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Abstract

We propose the use of Multivariate Autoregressive (MAR) models of

fMRI time series to make inferences about functional integration within

the human brain. The method is demonstrated with synthetic and real

data showing how such models are able to characterise inter-regional de-

pendence. We extend linear MAR models to accommodate nonlinear in-

teractions to model top-down modulatory processes with bilinear terms.

MAR models are time series models and thereby model temporal order

within measured brain activity. A further benefit of the MAR approach

is that connectivity maps may contain loops, yet exact inference can pro-

ceed within a linear framework. Model order selection and parameter

estimation are implemented using Bayesian methods.
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1 Introduction

Functional neuroimaging has been used to corroborate functional specialisation

as a principle of organization in the human brain. However, disparate regions of

the brain do not operate in isolation and more recently neuroimaging has been

used to characterise the network properties of the brain under specific cognitive

states [4] [8]. These studies address a complementary principle of organization,

functional integration.

Functional MRI provides a unique opportunity to observe simultaneous record-

ings of activity throughout the brain evoked by cognitive and sensorimotor chal-

lenges. Each voxel within the brain is represented by a time series of neuro-

physiological activity that underlies the measured BOLD response. Given these

multivariate, voxel-based time series, can we infer large-scale network behaviour

among functionally specialised regions? In order to answer this question models

are needed to describe the underlying connectivities implied by the data.

Effective connectivity is defined as the influence a neuron (or neuronal pop-

ulation) has on another. At the neuronal level this is equivalent to the effect

pre-synaptic activity has on post-synaptic response, otherwise known as synap-

tic efficacy. Models of effective connectivity are designed to identify a suitable

metric of influence among interconnected components (or regions of interest)

in the brain. The notion of inferring influence from recorded data is, however,

much more general. Consider the trajectory of an object as the result of exter-

nal forces acting on it. These forces, which may be represented by equations of

motion, determine the object’s path. The equations of motion are an example

of a model of the physical system. The observed data can be understood and

analysed using this model. There are many different approaches to modeling a

dynamic physical system, however, the motivation is the same for all: to identify

operational principles responsible for generating the data.
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There are two main approaches to modeling dynamic systems (e.g. phys-

ical bodies acted on by external forces or neuronal firing within a network),

which can be used to understand spatial and/or temporal order within mea-

sured data, such as functional imaging data. These include equations of motion

(as above), alternatively, we may model the systems behaviour by simply quan-

tifying relationships within the measured data only. The first approach includes

State-Space Models, e.g. used by the Kalman Filter, while the second includes

simple regression analysis and convolution models (such as Volterra approach)

to identify statistical dependencies, or patterns, within the data [18].

Both approaches have been used to measure effective connectivity among

cortical regions from neuroimaging data starting with regression models [22, 14,

16, 17], then input-output models [13, 15] and later State-Space Models [7]. Re-

gression techniques, such as Psychophysiological Interactions, are advantageous

as they are easy to solve, yet may be used to approximate nonlinear modulatory

interactions [14]. However, this is at the expense of ignoring temporal informa-

tion, i.e. the history of an input (experimental task) or physiological variable

(imaging data). This is important as interactions within the brain, whether over

short or long distances, take time and are not instantaneous (which is implicit

within regression models). Furthermore, the instantaneous state of any brain

system that conforms to a dynamical system, will depend on the history of its

input. Structural equation Modeling (SEM), as used by the neuroimaging com-

munity [22, 5] has similar problems 1. Input-output models, such as the Volterra

approach, model temporal effects in terms of an idealized response character-

ized by the kernels of the model [12]. A criticism of the Volterra approach is

that it treats the system as a black box, meaning that it has no model of the

internal mechanisms that may generate the data. State-Space Models account
1There exist versions of SEM that do model dynamic information, see [9] for details of

Dynamic Factor Analysis.
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for correlations within the data by invoking state variables, whose dynamics

generate the data. Recursive algorithms, such as the Kalman Filter, may be

used to estimate these states through time, given the data. This approach was

used to estimate variable regression coefficients between V1 and V5 activity in

[7].

The MAR model fits into this classification scheme as one that models tem-

poral effects across different variables (e.g. regions of interest), without using

state variables. They characterise inter-regional dependencies within the data,

specifically in terms of the historical influence one variable has on another. This

is distinct from regression techniques that quantify instantaneous correlations,

yet, similar to the Volterra model in that the relative influences, over time,

are estimated. These considerations have motivated the investigation of MAR

models, which may in some instances, be suitable for making inferences about

functional integration in fMRI.

The paper is divided into 3 sections. First we describe the theory of MAR

models, parameter estimation, model order selection and statistical inference.

We have used a Bayesian technique for model order selection and parameter

estimation which is described fully in [27]. Second, we test the method with

synthetic data before modelling real neurophysiological data taken from an fMRI

experiment addressing attentional modulation of cortical connectivity during a

visual motion task [6]. The modulatory effect of one region upon the responses

to other regions is a second order interaction which is precluded in linear models.

To circumvent this we have introduced bilinear terms [14]. We assess the ability

of bilinear

MAR models to capture top-down modulatory effects of the prefrontal cortex

(PFC) and posterior parietal cortex (PPC) on motion sensitive regions in the

dorsal visual pathway during attention. In the final section we discuss the ad-

vantages of MAR models, its use in spectral estimation and future developments
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of the Bayesian approach used to estimate MAR parameters.

2 Theory

2.1 Multivariate Autoregressive Models

Given a univariate time series, its consecutive measurements contain informa-

tion about the process that generated it. An attempt at describing this under-

lying order can be achieved by modelling the current value of the variable as a

weighted linear sum of its previous values. This is an Autoregressive (AR) pro-

cess and is a very simple, yet effective, approach to time series characterisation.

The order of the model is the number of preceding observations used and the

weights are the parameters of the model estimated from the data, that uniquely

characterise the time series.

Multivariate Autoregressive models extend this approach to multiple time

series so that the vector of current values of all variables is modelled as a linear

sum of previous activities. Consider d time series generated from d variables

(brain regions) within a system such as a functional network in the brain and

where p is the order of the model. Here the scalar p denotes order, however,

later we will use p(α) to mean the probability of α. A MAR(p) model predicts

the next value in a d-dimensional time series, yn as a linear combination of the

p previous vector values

yn =
p∑

i=1

yn−iA(i) + en (1)

where yn = [yn(1), yn(2), ..., yn(d)] is the nth sample of a d-dimensional time se-

ries, each A(i) is a d-by-d matrix of coefficients (weights) and en = [en(1), en(2), ..., en(d)]

is additive Gaussian noise with zero mean and covariance R.

We have assumed that the data mean has been subtracted from the time

series.
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The model can be written in the standard form of a multivariate linear

regression model as follows

yn = xnW + en (2)

where xn = [yn−1, yn−2, ..., yn−p] are the p previous multivariate time series

samples and W is a (p × d)-by-d matrix of MAR coefficients (weights). There

are therefore a total of k = p× d× d MAR coefficients. If the nth rows of Y , X

and E are yn, xn and en respectively and there are n = 1..N samples then we

can write

Y = XW + E (3)

where Y is an (N − p)-by-d matrix, X is an (N − p)-by-(p × d) matrix and E

is an (N − p)-by-d matrix. The number of rows N − p (rather than N) arises

as samples at time points before p do not have sufficient preceding samples to

allow prediction.

MAR models quantify the linear dependence of one region upon all others in

the network. The weights in W can be interpreted as characterising the influence

each region has upon it. Independence between a pair of regions results in a

weight of zero while dependence is reflected in a non-zero magnitude.

A schematic representation of equation 3 is shown in Figure 1. Figure 1a

shows the original d-dimensional time series (Y ) modelled as a MAR process

(XW ) plus residual error (E).

W characterises the d-dimensional series as a network of connection strengths

between all possible pairs of elements in the original series. Figure 1b is a

schematic of W , which consists of p layers, one for each time lag used in the

model. Each layer is a d × d matrix of weights (shown as the squares along

the bottom of the figure, again, one for each time lag). The diagonal entries

in these are “self-connections” and the off-diagonals are connections between

regions. Any dependence among elements in the d-dimensional time series (brain
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regions) is reflected in non-zero off-diagonal coefficients.

The use of MAR models for characterising networks of cortical activity as-

sociated with cognitive tasks allows one to quantify the dependence among all

possible combinations of pairs of regions in the model. This way, connectivity

architectures can be compared across different cognitive tasks. For example,

the instruction to attend or not to a stimulus will induce plastic changes in

connectivity, which may be quantified and compared using MAR models.

2.2 Nonlinear autoregressive models

Given a network coupling model of the brain we can think of two fundamentally

different types of coupling; linear and nonlinear. The model discussed so far is

linear. Linear systems are described by the principle of superposition, which

is that inputs have additive effects upon the response that are independent of

each other. However, if the inputs interact to produce a response, the response

can no longer be described by a linear combination of the inputs. This is an

example of a nonlinear interaction.

In [6] such nonlinear interactions have been modelled by making use of bi-

linear terms and is the approach adopted here. Specifically, to model a hy-

pothesized interaction between variables yn(j) and yn(k) one can form the new

variable

In(j, k) = yn(j)yn(k) (4)

This is the bilinear variable. This is then orthogonalised with respect to the

original time series. We then form an augmented MAR model with an extra

time series and augmented connectivity matrices Ã(i).

[yn, In(j, k)] =
p∑

i=1

[yn−i, In−i(j, k)]Ã(i) + en (5)

The relevant entries in Ã(i) then reflect modulatory influences eg. a change of

the connection strength between y(j) and other time series due to the influence
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of y(k).

It should be noted that each bilinear variable introduces only one of many

possible sources of nonlinear behaviour into the model. The example above

specifically models nonlinear interactions between yn(j) and yn(k), however

other bilinear terms could involve, for instance, the time series yn(j) and the

inputs (u(t)). The inclusion of these terms are guided by the hypothesis of

interest eg. does time change the connectivity between earlier and later stages

of processing in the dorsal visual pathway? Here u(t) would model time.

2.3 Maximum Likelihood Estimation

Reformulating MAR models as standard multivariate linear regression models

allows us to retain contact with the large body of statistical literature devoted

to this subject; see eg. Box and Tiao (p. 423) [2].

The Maximum Likelihood (ML) solution (see eg. [29]) for the MAR coeffi-

cients is

Ŵ = (XT X)−1XT Y (6)

The maximum likelihood noise covariance, SML, can be estimated as

SML =
1

N − k
(Y −XŴ )T (Y −XŴ ) (7)

where k = p× d× d. We define ŵ = vec(Ŵ ) where vec denotes the columns of

Ŵ being stacked on top of each other (for more on the vec notation, see [24]).

To recover the matrix Ŵ we simply‘un-stack’ the columns from the vector ŵ.

The ML parameter covariance matrix for ŵ is given by [20] (page 321)

Σ̂ = SML ⊗ (XT X)−1 (8)

where ⊗ denotes the Kronecker product (see, eg page 477 in Box and Tiao [2])

The optimal value of p can be chosen using a model order selection criterion

such as the Minimum Description Length (MDL). See eg. [25].
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2.4 Bayesian Estimation

It is also possible to estimate the MAR parameters and select the optimal model

within a Bayesian framework [27]. This has been shown to give better model

order selection and is the approach used in this paper. The maximum-likelihood

solution is used to initialise the Bayesian scheme.

In what follows N(m,Q) is a multivariate Gaussian distribution with mean

m and precision (inverse covariance) Q. Also, Ga(b, c) is a Gamma distribution

with parameters b and c. The gamma density has mean bc and variance b2c.

Finally, Wi(s,B) denotes a Wishart density [2]. The Bayesian model uses the

following prior distributions

p(W |p) = N(0, αI) (9)

p(α|p) = Ga(b, c)

p(Λ|p) = |Λ|−(d+1)/2

where p is the order of the model, α is the precision of the Gaussian prior

distribution from which weights are drawn and Λ is the noise precision matrix

(inverse of R). In [27] it is shown that the corresponding posterior distributions

are given by

p(W |Y, p) = N(ŴB , Σ̂B) (10)

p(α|Y, p) = Ga(b̂, ĉ)

p(Λ|Y, p) = Wi(s,B)

The parameters of the posteriors are updated in an iterative optimisation scheme

described in the Appendix. Iteration stops when the ‘Bayesian evidence’ for

model order p, p(Y |p), is maximised. A formula for computing this is also

provided in the appendix. Importantly, the evidence is also used as a model

order selection criterion, that is, to select the optimal value of p.
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2.5 Bayesian Inference

The Bayesian estimation procedures outlined above result in a posterior distri-

bution for the MAR coefficients P (W |Y, p). Bayesian inference can then take

place using confidence intervals based on this posterior. See, for example, page

84 of Box and Tiao [2]. The posterior allows us to make inferences about the

strength of a connection between two regions. Because this connectivity can be

expressed over a number of time lags our inference is concerned with the vector

of connection strengths, a, over all time lags. To make contact with classical

(non-Bayesian) inference, we say that a connection is ‘significantly non-zero’ or

simply ‘significant’ at level α if the zero vector lies outside the 1−α confidence

region for a. This is shown schematically in Figure 2. We also refer to α as the

‘p-value’ (see Appendix B).

3 Application

3.1 Synthetic data

To test the face validity of the method two sets of synthetic data were generated,

which are shown in Figure 3. All time series were generated from known MAR(2)

models. The known values were compared with estimates of model order and

weights. Each data set contained six time series, the first being independent

(Figure 3a) with all off diagonal MAR terms equal to zero while the second

(Figure 3b) included two sets of three time series which were dependent within

sets but independent between sets.

The upper right figure in Figure 3a shows the true MAR(2) structure from

which time series were generated (lower left). The model has only non-zero

diagonal terms and no covariance structure and thereby generates independent

time series. Each series is essentially an AR(2) process. The simulated time
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series were modelled as a MAR(p) process, using Bayesian evidence to select

the optimal order. This is shown in Figure 4a, demonstrating, as anticipated,

an optimal model order of 2. Parameter estimates are shown for comparison

on the right of Figure 3a. The matrix W is represented in two ways; the first

(upper right) shows only the conditional means of the parameter estimates in

the same format as the known MAR(2) model. The general character of the

known structure has been captured with dominant diagonal terms, however,

off diagonal terms have many non-zero values. A more complete representa-

tion of the posterior distribution (p(W |Y, p)) is shown below which depicts the

variance about the estimated means. Each plot within the matrix of graphs

contains weight estimates at all time lags in the model for one connection. Zero

is indicated and posterior distributions shown in relation it. Those parameters

which straddle zero, despite having a non-zero mean are not considered signif-

icant. All connections that are significantly non-zero are circled. The overall

structure of the true parameters is reflected in the estimates with the exception

of one connection (circled off diagonal coefficient).

The second set of synthetic data contained a mixture of dependence and inde-

pendence and are shown in Figure 3b. The format is the same as Figure 3a. The

known MAR(2) model has two subgroups characterised by dependence within

each subgroup (to the degree of the coefficients magnitude) and independence

between subgroups (reflected in the zero coefficients). Modelling the time series

(lower left) as a MAR(p) and using Bayesian evidence (Figure 4a) the correct

model order (p = 2) was identified. Parameter estimates (right) again reflect

the known MAR(2) structure.

The accuracy of model order selection using Bayesian evidence was generally

stable however occasionally an incorrect order was calculated using smaller data

sets (eg < 250). Increasing the number of data points to 500 produced robust

and correct estimates in all cases. The stability of these results is worth noting
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as estimates of the zero coefficents produced the most “false positives” (usually

only one out of a possible thirty in the first data set and eighteen in the second)

while “false negatives” occured less frequently. Given these occasional discrep-

ancies, the Bayesian framework for estimating model parameters was able to

differentiate and quantify interdependence within a MAR process.

3.2 fMRI data

Attentional effects on the responsiveness of motion sensitive area V5 and PPC

measured in electrophysiological and neuroimaging studies suggest attention is

associated with changes in connectivity [1] [26]. In this paper we use data from

a fMRI study investigating attentional modulation of connectivity within the

dorsal visual pathways [6]. This provides a testbed for assessing how MAR

models estimate changes in connectivity.

In brief, the experiment was performed on a 2T MRI scanner on several

subjects. The visual stimulus involved random dots moving radially outwards

at a fixed rate. Subjects were trained beforehand to detect changes in velocity of

radial motion. Attentional set was manipulated by asking the subject to attend

to changes in velocity or to just observe the motion. Both of these states were

separated by periods of “fixation” were the screen was dark and only a fixation

dot was visible. Each block ended with a “stationary” condition in which a

static image of the previously moving dots was shown. Unknown to the subjects,

the radial velocity remained constant throughout the experiment such that the

only experimental manipulation being attentional set. Categorical comparisons

using SPM(t) were used to identify changes in brain activity dependent on

attentional set. This revealed activations throughout right and left hemispheres

in the primary visual cortex V1/2 complex, visual motion region V5 and regions

involved in the attentional network including posterior parietal cortex (PPC)

and in the right prefrontal cortex (PFC).
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Regions of interest (ROI) were defined with a diameter of 8mm centred

around the most significant (< 0.05, corrected) voxel and a representative time

series was defined by the first eigenvariate of the region.

For details of the experimental design and acquisition see [6]. The time series

of the right hemisphere regions, in one subject, are shown in Figure 4.

Inspecting the four time series reveals a number of characteristics worth not-

ing. The series from the V1/2 complex show a dependence on the presentation of

the moving image with a small difference between attention and non-attention.

However, in the higher brain areas of PPC and PFC attentional set is the dom-

inant influence, with a marked increase in activity during periods of attention.

The relative influence each region has upon others, or indeed any non-additive

interaction, is not obvious from visual inspection alone. Modelling the series as

a MAR process provides a quantitative approach to these putative effects.

Three models were tested using the regions and bilinear terms shown below.

Bilinear terms for interactions between V1/2 complex and PPC are written as

Iv1,ppc, and regions V5 and PFC as Iv5,pfc. These time series were entered

into bilinear MAR models. The interaction terms can be thought as “virtual”

nodes in a network. Models 1 and 3 involved only right hemisphere PFC as no

significant attention related activation in the left PFC was found.

• Model 1: V1/2, V5, PPC and PFC

• Model 2: V1/2, V5 and Iv1,ppc

• Model 3: V5, PPC and Iv5,pfc

The motivation for the first model was to ask a very general question: given

time series of brain activity over the entire experiment, during all four states,

is there, on average, a functional network connecting key regions in the visual

and attentional systems? The second and third models were motivated by SEM
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and Volterra analyses of the same data reported in [6] and [15] respectively.

These different methodologies address the same issues of modulatory, or bilin-

ear interactions, at different levels of the visual and attentional pathways and

provide a convenient benchmark with which to validate the current approach.

Models 2 and 3 therefore specifically address whether or not attentional influ-

ence from top-down regions could be mediated by second-order interactions. If

there is no bilinear interaction among the regions then this should be reflected

as zero-valued weights within a bilinear MAR

All pairwise connection strengths (MAR coefficents across all time lags) were

tested separately across all time lags for significant differences from zero. This

raises an important issue of how apriori knowledge of connectivity should de-

termine the analytic strategy. By testing all connections we are essentially

approaching the model with no prior knowledge. Alternatively a model led

approach is directed by prior knowledge of connectivity, thereby only testing

connections established by, for example, anatomical studies. Given the motiva-

tion of the first model, to test for average connectivities over all tasks, we used

the former strategy.

The results of all connections that attained signifcance (p-values < 0.05) are

shown for three subjects in Tables 1, 2 and 3. Connectivity maps have been

used to illustrate the dependencies in Figure 6, 7 and 8 for models 1, 2 and

3 respectively. The width of the arrows are scaled to the p-values (thin for

p-values between 0.05-0.001 and thick for values < 0.001). The optimal model

order was selected using Bayesian evidence. Plots of which are shown for one

subject and all three models in Figure 5b. The optimal model order was p = 4

for all

The first model characterises the network of connectivities on average over all

attentional states. Table 1 reveals clear feedforward and backward connections

within the network. All V1 to V5 connections reached very high significance
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(p < 0.0004) and for V5 to PPC connections this was true for two subjects (p

< 0.0009). Top-down connections between PFC and PPC were demonstrated in

all subjects (p < 0.02). A schematic of these results is shown in Figure 6 for one

subject. Figure 6a is the weight matrix W shown as a 4 × 4 matrix with each

element containing a representation of the posterior distribution (p(W |Y, p)) of

weights for one connection at all time lags in the model, the same as in Figure

3. Given the hierarchical sequence of the regions the upper off-diagonal terms

correspond to dependence ascending through the cortical hierarchy. For example

the plots in position (1, 2) are the coefficients characterising the influence V1

has upon V5 at all time lags. In short, upper diagonal coefficients quantify

the influence of forward connections. The lower off-diagonal terms complement

these and characterise backward projections. The forward driving influence of

V1 on V5, V5 on PPC and PPC on PFC is evident. Back projecting influences

of PFC upon V5 and PPC are also shown. These are important observations,

however they are limited in that they represent a linear characterisation that

precludes attentional modulation.

The second and third models were designed to test whether attentional ar-

eas modulate coupling within the visual system. Bilinear terms Iv1,ppc and

Iv5,pfc were included in Models 2 and 3 respectively. The results of model 2 are

displayed in a similar fashion to model 1 in Table 2 and Figure 7.

Both left and right hemispheres were modelled separately and show consis-

tent results in the left for the connection between Iv1,ppc and V5 (p < 0.05).

This indicates that PPC changes the connection between V1 and V5. Only

subject 1 reached significance on the right for this interaction. The bilinear

effect is depicted in Figure 7 b and c, first (left figure) showing the bilinear

variable as a “virtual” node and second (right figure) its implicit physiological

interpretation. Given the posterior density of the connection strength, bilinear

terms are seen to account for a significant component of the activity observed
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within these regions.

The results of Model 3 are shown in Table 3 and Figure 8. Second order

connections between Iv5,pfc and PPC reach significance with p-values between

0.03− 0.056 in two subjects. Figure 8b demonstrates a similar interaction as in

Figure 7b, suggesting that attention may be mediated by PFC and modulation

of the connection strength between V5 and PPC. That is, PFC changes how

PPC responds to V5, the responsiveness being greater during attention than

non-attention. This is a bilinear effect, similar to that found in model 2.

4 Discussion

We have proposed the use of MAR models for making inferences about func-

tional integration using fMRI time series. One motivation for this is that the

dominant model, used for making such inferences in the existing fMRI/PET lit-

erature, namely Structural Equation Modelling, as used in [22, 5], is not a time

series model. Indeed, inferences are based solely on the instantaneous correla-

tions between regions - if the time series were randomly permuted SEM would

give the same results. Thus SEM throws away temporal information.

This deficiency is not shared by MAR models which are proper time se-

ries models. Further, MAR models may contain loops and self-connections yet

parameter estimation can proceed in a purely linear framework ie. there is an

analytic solution that can be found via linear algebra. In contradistinction, SEM

models with loops require non-linear optimisation. The reason for this is that

MAR models do not contain instantaneous connections. The between-region

connectivity arises from connections between regions at different time-lags. Due

to temporal persistence in the activity of each region (ie. the activities are sim-

ilar from one sample to the next) this captures much the same effect - but in a

computationally simpler manner.
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Given that MAR models extract temporal information, how can this be in-

terpreted? MAR models derive temporal information from the auto and cross-

covariance function, which is used to estimate coefficients at different lags. The

temporal profile of the coefficient estimates characterizes the temporal aspects

of the dependencies, For example, the coefficients can alternate from positive

to negative and decay with increasing lags, due to oscillatory interactions. As

BOLD is a measurement of the haemodynamic response to neuronal processes,

temporal information is smoothed, rendering the coefficients a summary of neu-

ronal activity observed during the haemodynamic response. This may confound

the interpretation of the exact timing of an interaction, however, general obser-

vations regarding the brains response are possible. In Figure 6a the first and

second coefficient of connectivity between PPC and PFC, both forward and

backward, are similar. This suggests that on average, throughout the entire

experiment, that there is an equivalent level of connectivity between the two

regions, over a period of two time lags (approximately 6 seconds). The models

in Figure 7 and 8 support the hypothesis of a modulatory interaction, modeled

using a bilinear term, from PPC and PFC, whose effect becomes less prominent

with time, i.e up to four time lags (approximately 12 seconds).

In this paper we have used “off-the-shelf” MAR models in which every re-

gion is connected to every other region. Bayesian inferences about connections

are then made on the basis of the estimated posterior distribution. This is in

the spirit of how General Linear Models are used for characterising functional

specialisation; all conceivable factors are placed in one large model and then

different hypotheses are tested using t or F-contrasts [11]. We note that this

approach is fundamentally different to the philosophy underlying SEM. In SEM,

only a few connections are modelled and these are chosen on the basis of prior

anatomical or functional knowledge. In cases where this knowledge is available

this may be the preferred approach and, in the future, we envisage the use of
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MAR models which are not fully connected (see Bayesian estimation below).

MAR models can be used for spectral estimation. In particular they enable

parsimonious estimation of coherences (correlation at particular frequencies),

partial coherences (the coherence between two time series after the effects of

others have been taken into account), phase relationships [21] [23] and directed

transfer functions [19]. MAR models have been used in this way to investigate

functional integration from EEG and ECOG recordings [3]. This provides a

link with a recent analysis of fMRI data [10] which looks for sets of voxels

that are highly coherent. MAR models provide a parametric way of estimating

this coherence, although in this paper we have reported the results in the time

domain.

A further aspect of our “off-the-shelf” MAR models is that they capture only

linear relationships between regions. Following Buchel and Friston [6], we have

extended their capabilities by introducing bilinear terms. It is also possible

to include further higher order terms, for instance, second-order interactions

across different lags. Frequency domain characterisation of the resulting models

would then allow us to report bi-spectra [28]. These describe the correlations

between different frequencies which may be important for the study of functional

integration [12].

A key aspect of our approach has been the use of a mature Bayesian esti-

mation framework [27]. This has allowed us to select the optimal MAR model

order. In future, the Bayesian approach could be greatly extended. In [27] we

show how MAR coefficients can be placed into groups. For example, all of those

connecting the same two regions could be placed in the same group. Different

groups could then be associated with different prior precisions. Groups with

prior means of zero and infinite prior precision in effect then specify the ab-

sence of a connection. In this way, we could design MAR models with sparse

connectivities. More generally, prior means and precisions could be estimated
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from data using a Bayesian framework that could be specified so as to include

time series from multiple subjects. These further extensions will be the subject

of subsequent papers.

A Bayesian estimation

Following the algorithm developed in [27], the parameters of the posterior dis-

tributions are updated iteratively as follows.

ΛD = Λ̂⊗ (XT X) (11)

Σ̂B = (ΛD + α̂I)−1

ŴB = Σ̂BΛDŴ

1

b̂
=

1
2
ŴT

B ŴB +
1
2
Tr(Σ̂B) +

1
b

ĉ =
k

2
+ c

α̂ = b̂ĉ

s = N

B =
1
2
(Y −XŴB)T (Y −XŴB)

+
∑

n

(I ⊗ xn)Σ̂B(I ⊗ xn)T

Λ̂ = sB−1

The updates are initialised using the Maximum-Likelihood solution. Itera-

tion terminates when the Bayesian evidence increase by less than 0.01%. The

Bayesian evidence is computed as follows

p(Y |p) =
N

2
log |B| −KL(p(W |p), p(W |Y, p)) (12)

− KL(p(α|p), p(α|Y, p)) + log Γd(N/2)

where KL(p1, p2) denotes the Kullback-Liebler (KL) divergence between densi-

ties p1 and p2. Expressions for these are given in [27]. Essentially, the first term
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in the above equation is an accuray term and the KL terms act as a penalty for

model complexity.

B Testing the significance of connections

The connectivity between two regions can be expressed over a number of time

lags. Therefore, to see if the connectivity is significantly non-zero we make an

inference about the vector of coefficients a, where each element of that vector is

the value of a MAR coefficient at a different time lag. First we specify (k × k)

(k = p× d× d) sparse matrix C such that

a = CT w (13)

returns the estimated weights for connections between the two regions of inter-

est. For an MAR(p) model, this vector has p entries, one for each time-lag.

The probability distribution is given by p(a) = N(m,V ) and is shown schemat-

ically in Figure 2. The mean and covariance are given by

m = CT ŵ (14)

V = CT Σ̂BC

where ŵ = vec(ŴB) and Σ̂B are the Bayesian estimates of the parameters of

the posterior distribution of regression coefficients from the previous section. In

fact, p(a) is just that part of p(w) that we are interested in.

The probability α that the zero vector lies on the 1−α confidence region for

this distribution is then computed as follows. We first note that this probability

is the same as the probability that the vector m lies on the edge of the 1 − α

region for the distribution N(0, V ).

This latter probabilitiy can be computed by forming the test statistic

d = mT V −1m (15)
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which will be the sum of r = rank(V ) independent, squared Gaussian variables.

As such it has a χ2 distribution

p(d) = χ2(r) (16)
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Table Captions

1. P-values for testing individual connection strengths across all time lags

for Model 1 for all three subjects, right hemisphere only. The table is di-

vided in two with the upper part showing values for ascending connections

(bottom-up) and the lower part descending connections (top-down) within

the visual and attentional systems. The most significant coefficients are

shown schematically for subject 1 in Figure 6. (* for p-values between

0.05-0.001, ** for p-values < 0.001, – for estimates not significantly differ-

ent from zero (p > 0.05).

2. P-values for connection strengths across all time lags for Model 2 for all

three subjects. Left and right hemispheres were modelled separately. The

table includes top-down connections in both hemispheres. The bilinear

term Iv1,ppc introduces second order interactions among PPC, V1 and

V5. There is a consistent dependence between Iv1,ppc and V5 in the left

hemisphere for all three subjects. Diagrams of the weight matrix W and

connectivity maps are shown in Figure 7.

3. Similar layout for Model 3, right hemisphere only. Second order interac-

tions are modelled between Iv5,pfc and PPC and show significant coeffi-

cients in two of the three subjects. Weight matrix and connectivity maps

are shown in Figure 8.
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Table 1:

Direction regions subject 1 subject 2 subject 3

v1-v5 (0.0000**) (0.0004**) (0.0000**)

v1-ppc (0.0000**) – –

Bottom-up v1-pfc – (0.007*) –

v5-ppc (0.0002**) (0.0009**) –

ppc-pfc (0.0182*) – –

pfc-v1 – – (0.0045*)

Top-down pfc-v5 (0.0005**) – –

pfc-ppc (0.0197*) (0.0017*) (0.0001**)

Table 2:

Direction regions subject 1 subject 2 subject 3

Top-down Iv1,ppc-v5 right (0.0205*) – –

Iv1,ppc-v5 left (0.0384*) (0.0568) (0.0474*)

Table 3:

Direction regions subject 1 subject 2 subject 3

Top-down Iv5,pfc-ppc (0.056) (0.03*) –
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Figure Captions

Figure 1: A schematic of equation 3 (main text). (a) The original d-dimensional

time series Y is modelled as a MAR process (XW ) plus residual error (E). (b)

W is a matrix containing all the weights which characterise the interactions

among the elements of d. It consists of p layers (one for each time lag used in

the model), each layer containing a d× d matrix of weights. The p layers of W

have been placed in sequential order at the bottom of the figure. The diagonal

elements are “self-connections” while the off diagonals reflect the dependence

between different variables in the original d-dimensional series. W can be used

to compare network properties associated with different cognitive tasks.

Figure 2: For a MAR(2) model the vector of connection strengths, a, between

two regions consists of two values, a(1) and a(2). The probability distribution

over a can be computed from the posterior distribution of MAR coefficients as

shown in Appendix B and is given by p(a) = N(m,V ). Connectivity between

two regions is then deemed significant at level alpha if the zero-vector lies on the

1 − α confidence region. The figure shows an example 1 − α confidence region

for a MAR(2) model.
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Figure 3: Two synthetic data sets are generated from known MAR(2) models

(a and b). Both 3a and 3b have the same layout with the known MAR(2)

model (upper left) from which time series are generated (sample in lower left).

See Figure 4a for a plot of the Bayesian evidence verses model order identify-

ing a model order of p = 2. Parameter estimates are shown on the right in

two formats. The first (upper right) is a plot of estimated means of weight-

ing parameters for comparison with the known MAR model. Below this is a

more comprehensive representation of the posterior distribution (p(W |Y, p)) of

the estimates. There are 6 × 6 plots with mean and variance (two standard

deviations) shown at all time lags (2) in relation to zero. Distributions that do

not straddle zero are significantly non-zero. Figures a and b differ in that the

known MAR(2) models used in 3a produce largely independent series whereas

3b generates mixed dependences between series. Estimates that are significantly

different (< 0.05) from zero across both time lags are circled and reveal the same

MAR(2) underlying process that generated the series originally.

Figure 4: These are the representative time series of regions V1/2 complex,

V5 and PPC and PFC from one subject, in the right hemisphere. All plots

have the same axes of activity (adjusted to zero mean and unit variance) vs

scan number (360 in total). The experiment consisted of four conditions in four

blocks of 90 scans. Periods of “attention” and “non-attention” were separated

by a “fixation” interval where the screen was dark and the subject fixated on

a central cross, and each block ended with a “stationary” condition were the

screen contained a freeze frame of the previously moving dots. Epochs of each

task are indicated by the background grayscale (see key) of each series. Visually

evoked activity is dominant in the lower regions of the V1/2 complex whereas

attentional set becomes the prevalent influence in higher regions PPC and PFC.
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Figure 5: Model order selection using the Bayesian evidence versus model order

p. Figure 5a contains two plots calculated for the synthetic data described in

Figure 3. In both data sets (independent and mixed dependence) the optimal

order was identified as p = 2. Figure 5b shows three plots generated from one

subject for all three models of the real data described in Figure 5. The optimal

order was p = 4 for each subject.

Figure 6: Model 1 including regions V1/2 complex, V5, PPC and PFC. (a) W

from a MAR(4) model, with each region indicated on the rows and columns

of the diagram. Each element within the matrix of plots contains means and

variances of parameter estimates at all time lags for that connection (same as

Figure 3). Diagonals are “self connections” and given the order of variables the

upper off-diagonal coefficients represent ascending, feed forward influence and

can be interpreted as characterising driving connections through the cortical

hierarchies. The lower off-diagonals complement these and characterise the

influence higher regions have upon lower, estimating back projecting activity.

All significant connections are circled. (b) Connectivity map of all connection

strengths that were significantly different from zero across all time lags for model

1. Arrow width is scaled to the p-value of the connection strength estimated in

W (thin for p-values between 0.05-0.001 and thick for < 0.001).
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Figure 7: Model 2 including regions V1/2 complex, V5 and bilinear term Iv1,ppc

for 1 subject (right hemisphere). (a) W is shown in the same layout as Figure

6. The weight of interest is between Iv1,ppc and V5 as it describes a second or-

der interaction characterising the modulatory role upon downstream processing

(upon the connection strength between V1-V5). These coefficients were signif-

icantly non-zero (circled). A diagram of the model including the bilinear term

as a “virtual” node is shown in (b) and the physiological interpretation of this

is shown in (c) where Iv1,ppc is not shown but is represented implicitly (the thin

arrow represents a p-value of between 0.05-0.001).

Figure 8: Model 3 including regions V5, PPC and bilinear term Iv5,pfc for 1

subject (right hemisphere). The significance of the connection between Iv5,pfc-

PPC is tested as in previous models and connectivity maps are shown as in

Figure 6. The model supports the notion that PFC plays a modulatory role

during attention upon the connectivity between V5 and PPC.
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