

8.4.1 Power Spectral Density

The power in a signal is given by

Px =
N∑
n=1

|x[n]|2 (8.64)

We now derive an expression for Px in terms of the Fourier coefficients.
If we note that |x[n]| can also be written in its conjugate form (the
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conjugate form has the same magnitude; the phase is different but this
does’nt matter as we’re only interested in magnitude)

|x[n]| = 1

N

N∑
k=1

X∗(k) exp(−i2π(k − 1)n/N) (8.65)

then we can write the power as

Px =
N∑
n=1

|x[n]
1

N

N∑
k=1

X∗(k) exp(−i2π(k − 1)n/N)| (8.66)

If we now change the order of the summations we get

Px =
1

N

N∑
k=1

|X∗(k)
N∑
n=1

x(n) exp(−i2π(k − 1)n/N)| (8.67)

where the sum on the right is now equivalent to X(k). Hence

Px =
1

N

N∑
k=1

|X(k)|2 (8.68)

We therefore have an equivalence between the power in the time domain
and the power in the frequency domain which is known as Parseval’s
relation. The quantity

Px(k) = |X(k)|2 (8.69)

is known as the Power Spectral Density (PSD).

8.4.2 Filtering

The filtering process

x[n] =
∞∑

l=−∞

x1(l)x2(n− l) (8.70)

is also known as convolution

x[n] = x1(n) ∗ x2(n) (8.71)

We will now see how it is related to frequency domain operations. If
we let w = 2π(k − 1)/N , multiply both sides of the above equation
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by exp(−iwn) and sum over n the left hand side becomes the Fourier
transform

X(w) =
∞∑

n=−∞
x[n] exp(−iwn) (8.72)

and the right hand side (RHS) is
∞∑

n=−∞

∞∑
l=−∞

x1(l)x2(n− l) exp(−iwn) (8.73)

Now, we can re-write the exponential term as follows

exp(−iwn) = exp(−iw(n− l)) exp(−iwl) (8.74)

Letting n′ = n− l, we can write the RHS as
∞∑

l=−∞

x1(l) exp(−iwl)
∞∑

n′=−∞

x2(n
′) exp(−iwn′) = X1(w)X2(w) (8.75)

Hence, the filtering operation is equivalent to

X(w) = X1(w)X2(w) (8.76)

which means that convolution in the time domain is equivalent to mul-
tiplication in the frequency domain. This is known as the convolution
theorem.

8.4.3 Autocovariance and Power Spectral Density

The autocovariance of a signal is given by

σxx(n) =
∞∑

l=−∞

x(l)x(l − n) (8.77)

Using the same method that we used to prove the convolution theorem,
but noting that the term on the right is x(l − n) not x(n − l) we can
show that the RHS is equivalent to

X(w)X(−w) = |X(w)|2 (8.78)

which is the Power Spectral Density, Px(w). Combining this with what
we get for the left hand side gives

Px(w) =
∞∑

n=−∞
σxx(n) exp(−iwn) (8.79)
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which means that the PSD is the Fourier Transform of the autocovari-
ance. This is known as the Wiener-Khintchine Theorem. This is an
important result. It means that the PSD can be estimated from the
autocovariance and vice-versa. It also means that the PSD and the
autocovariance contain the same information about the signal.

It is also worth noting that since both contain no information about the
phase of a signal then the signal cannot be uniquely constructed from
either. To do this we need to know the PSD and the Phase spectrum
which is given by

Φ(k) = tan−1(
bk
ak

) (8.80)

where bk and ak are the real Fourier coefficients.

We also note that the Fourier transform of a symmetric function is
real. This is because symmetric functions can be represented entirely
by cosines, which are themselves symmetric; the sinewaves, which con-
stitute the complex component of a Fourier series, are no longer nec-
essary. Therefore, because the autocovariance is symmetric the PSD is
real.

8.4.4 The Periodogram

The periodogram of a signal xt is a plot of the normalised power in
the kth harmonic versus the frequency, fk of the kth harmonic. It is
calculated as

I(fk) =
Ts
N

(a2
k + b2

k) (8.81)

=
Ts
N
|
N∑
n=1

x(n) exp(−i2π(k − 1)n/N)|2

where ak and bk are the Fourier coefficients.

The periodogram is a low bias (actually unbiased) but high variance 2

estimate of the power at a given frequency. This is therefore a problem
if the number of data points is small; the estimated spectrum will be
very spiky.

2It is an inconsistent estimator, because the variance does’nt reduce to zero as the number of
samples tends to infinity.



8.4. DISCRETE FOURIER TRANSFORM 179

To overcome this, a number of algorithms exist to smooth the peri-
odogram ie. to reduce the variance. The Bartlett method, for example,
takes an N -point sequence and subdivides it into K nonoverlapping
segments and calculates I(fk) for each. The final periodogram is just
the average over the K estimates. This results in a reduction in vari-
ance by a factor K at the cost of reduced spectral resolution (by a
factor K).

8.4.5 Modified periodograms

Other methods modify the periodogram by using a time domain win-
dow, h, also known as a data taper, such that the modified periodogram
is given by

I(fk) =
Ts
N

(a2
k + b2

k) (8.82)

=
Ts
N
|
N∑
n=1

h(n)x(n) exp(−i2π(k − 1)n/N)|2

For example, the matlab psd function chooses h to be a Hanning win-
dow.

Welch’s method (pwelch.m in matlab) takes overlapping segments, and
averages modified periodograms.

8.4.6 Multi-tapering

This uses multiple data tapers. The tapers are orthogonal to each other.
Given a length N sequence

• Choose the desired spectral resolution, W , eg. ±2Hz

• Get corresponding Slepian sequences, hi, i = 1..2NW − 1. These
provide an eigenbasis in local frequency space (±W ) for finite
length data sequences.

• Sum modified periodograms



180 CHAPTER 8. SPECTRAL ESTIMATION

Figure 8.5: Periodogram (top) and Welch’s modified Periodogram (bottom).
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Figure 8.6: Delayed match-to-sample task.

This is implemented in eg. matlab’s pmtm.m function. For theory see
[40], and for application to brain imaging data see [31].

See eg. sunspot_spectra.m.

8.4.7 MEG data

Bauer et al. [4] estimate spectral density of MEG data during a delayed
match-to-sample task. For each subject they computed spectra during
periods when non-matching stimuli were correctly rejected. Spectra in
range 40-180Hz, were computed using a multitaper method with 200ms
windows and a spectral resolution of W = 10Hz.

They then computed z-scores for each time frequency bin by comparing
with a baseline period. These z-scores were then averaged over subject.
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Figure 8.7: Spectra for attended and unattended side, averaged over electrode set
shown in (C) for left finger stimulation and (B) right finger stimulation.

8.5 Multiple time series

8.5.1 Cross-correlation

Given two time series xt and yt we can delay xt by T samples and then
calculate the cross-covariance between the pair of signals. That is

σxy(T ) =
1

N − 1

N∑
t=1

(xt−T − µx)(yt − µy) (8.83)

where µx and µy are the means of each time series and there are N
samples in each. The function σxy(T ) is the cross-covariance function.
The cross-correlation is a normalised version

rxy(T ) =
σxy(T )√

σxx(0)σyy(0)
(8.84)

where we note that σxx(0) = σ2
x and σyy(0) = σ2

y are the variances of
each signal. Note that

rxy(0) =
σxy
σxσy

(8.85)

which is the correlation between the two variables. Therefore unlike
the autocorrelation, rxy is not, generally, equal to 1.

The cross-correlation is a normalised cross-covariance which, assuming
zero mean signals, is given by

σxy(T ) =< xt−Tyt > (8.86)
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Figure 8.8: Top plot: Signals xt (top curve) and yt (bottom curve). Bottom plot:
Cross-correlation function rxy(T ). A lag of T denotes the top series, x, lagging the
bottom series, y. Notice the big positive correlation at a lag of 25.

and for negative lags

σxy(−T ) =< xt+Tyt > (8.87)

Subtracting T from the time index now gives

σxy(−T ) =< xtyt−T > (8.88)

which is different to σxy(T ). To see this more clearly we can subtract
T once more from the time index to give

σxy(−T ) =< xt−Tyt−2T > (8.89)

Hence, the cross-covariance, and therefore the cross-correlation, is an
asymmetric function (the autocorrelation is symettric).

To summarise: moving signal A right (forward in time) and multiplying
with signal B is not the same as moving signal A left and multiplying
with signal B; unless signal A equals signal B.
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8.5.2 Cross Spectral Density

Just as the Power Spectral Density (PSD) is the Fourier transform of
the auto-covariance function we may define the Cross Spectral Density
(CSD) as the Fourier transform of the cross-covariance function

P12(w) =
∞∑

n=−∞
σx1x2

(n) exp(−iwn) (8.90)

Note that if x1 = x2, the CSD reduces to the PSD. Now, the cross-
covariance of a signal is given by

σx1x2
(n) =

∞∑
l=−∞

x1(l)x2(l − n) (8.91)

Substituting this into the earlier expression gives

P12(w) =
∞∑

n=−∞

∞∑
l=−∞

x1(l)x2(l − n) exp(−iwn) (8.92)

By noting that

exp(−iwn) = exp(−iwl) exp(iwk) (8.93)

where k = l−n we can see that the CSD splits into the product of two
integrals

P12(w) = X1(w)X2(−w) (8.94)

where

X1(w) =
∞∑

l=−∞

x1(l) exp(−iwl) (8.95)

X2(−w) =
∞∑

k=−∞

x2(k) exp(+iwk)

For real signals X∗2(w) = X2(−w) where * denotes the complex conju-
gate. Hence, the cross spectral density is given by

P12(w) = X1(w)X∗2(w) (8.96)

This means that the CSD can be evaluated in one of two ways (i) by
first estimating the cross-covariance and Fourier transforming or (ii)
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by taking the Fourier transforms of each signal and multiplying (after
taking the conjugate of one of them). A number of algorithms exist
which enhance the spectral estimation ability of each method. These
algorithms are basically extensions of the algorithms for PSD estima-
tion, for example, for type (i) methods we can perform Blackman-Tukey
windowing of the cross-covariance function and for type (ii) methods
we can employ Welch’s algorithm for averaging modified periodograms
before multiplying the transforms. See Carter [8] for more details.

The CSD is complex because the cross-covariance is asymmetric (the
PSD is real because the auto-covariance is symmetric; in this special
case the Fourier transorm reduces to a cosine transform).

8.5.3 PSD matrix

The frequency domain characteristics of a multivariate time-series (eg.
two or more) may be summarised by the power spectral density matrix
(Marple, 1987[28]; page 387). For d time series

P (f) =


P11(f) P12(f) · · · P1d(f)
P12(f) P22(f) · · · P2d(f)
. . . . . . . . . . . . . . . . . . . . . . . . . .
P1d(f) P2d(f) · · · Pdd(f)

 (8.97)

where the diagonal elements contain the spectra of individual channels
and the off-diagonal elements contain the cross-spectra. The matrix is
called a Hermitian matrix because the elements are complex numbers.

8.5.4 Coherence and Phase

The complex coherence function is given by (Marple 1987; p. 390)

rij(f) =
Pij(f)√

Pii(f)
√
Pjj(f)

(8.98)

The coherence, or mean squared coherence (MSC), between two chan-
nels is given by

r2
ij(f) =| rij(f) |2 (8.99)
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The phase spectrum, between two channels is given by

θij(f) = tan−1
[
Im(rij(f))

Re(rij(f))

]
(8.100)

The MSC measures the linear correlation between two time series at
each frequency and is directly analagous to the squared correlation
coefficient in linear regression. As such the MSC is intimately related
to linear filtering, where one signal is viewed as a filtered version of the
other. This can be interpreted as a linear regression at each frequency.
The optimal regression coefficient, or linear filter, is given by

H(f) =
Pxy(f)

Pxx(f)
(8.101)

This is analagous to the expression for the regression coefficient a =
σxy/σxx (see first lecture). The MSC is related to the optimal filter as
follows

r2
xy(f) = |H(f)|2Pxx(f)

Pyy(f)
(8.102)

which is analagous to the equivalent expression in linear regression r2 =
a2(σxx/σyy).

At a given frequency, if the phase of one signal is fixed relative to the
other, then the signals can have a high coherence at that frequency.
This holds even if one signal is entirely out of phase with the other
(note that this is different from adding up signals which are out of
phase; the signals cancel out. We are talking about the coherence
between the signals).

At a given frequency, if the phase of one signal changes relative to the
other then the signals will not be coherent at that frequency. The time
over which the phase relationship is constant is known as the coherence
time. See [?], for an example.

8.5.5 Welch’s method for estimating coherence

Algorithms based on Welch’s method (such as the cohere function in
the matlab system identification toolbox) are widely used [8] [43]. The
signal is split up into a number of segments, N , each of length T and
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Figure 8.9: Coherence estimates using (bottom) Welch’s method and (top) MAR model

the segments may be overlapping. The complex coherence estimate is
then given as

r̂ij(f) =

∑N
n=1X

n
i (f)(Xn

j (f))∗√∑N
n=1X

n
i (f)2

√∑N
n=1X

n
j (f)2

(8.103)

where n sums over the data segments. This equation is exactly the same
form as for estimating correlation coefficients (see chapter 1). Note that
if we have only N = 1 data segment then the estimate of coherence will
be 1 regardless of what the true value is (this would be like regression
with a single data point). Therefore, we need a number of segments.

Note that this only applies to Welch-type algorithms which compute
the CSD from a product of Fourier transforms. We can trade-off good
spectral resolution (requiring large T ) with low-variance estimates of
coherence (requiring large N and therefore small T ). We can also over-
lap segments.
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Figure 8.10: Source analysis of gamma power (60-95Hz) versus baseline

8.6 Source reconstruction of MEG Gamma activ-

ity

Specify frequency-domain model, and reconstruct using maximum like-
lihood estimator

yf = Lrf + ef (8.104)

r̂f = (LTP−1
f L)−1LTP−1

f yf

where L is the lead-field and Pf is the PSD matrix over sensors com-
puted for time-period of interest.

This can be augmented to a Bayesian estimator in the usual way. This
leads to the Dynamic Imaging of Coherent sources (DICs) algorithm
[19].

We can write the reconstructed activity as

r̂f = wrfyf (8.105)

The power is then given by

prf = w∗rfPfwrf (8.106)

8.7 Further topics

• AR/MAR - parametric
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• Subspace methods - small number of modes

• Wavelets - nonstationarity
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Chapter 9

Approximate Bayesian Inference

9.1 Contents

• Laplace approximation

• Kullback-Liebler divergence

• Variational Bayes

• Application: Single subject fMRI with GLM-AR models

• Expectation Maximisation

• Mixture models

• Application: Identifying degenerate systems

9.2 Laplace approximation

Laplace’s method approximates the integral of a function
∫
f (θ)dθ

by fitting a Gaussian at the maximum θ̂ of f (θ), and computing

the volume of the Gaussian. The covariance of the Gaussian is

determined by the Hessian matrix of log f (θ) at the maximum

point θ̂ [25].

The term ‘Laplace approximation’ is used for the method of ap-

proximating a posterior distribution with a Gaussian centered

191
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at the Maximum a Posterior (MAP) estimate. This is the ap-

plication of Laplace’s method with f (θ) = p(Y |θ)p(θ).

9.3 Kullback-Liebler divergence

For densities q(θ) and p(θ) the Relative Entropy or Kullback-

Liebler (KL) divergence from q to p is [11]

KL[q||p] =

∫
q(θ) log

q(θ)

p(θ)
dθ (9.1)

The KL-divergence satisfies the Gibb’s inequality [26]

KL[q||p] ≥ 0 (9.2)

with equality only if q = p. In general KL[q||p] 6= KL[p||q],
so KL is not a distance measure.

9.4 Variational Bayes

Given a probabilistic model of some data, the log of the ‘evi-

dence’ or ‘marginal likelihood’ can be written as

log p(Y ) =

∫
q(θ) log p(Y )dθ

=

∫
q(θ) log

p(Y, θ)

p(θ|Y )
dθ

=

∫
q(θ) log

[
p(Y, θ)q(θ)

q(θ)p(θ|Y )

]
dθ

= F + KL(q(θ)||p(θ|Y )) (9.3)

where q(θ) is considered, for the moment, as an arbitrary den-

sity. We have

F =

∫
q(θ) log

p(Y, θ)

q(θ)
dθ, (9.4)
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Figure 9.1: The negative variational free energy, F , provides a lower bound on the
log-evidence of the model with equality when the approximate posterior equals the true
posterior.

which in statistical physics is known as the negative varia-

tional free energy. The second term in equation 9.3 is the

KL-divergence between the density q(θ) and the true poste-

rior p(θ|Y ). Equation 9.3 is the fundamental equation of the

VB-framework and is shown graphically in Figure 9.1. Because

KL is always positive, due to the Gibbs inequality, F provides

a lower bound on the model evidence. Moreover, because KL

is zero when two densities are the same, F will become equal to

the model evidence when q(θ) is equal to the true posterior. For

this reason q(θ) can be viewed as an approximate posterior.

9.4.1 Example

The solid lines in Figure 9.2 show a posterior distribution p

which is a Gaussian mixture density comprising two modes.
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(a) (b)

(c)

Figure 9.2: Probability densities p(θ) (solid lines) and q(θ) (dashed lines) for a Gaus-
sian mixture p(θ) = 0.2 × N(m1, σ

2
1) + 0.8 × N(m2, σ

2
2) with m1 = 3,m2 = 5,σ1 =

0.3, σ2 = 1.3, and a single Gaussian q(θ) = N(µ, σ2) with (a) µ = µ1, σ = σ1 which fits
the first mode, (b) µ = µ2, σ = σ2 which fits the second mode and (c) µ = 4.6, σ = 1.4
which is moment-matched to p(θ).

The first contains the Maximimum A Posteriori (MAP) value

and the second contains the majority of the probability mass.

The Laplace approximation to p is therefore given by a Gaus-

sian centred around the first, MAP mode. This is shown in

Figure 9.2(a).

Figure 9.2(b) shows a Laplace approximation to the second

mode, which could arise if MAP estimation found a local, rather

than a global, maximum. Finally, Figure 9.2(c) shows the mini-

mum KL-divergence approximation, assuming that q is a Gaus-

sian. This is a fixed-form VB approximation, as we have fixed

the form of the approximating density (ie. q is a Gaussian).

This VB solution corresponds to a density q which is moment

matched to p.
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Figure 9.3: KL-divergence, KL(q||p) for p as defined in Figure 9.2 and q being a
Gaussian with mean µ and standard deviation σ. The KL-divergences of the approx-
imations in Figure 9.2 are (a) 11.73 for the first mode (yellow ball), (b) 0.93 for the
second mode (green ball) and (c) 0.71 for the moment-matched solution (red ball).
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Figure 9.3 plots KL[q||p] as a function of the mean and stan-

dard deviation of q, showing a minimum around the moment-

matched values. These KL values were computed by discretising

p and q and approximating equation 9.1 by a discrete sum. The

MAP mode, maximum mass mode and moment-matched solu-

tions have KL[q||p] values of 11.7, 0.93 and 0.71 respectively.

This shows that low KL is achieved when q captures most of

the probability mass of p and, minimum KL when q is moment-

matched to p. The figure also shows that, for reasonable values

of the mean and standard deviation, there are no local minima.

This is to be contrasted with the posterior distribution itself

which has two maxima, one local and one global.

This example provides a good motivation for VB. But in higher

dimensions due to (i) nature of KL and (ii) factorisations (see

later) VB is not so optimal. See Minka [30] and Mackay [26] for

further details.

9.4.2 Nonlinear functions of parameters

Capturing probability mass is particularly important if one is

interested in nonlinear functions of parameter values, such as

model predictions. Figures 9.4 and 9.5 show histograms of

model predictions for squared and logistic-map functions indi-

cating that VB predictions are qualitatively better than those

from the Laplace approximation.

Often in Bayesian inference, one quotes posterior exceedance

probabilities. For the squared function, Laplace says 5% of

samples are above g = 12.2. But in the true density, 71% of

samples are. For the logisitic function 62% are above Laplace’s

5% point. The percentage of samples above VB’s 5% points



9.4. VARIATIONAL BAYES 197

Figure 9.4: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and true
distribution, p, (bottom) for g(θ) = θ2.
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Figure 9.5: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and true
distribution, p, (bottom) for g(θ) = θ∗(10−θ). This is akin to a logistic map function
encountered in dynamical systems [32].
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are 5.1% for the squared function and 4.2% for the logistic-map

function. So for this example, Laplace can tell you the posterior

exceedance probability is 5% when, in reality it is an order of

magnitude greater. This is not the case for VB.

9.4.3 Factorised Approximations

To obtain a practical learning algorithm we must also ensure

that the integrals in F are tractable. One generic procedure for

attaining this goal is to assume that the approximating density

factorizes over groups of parameters. In physics, this is known

as the mean field approximation. Thus, we consider:

q(θ) =
∏
i

q(θi) (9.5)

where θi is the ith group of parameters. We can also write this

as

q(θ) = q(θi)q(θ\i) (9.6)

where θ\i denotes all parameters not in the ith group. The

distributions q(θi) which maximise F can then be shown to be

q(θi) =
exp[I(θi)]

Z
(9.7)

where Z is the normalisation factor needed to make q(θi) a valid

probability distribution and

I(θi) =

∫
q(θ\i) log p(Y, θ)dθ\i (9.8)

For proof see [36].
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9.4.4 Model Inference

As we have seen earlier, the negative free energy, F , is a lower

bound on the model evidence. If this bound is tight then F can

be used as a surrogate for the model evidence and so allow for

Bayesian model selection and averaging. Earlier, the negative

free energy was written

F (m) =

∫
q(θ|m) log

p(Y, θ|m)

q(θ|m)
dθ (9.9)

By using p(Y, θ|m) = p(Y |θ,m)p(θ|m) we can express it as

the sum of two terms

F (m) =

∫
q(θ|m) log p(Y |θ,m)dθ −KL[q(θ|m)||p(θ|m)]

(9.10)

where the first term is the average likelihood of the data and

the second term is the KL between the approximating posterior

and the prior.

9.4.5 KL for Gaussians

The KL divergence for Normal densities q(x) = N(µq,Σq) and

p(x) = N(µp,Σp) is

KLN(µq,Σq;µp,Σp) = 0.5 log
|Σp|
|Σq|

+ 0.5Tr(Σ−1
p Σq) (9.11)

+ 0.5(µq − µp)TΣ−1
p (µq − µp)−

d

2

where |Σp| denotes the determinant of the matrix Σp. The KL

will tend to increase with the dimension of x.
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9.5 Single-subject fMRI: GLM-AR models

We generated data from a GLM-AR model having two regres-

sion coefficients and three autoregressive coefficients

yt = xtw + et (9.12)

et =

m∑
j=1

ajet−j + zt (9.13)

where xt is a two-element row vector, the first element flipping

between a ‘-1’ and ‘1’ with a period of 40 scans (ie. 20 -1’s

followed by 20 1’s) and the second element being ‘1’ for all

t. The two corresponding entries in w reflect the size of the

activation, w1 = 2, and the mean signal level, w2 = 3. We

used an AR(3) model for the errors with parameters a1 = 0.8,

a2 = −0.6 and a3 = 0.4. See [38] for further details.
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(a)

(b)

Figure 9.6: The figures show (a) an example time series from a GLM-AR model with
AR model order m = 3 and (b) a plot of the average negative free energy F (m), with
error bars, versus m. This shows that F (m) picks out the correct model order.
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Figure 9.7: Face data: plot (b) shows argmax F (m) as a function of voxel with m = 0
in black and m = 3 in white.

9.6 Mixture models

9.6.1 EM for mixture models

In this context EM is a maximum-likelihood algorithm for mod-

els with observed variables Y and hidden variables H . Hid-

den variable denotes which Gaussian is used to generate a data

point. Select Gaussian k with probability k. That Gaussian

has parameters µk and Σk.

Now, repeat ‘VB derivation’ but with eveything conditioned on

parameters β = {µk,Σk, πk} and replace θ with H . This gives

log p(Y |β) = FEM + KL[q(H)||p(H|Y, β)] (9.14)
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where

FEM =

∫
q(H) log

p(H,Y |β)

q(H)
dH (9.15)

This gives rise to the following algorithm.

• E-Step: Set q(H) = p(H|Y, β). This sets the KL term to

zero. This can be done by letting

q(hn) = p(hn|yn, β) (9.16)

=
p(yn|hn, β)p(hn|β)

p(yn|β)
(9.17)

for all data points n. This is just Bayes rule. Write γkn =

q(hn = k), the responsibilies ie. the probability that data

point n was generated from the kth Gaussian.

• M-step: Now, as KL = 0, FEM = log p(Y |β), so we can

maximise the likelihood wrt. β by maximising FEM wrt.

β. We have

FEM =
∑
k

∑
n

γnk log p(yn|hn = k)p(hn = k) (9.18)

=
∑
k

∑
n

γnk log p(yn|hn = k) +
∑
k

∑
n

γnkp(hn = k)

Setting the derivatives dFEM/dβ to zero gives the following

updates

µk =

∑
n γ

k
nyn∑

n γ
k
n

(9.19)

Σk =

∑
n γ

k
n(yn − µk)(yn − µk)T∑

n γ
k
n

πk =

∑
n γ

k
n

N

See netlab demo demgmm1.m.
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9.6.2 VB for mixture models

Allows for priors on model parameters eg. means of Gaussians.

Provides approximation to model evidence based on the nega-

tive free energy. See Attias [2] and tech report vbgmm.ps for

details.

9.6.3 Cross-modal priming fMRI

Mixture models have been applied to an analysis of intersubject

variability in fMRI data. Model comparisons based on VB iden-

tified two overlapping degenerate neuronal systems in subjects

performing a crossmodal priming task [33].

SVD was applied to contrast images from 17 subjects and the

first 5 spatial modes were used. A cluster analysis was then

implemented in this 5-dimensional space.

Due to the problem of local maxima the cluster analysis was run

10,000 times. On 9,308 the evidence (as approximated using

F (m)) for the 2-cluster model was higher. This was also the

case if 2, 3 or 4 spatial modes were used.
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Chapter 10

Nonlinear Models

10.1 Contents

• Central Limit Theorem

• Independent Component Analysis

• Application: Removing EEG artefacts

• Discriminant analysis

• Application: Estimating perceptual state from fMRI
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10.2 Central Limit Theorem

Given n samples from any probability distribution, the distri-

bution of the sample mean becomes Gaussian as n → ∞. For

proof see [46]. A caveat is that the sample variance must be

finite.

More formally, if y1, y2, ..., yn are Independent and Identically

Distributed (IID) random variables withE[yi] = µ and V ar[yi] =

σ2 <∞ and

ȳn =
1

n

n∑
i=1

yi (10.1)

un =
√
n

(
ȳn − µ
σ

)
then p(un) converges to a standard Gaussian density as n→∞.

This is the Central Limit Theorem (CLT).

The CLT can be extended to Independent and Non-Identically

Disributed (IND) random variables, as long asE[yi] and V ar[yi]

are finite.

This implies that if you have a Gaussian observation then its a

‘mixture’ (average or weighted average) of non-Gaussian signals.

ICA attempts to find the underlying signals by looking for pro-

jections of the observations that are most non-Gaussian. This

is implemented either (i) informally, by maximising an index of

non-Gaussianity such as kurtosis, E[(yi− µ)4] (a Gaussian has

zero kurtosis) or (ii) formally by specifying a probability model

where the sources are non-Gaussian.
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Figure 10.1: Take n samples from an exponential PDF, compute the sample mean.
Do this multiple times to get an empirical estimate of the distribution of the sample
mean. As n increases, the distribution becomes Gaussian.
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Figure 10.2: Take n/2 samples from an exponential PDF and n/2 from a uniform
PDF, compute the sample mean. Do this multiple times to get an empirical estimate
of the distribution of the sample mean. As n increases, the distribution becomes
Gaussian.
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10.3 Independent Component Analysis

In Independent Component Analysis (ICA) an M-dimensional

vector observation y is modelled as

y = Xβ (10.2)

where X is an unknown mixing matrix and β an unknown M -

dimensional source vector. The matrix X is therefore M ×M .

If we know p(β), then using the method of transforming prob-

ability densities we can write the likelihood of an observation

as

p(y) =
p(β)

| detX|
(10.3)

The determinant measures the volume of a matrix. So Eq 3.

takes into account volumetric changes in the transformation, so

that probability mass is preserved as we transform β into y.

ICA assumes the sources to be Independent (this is the I in

ICA)

p(β) =

M∏
i=1

ps(βi) (10.4)

We can therefore write the likelihood as

p(y) =

∏M
i=1 ps(βi)

| detX|
(10.5)

The log-likelihood is then given by

log p(y) = − log | detX| +
M∑
i=1

log ps(βi) (10.6)

We can write the unknown sources as

β = X−1y (10.7)

= Ay
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where A = X−1 is the inverse mixing matrix. We can also write

βi =
∑M

j=1Aijyj and express the log-likelihood as

log p(y) = log | detA| +
M∑
i=1

log ps(

M∑
j=1

Aijyj) (10.8)

The log-likelihood is now a function of the data and the inverse

mixing matrix.

If we have n = 1..N independent samples of data, Y , the like-

lihood is

log p(Y ) = N log | detA| +
N∑
n=1

M∑
i=1

log ps(
M∑
j=1

Aijynj) (10.9)

We can find A by giving this function to any optimisation algo-

rithm. As elements of A become co-linear | detA| → 0, and the

likelihood reduces. Maximising the likelihood therefore encour-

ages sources to be different (via the first term) and encourages

them to be similar to ps ie. non-Gaussian (via the second term).

10.3.1 Source densities

Different ICA models result from different assumptions about

the source densities ps(βi). One possibility is the generalised

exponential family. Another is the ‘inverse cosh’ density

ps(βi) =
1

cosh(βi)
(10.10)

=
1

exp βi + exp−βi
This latter choice gives rise to the original ‘Infomax’ algorithm

[5].
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Figure 10.3: Generalised exponential densities ps(βi) ∝ exp
(
−|βi

σ
|R
)
with R = 1

(Blue, ’Laplacian density’), R = 2 (Green, ’Gaussian density’), R > 20 (Red, ’Uni-
form density’). The parameter σ defines the width of the density.

Figure 10.4: Inverse Cosh, 1
expβi+exp−βi

(Blue) and Gaussian, exp−β2
i (Green)
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(a)

(b)

Figure 10.5: Probability contours, p(y), from 2D-ICA models with (a) Gaussian
sources and (b) Heavy-tailed sources. The mixing matrices X are the same.
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Figure 10.6: Original 5-second EEG record, containing prominent slow eye-movement
(seconds 2 to 4).

10.3.2 Removing EEG artefacts

Jung et al. [23] use ICA to remove artefacts from EEG data

recorded from 20 scalp electrodes placed according to the 10/20

system and 2 EOG electrodes, all references to the left mas-

toid. The sampling rate was 256Hz. An ICA decomposition

was implemented by applying an extended Infomax algorithm

to 10-second EEG epochs to produce sources with time series

that are maximally independent.

This artefact removal method compares favourably to PCA and

filtering approaches, and approaches for eye-movement correc-

tion based on dipole models and regression [23]. It has been in-

corporated in the EEGLAB available from http://sccn.ucsd.edu/eeglab/.
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Figure 10.7: Left panel: Time course of source estimates βni for n=1..N samples (N=5
x 256), and i=1..22 sources. Right panel: Spatial topographies (rows of mixing matrix
X) for 5 selected components. The top two components account for eye movement
and the bottom three for muscle activity over fronto-temporal regions.
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Figure 10.8: Corrected EEG formed by subtracting five selected components from
original data. This data is free from EOG and muscle artifacts. We can now see
activity in T3/T4 that was previously masked by muscle artifact.
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10.4 Discriminant analysis

10.4.1 Linear decision boundary

The aim of discriminant analysis is to estimate class label y =

{1, 2} given multivariate data x. This could be eg. y = 1 for

patients and y = 2 for controls. One approach is to use labelled

data to form a likelihood model for each class, p(x|y). New data

points are then assigned to the class with the highest likelihood.

Another way of saying this is to form the Likelihood Ratio (LR)

LR12 =
p(x|y = 1)

p(x|y = 2)
(10.11)

and assign to class 1, if LR12 is greater than one. According

to the Neymann-Pearson Lemma (see eg. [12]) this test has

the highest sensitivity, for any given level of specificity. Any

monotonic function of LR12 will provide as good a test as the

likelihood, and the logarithm is often used.

If, additionally, we have prior probabilities for each category,

p(y) then the optimal decision is to assign to the class with the

highest posterior probability. For class 1 we have

p(y = 1|x) =
p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 2)p(y = 2)
(10.12)

For equal priors this reduces to an LR test.

A simple likelihood model for each class is a Gaussian. The

above posterior probability is then the same as the ‘responsi-

bilty’ in a Gaussian mixture model (see last lecture). It can be
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re-written as

p(y = 1|x) =
1

1 + p(x|y=2)p(y=2)
p(x|y=1)p(y=1)

(10.13)

=
1

1 + exp(−a)
= g(a)

where g(a) is the ‘sigmoid’ or ‘logistic’ function and

a = log

(
p(x|y = 1)p(y = 1)

p(x|y = 2)p(y = 2)

)
(10.14)

For Gaussians with equal covariances Σ1 = Σ2 = Σ we have

log p(x|y = 1) =
d

2
log 2π +

1

2
log |Σ| (10.15)

− 1

2
(x− µ1)TΣ−1(x− µ1)

log p(x|y = 2) =
d

2
log 2π +

1

2
log |Σ|

− 1

2
(x− µ2)TΣ−1(x− µ2)

This gives

a = wTx + w0 (10.16)

where

w = Σ−1(µ1 − µ2) (10.17)

w0 = −1

2
µT1 Σµ1 +

1

2
µT2 Σµ2 + log

p(y = 1)

p(y = 2)

This approach is known as logistic discrimination or logistic

classification. The decision boundary is given by a = 0.
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10.4.2 Nonlinear decision boundary

If the Gaussians do not have equal covariance then the decision

boundary becomes quadratic. If Gaussians are not good mod-

els of the class probability densities then another approach is

required eg. Nearest Neighbour classifiers, or Multi-Layer Per-

ceptrons (MLPs). An MLP comprises nested logistic functions.
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A two-layer MLP is given by

p(y = 1|x) = g

(
H∑
h=1

w
(2)
h zh

)
(10.18)

zh = g

(
D∑
d=1

w
(1)
hd xd)

)
with D is the dimension of the input x, H is the number

of ’hidden units’ in the ’first layer’, and zh is the output of

the hth unit. Superscripts 1 and 2 denote 1st and 2nd layer

weights. This allows for classification using arbitrary decision

boundaries. There is no closed form for the parameters w, but

they can be estimated using an optimisation algorithm as de-

scribed in [6]. This is an example of an Artificial Neural Network

(ANN).
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Figure 10.9: Tremor data. Crosses represent data points from patients y = 1, circles
data points from normal subjects, y = 2. The solid line shows the overall decision
boundary formed by an MLP with three hidden units. The shade of gray codes the
output, p(y = 1|x) and the features, x, are from autoregressive modelling of EMG
data.
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Figure 10.10: Functional localiser (4Hz reversing checkerboard) is used to select 50
visually responsive voxels in each region.

10.5 Estimating perceptual state from fMRI

Haynes and Rees [21] used Linear Discriminant Analysis (LDA)

to classify perceptual state during binocular rivalry from fMRI

data.

Retinotopic mapping and functional localisers (reversing checker-

board stimuli) were used to identify the V1, V2, V3 and V5

regions of visual cortex. The 50 most visually responsive voxels

in each region were then selected for subsequent analysis.

Subjects then viewed rivalrous stimuli, and pressed buttons to

indicate perceptual state, yt = 1 for red percept and yt = 2 for

blue percept. Activity in selected voxels xt were then used to

estimate yt. The labels yt were time-shifted to accomodate the

delay in the hemodynamic response.

Estimates of perceptual state were then formed using

ŷt = wTxt (10.19)

w = Σ−1(µred − µblue)
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Figure 10.11: A: Superimposed gratings viewed through red/blue filtering glasses. B:
Subjects pressed buttons indicating perceptual state. C: Percept durations for four
subjects.

where Σ is the within group sample covariance (estimated from

both red and blue fMRI samples) and mred and mblue are the

mean fMRI vectors for each condition. These estimates were

then time-shifted, by convolving with a ‘Canonical HRF’ be-

fore comparison with true values. Cross-validation was used to

assess accuracy.
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Figure 10.12: Accuracy by region assessed using cross-validation.

Figure 10.13: Accuracy by number of voxels assessed using cross-validation.
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