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Abstract

This article describes the use of Bayes factors for comparing Dynamic Causal Models (DCMs).

DCMs are used to make inferences about effective connectivity from functional Magnetic

Resonance Imaging (fMRI) data. These inferences, however, are contingent upon assumptions

about model structure, that is, the connectivity pattern between the regions included in the

model. Given the current lack of detailed knowledge on anatomical connectivity in the

human brain, there are often considerable degrees of freedom when defining the connectional

structure of DCMs. In addition, many plausible scientific hypotheses may exist about which

connections are changed by experimental manipulation, and a formal procedure for directly

comparing these competing hypotheses is highly desirable. In this article, we show how Bayes

factors can be used to guide choices about model structure, both with regard to the

intrinsic connectivity pattern and the contextual modulation of individual connections. The

combined use of Bayes factors and DCM thus allows one to evaluate competing scientific

theories about the architecture of large-scale neural networks and the neuronal interactions

that mediate perception and cognition.
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1 Introduction

Human brain mapping has been used extensively to provide functional maps showing which

regions are specialised for which functions [14]. A classic example is the study by Zeki et

al. (1991) [48] who identified V4 and V5 as being specialised for the processing of colour

and motion, respectively. More recently, these analyses have been augmented by functional

integration studies, which describe how functionally specialised areas interact and how these

interactions depend on changes of context. These studies make use of the concept of effective

connectivity defined as the influence one region exerts over another as instantiated in a statistical

model. A classic example is the study by Buchel and Friston [8] who used Structural Equation

Modelling (SEM) to show that attention to motion modulates connectivity in the dorsal stream

of the visual system.

In a recent paper [18] we have proposed the use of Dynamic Causal Models (DCMs) for the

analysis of effective connectivity. DCM posits a causal model whereby neuronal activity in a

given region causes changes in neuronal activity in other regions, via inter-regional connections,

and in its own activity, via self-connections. Additionally, any of these connections can be

modulated by contextual variables like cognitive set or attention. The resulting neurodynamics

of the modeled system then give rise to fMRI time series via local hemodynamics which are

characterised by an extended Balloon model [16, 10].

A DCM is fitted to data by tuning the neurodynamic and hemodynamic parameters so as

to minimise the discrepancy between predicted and observed fMRI time series. Importantly,

however, the parameters are constrained to agree with a-priori specifications of what range

the parameters are likely to lie within. These constraints, which take the form of a prior

distribution, are then combined with data via a likelihood distribution to form a posterior

distribution according to Bayes’ rule. Changes in effective connectivity can then be inferred

using Bayesian inference based on the posterior densities.

In this paper we apply Bayesian inference not just to the parameters of DCMs, as in [18],

but to the models themselves. This allows us to make inferences about model structure, that

2



is, which of several alternative models is optimal given the data. Such decisions are of great

practical relevance because we still lack detailed knowledge about the anatomical connectivity of

the human brain [35]. Decisions about the intrinsic connectivity of DCMs are therefore usually

based on inferring connections from supposedly equivalent areas in the Macaque brain for which

the anatomical connectivity is well known [43]. This procedure has many pitfalls, however,

including a multitude of incompatible parcellation schemes and frequent uncertainties about the

homology and functional equivalence of areas in the brains of man and monkey. This problem

may be less severe in sensory systems, but is of particular importance for areas involved in higher

cognitive processes like language [1]. Thus, there are often considerable degrees of freedom when

defining the connectional structure of DCMs of the human brain. We show how Bayes factors

can be used to guide the modeller in making such choices. A second question concerning model

structure is which of the connections included in the model are modulated by experimentally

controlled contextual variables (e.g. attention). This choice reflects the modeller’s hypothesis

about where context-dependent changes of effective connectivity occur in the modeled system.

We demonstrate how Bayesian model selection can be used to distinguish between competing

models that represent the many plausible hypotheses.

The paper is structured as follows. In section 2 we introduce briefly the neurobiological

context in which DCM is usually applied. We focus particularly on hierarchical models and

the distinction between anatomical and functional characterisations. In section 3 we review

Dynamic Causal Modelling from a theoretical perspective by defining the neurodynamic and

hemodynamic models. In section 4 we describe Bayesian estimation and the Bayes factors that

are used to weigh evidence for and against competing scientific hypotheses. Results on simulated

and experimental data are presented in section 5.

1.1 Notation

We use upper-case letters to denote matrices and lower-case to denote vectors. N(m, Σ) denotes

a uni/multivariate Gaussian with mean m and variance/covariance Σ. IK denotes the K × K

identity matrix, 1K is a 1 × K vector of 1s, 0K is a 1 × K vector of zeros, if X is a matrix,
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Xij denotes the i, jth element, XT denotes the matrix transpose and vec(X) returns a column

vector comprising its columns, diag(x) returns a diagonal matrix with leading diagonal elements

given by the vector x, ⊗ denotes the Kronecker product (see Appendix) and log x denotes the

natural logarithm.

2 Neurobiological issues

Many applications of DCM, both in this article and in previous work [18, 32], refer to ”bottom-

up” and ”top-down” processes, and we envisage that a large number of future applications

of DCM will rest on this distinction. Some of the possible DCM architectures for modeling

these processes may, at first glance, seem at odds with traditional cognitive theories that relate

bottom-up processes to so-called ”forward” connections and top-down processes to ”backward”

connections [46]. Here we try to clarify this relationship, using some simple examples from the

visual system, and emphasize the need for precise terminology when distinguishing between the

levels of anatomical connectivity (forward vs. backward connections) and cognitive processes

(bottom-up vs. top-down).

Classical theories of visual information processing posit a hierarchy of cortical areas, each

performing a specialized analysis and feeding the results of its computations to the next (i.e.

higher) level [30]. The anatomical basis for information transfer from lower to higher areas in

this bottom-up model are so-called ”forward” (or ”feedforward”) connections that terminate in

the granular layer (i.e. layer IV) of the higher area and originate in both supra- and infragran-

ular layers of the source area [13]. Stimulus-dependent bottom-up processes are not sufficient,

however, to explain the effects of contextual factors (e.g. cognitive set, expectation, or attention)

that can induce substantial changes in information processing. These modulatory processes are

often referred to as top-down processes and are mediated anatomically by so-called ”backward”

(or ”feedback”) connections from higher to lower areas which both originate and terminate in

infra- and supragranular layers.

The neurophysiological mediation of top-down processing is complex and not well under-

stood, but comprises at least two different mechanisms (see below). Although differential lam-
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inar patterns cannot currently be represented in DCMs, one can model simple hierarchies of

areas in DCM, and in these hierarchies connections can be classified as forward or backward

based on the relative position of the areas in the hierarchy (see Fig. 24 in [18]). It may appear

natural to assume that, in DCM, bottom-up effects should always be modeled by a modulation

of forward connections, and top-down effects should be modeled by a modulation of backward

connections. However, this is not the case.

Consider a very simple example of a DCM that consists of the two reciprocally connected

visual areas V1 and V5, with V1 receiving visual input (VIS STIM) (Fig. 3A). Let us imagine

that some visual stimuli are moving, whereas others are stationary. It is well established that

V5 is particularly sensitive to motion information, i.e. V5 shows increased responsiveness to

V1 inputs whenever the stimulus is moving [4] (Fig. 3B). In DCM, this bottom-up process

would be modeled by modulating the V1-V5 forward connection by a factor that indicates

stimulus motion (MOT, Fig. 3A). However, top-down processes can also be expressed through

a modulation of forward connections. For example, imagine that (i) stimuli are always moving,

and (ii) attention is sometimes directed to the motion of the stimuli and sometimes to some

other stimulus property (e.g. colour). Previous studies have demonstrated that V5 responses

to V1 inputs are enhanced whenever motion is attended [8, 17, 33, 11, 45]. This attentional

top-down effect conforms to a ”gain control” mechanism and is mediated neurophysiologically

by backward connections from higher areas (represented by ”X” in Fig. 3D). These influence

those neurons in V5 which receive inputs from V1 via forward connections [5, 24], to enhance

their responsiveness to V1 inputs, possibly through interactions between dendritic and somatic

postsynaptic potentials [42] (see Fig. 3D) or voltage-dependent NMDA receptors. Although

this level of detail cannot currently be modeled in DCMs, we can model precisely the same

mechanism, at a coarser level, by allowing the V1-V5 forward connection to be modulated by

attention (Fig. 3C). This approach has been applied to primate single cell data [38].

The behaviour of this model then corresponds to the observed neurophysiology: the magni-

tude of stimulus-dependent responses in V5 (i.e. the V5 responses to V1 inputs) is augmented

whenever motion is attended. These examples show that modulation of forward connections can
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represent a bottom-up process (if the contextual input refers to a stimulus property; Fig. 3A)

as well as a top-down mechanism (if the contextual input represents cognitive set like attention,

Fig. 3C).

In addition to stimulus-locked, multiplicative gain control mechanisms, attentional top-down

modulation can be achieved by at least one more process. For example, during attention an

enduring shift in the baseline responses of visual areas has even been observed in the absence of

stimuli [28, 27, 11]. Neurophysiologically, this additive baseline shift is believed to be mediated

by backward connections that do not, as in the case of the gain control mechanism, simply

sensitize post-synaptic cells to inputs from lower areas, but exert a more direct, ”driving” effect

on neurons in the target area [28]. There are various ways of modeling this. If one does not

know what area might represent the source of this attentional top-down effect, one can model

the influence of attention to motion onto V5 as a direct, additive increase in V5 activity (ATT-

MOTION, Fig. 4A). If, however, one has reason to believe that a particular area, e.g. the

superior parietal cortex (SPC) in this example, mediates this effect, it can be included in the

model as shown in Fig. 4B. Here, attention drives SPC whose backward connections activate V5.

This models an increase in attentional effects in a purely additive way, but may be a sufficient

explanation for the data.

Further plausible ways of modeling top-down mechanisms in DCMs exist, including modu-

lation of self-connections (which would correspond to modeling a context-dependent change of

intra-areal self-inhibition), but we will not go into further details here. The main message of this

section is that, depending on the exact mechanism that one models and the nature of the mod-

ulatory input, top-down effects can be mediated both by modulation of forward and backward

connections. To this end, it is useful to distinguish between the type of anatomical connections

included in the model (forward vs. backward connections) and the cognitive processes modeled

(bottom-up vs. top-down). We will return to some of these issues later because they provide

a very nice example of alternative architectures for attention that can be disambiguated using

Bayesian model selection.
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3 Dynamic Causal Models

Dynamic Causal Models have been proposed recently [18] as a method for the analysis of func-

tional integration. The first step, in such an analysis, is the identification of a set of i = 1..L

regions that comprise the system we wish to study. These can be found via results of previ-

ous imaging studies or from analyses of functional specialisation using standard General Linear

Model (GLM) approaches [15]. The second step is the specification of a set of j = 1..M ex-

perimental variables that act as inputs to the system. Each input can be of a driving nature,

whereby activity in a given area is directly altered, or of a modulatory nature, whereby changes

in activity occur indirectly via changes in connection strengths. In Buchel and Friston [8], for

example, the driving input was the experimental variable describing when moving images were

presented to a subject and the modulatory input was a variable describing when that subject

was instructed to attend to possible velocity changes. The neurophysiological system comprised

three regions in the visual pathway.

The effective connectivity in DCM is characterised by a set of ‘intrinsic connections’ that

specify which regions are connected and whether these connections are unidirectional or bidi-

rectional. We also define a set of input connections that specify which inputs are connected to

which regions, and a set of modulatory connections that specify which intrinsic connections can

be changed by which inputs. The overall specification of input, intrinsic and modulatory con-

nectivity comprise our assumptions about model structure. This in turn represents a scientific

hypothesis about the structure of the large-scale neuronal network mediating the underlying

cognitive function.

Figure 1 shows an example of a DCM network. DCMs comprise a bilinear model for the

neurodynamics and an extended Balloon model [16, 10] for the hemodynamics. The next two

sub-sections cover each of these topics, specifying what the model parameters are and their

prior distributions. Section 2.3 then describes the likelihood distribution for a DCM model and

specifies how the neurodynamic and hemodynamic priors are combined into an overall DCM

prior.
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3.1 Neurodynamics

The neurodynamic parameters are the intrinsic, modulatory and input connectivity matrices

that define the multivariate differential equation governing neuronal activity

żt =

(
Au +

M∑
j=1

ut(j)B
j
u

)
zt + Cut (1)

where t indexes continuous time and the dot notation denotes a time derivative. This is known

as a bilinear model because the dependent variable, żt, is linearly dependent on the product of

zt and ut. That ut and zt combine in multiplicative fashion endows the model with ‘nonlinear’

dynamics that can be understood as a nonstationary linear system that changes according to

ut. Importantly, because ut is known, parameter estimation is tractable.

The neuronal activity zt is an L× 1 vector comprising activity in each of the L regions and

the input ut is an M×1 vector comprising the scalar inputs ut(j) where j = 1..M . The intrinsic

connectivity matrix Au and modulatory connectivity matrix Bj
u are of dimension L×L and the

input matrix C is of dimension L × M . Here, the u subscripts in Au and Bj
u denote that the

matrix elements are ‘unnormalised’ as described below. Later we will describe ‘normalised’ A

and Bj matrices.

In the intrinsic and modulatory matrices, an entry in row i and column k denotes a connec-

tion from region k to region i. If the regions form a hierarchy then entries in the lower diagonal

therefore constitute forward connections and entries in the upper diagonal are backward con-

nections. In the example network in figure 1 the matrices are

Au =

[
A11 A12

A21 A22

]
(2)

B2
u =

[
B2

11 0
0 B2

22

]
C =

[
C11 0
0 C

]

where, for example, A21 is the forward connection to the higher cortical region, region 2, from

the lower region, region 1.

Following [18], the self-connections are enforced to take on the same value, σ, in all regions
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by constraining the connectivity matrices as follows

Au = σ(A− I) (3)

Bj
u = σBj

where the A and Bj matrices on the right are in ‘normalised’ form. The A matrix is defined

to have zero entries on the diagonal resulting in diagonal entries in Au that are identically

equal to −σ. This enforces the intrinsic neuronal time constants to be the same in all regions.

The normalised coupling parameters are more interpretable as they express the strength of a

connection between regions relative to the strength of self-connections. Further, normalised

connections are more robust to slice-timing errors and to regional variations in hemodynamic

response [18].

In the abscence of coupling between areas the time-constant of neuronal transients (ie. the

half-life) is given by τ = log 2/σ. A priori we know what range of time-constants are physiolog-

ically plausible and we can put this information into DCM via the prior distribution

p(σ) = N(ησ, Cσ) (4)

where ησ = 1 and Cσ is set so as to render the probability of obtaining negative σ’s arbitrarily

small. In this paper, as in [18], we use a value of Cσ = 0.105 which makes this probability

0.001. The distribution of time-constants is therefore given by p(τ) = p(σ)∂σ/∂τ . We note that

the expected neuronal time constant, < τ > , is therefore determined by both ησ and Cσ (note

< τ > 6= log 2
<σ>

as the transformation between σ and τ is nonlinear [34]). The nature of this prior

distribution can be appreciated by drawing samples from it as shown in Figure 2. This shows

that the expected neuronal time constant is about 900ms.

We can then define a vector of neurodynamic parameters as the neuronal time constant

concatenated with vectorised connectivity matrices. That is

θc =

 σ
vec(A)
vec(B)
vec(C)

 (5)

Model structure is defined by specifying which entries in the above matrices are allowed to take
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on non-zero values ie. which inputs and regions are connected. A given model, say model m,

is then defined by its pattern of connectivity. Note that only connections which are allowed to

be non-zero will appear in θc. For a network with Na intrinsic, Nb modulatory and Nc input

connections θc will have Nθ = Na + Nb + Nc + 1 entries.

Priors are placed on the A and Bj matrices so as to encourage parameter estimates that

result in a stable dynamic system (see section 2.3.1 in [18] for a discussion). For each connection

in A and Bj the prior is

p(Aik) = N(0, va) (6)

p(Bj
ik) = N(0, vb)

where the prior variance va is set to ensure stability with high probability (see Appendix A.3

in [18] for a discussion of this issue). For each connection in C the prior is

p(Cim) = N(0, vc) (7)

These priors are so-called ‘shrinkage-priors’ because the posterior estimates shrink towards the

prior mean, which is zero. The size of the prior variance determines the amount of shrinkage.

The above information can be concatenated into the overall prior

p(θc) = N(θc
p, Cc

p) (8)

where the p subscripts denote priors and

θc
p = [ησ, 0Nθ−1]

T (9)

Cc
p = diag[Cσ, va1Na , vb1Nb , vc1Nc ]

This completes our description of the prior distribution of neurodynamic parameters. For any

given θc we can integrate equation 1 and obtain neuronal time series for each region. These are

shown for our example DCM in the bottom panel of figure 1. We can then relate this neuronal

activity to an fMRI time series via the hemodynamic process described in the following section.
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3.2 Hemodynamics

In DCM the hemodynamics are described by the Balloon model first described by Buxton et al.

[10] and developed further by Friston et al. [19, 16]. DCM uses a separate Balloon model for

each region. For the ith region, neuronal activity zi causes an increase in vasodilatory signal si

that is subject to auto-regulatory feedback. Inflow fi responds in proportion to this signal with

resulting changes in blood volume vi and deoxyhemoglobin content qi

ṡi = zi − κisi − γi(fi − 1) (10)

ḟi = si

τiv̇i = fi − v
1/αi
i

τiq̇i = fi
1− (1− ρi)

1/fi

ρi
− v

1/αi
i

qi

vi

where in region i, κi is the rate of signal decay, γi is the rate of flow-dependent elimination, τi is

the hemodynamic transit time, αi is Grubb’s exponent and ρi is the resting oxygen extraction

fraction. The biophysical parameters can be concatenated into the vector θh = {κi, γi, τi, αi, ρi},

for i = 1..L. Priors are placed on the biophysical parameters to ensure biological plausibility

p(θh) = N(θh
p , Ch

p ) (11)

where

θh
p = 1L ⊗ hmean (12)

Ch
p = IL ⊗Hcov

and hmean, Hcov are the prior means and covariances which are the same for each region and

⊗ denotes the Kronecker product (see Appendix). The prior means and variances are shown

in table 1 in [18] and were computed from data collected during a word presentation fMRI

experiment as follows. For each of 128 voxels, hemodynamic parameters were estimated using

a nonlinear function minimization routine [19] and the means and variances of the parameter

estimates over these 128 voxels were then used as our prior means and variances. The predicted
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BOLD signal in region i is then related to blood volume and deoxyhemoglobin content as follows

hi = g(vi, qi) (13)

= 2(7ρi(1− qi) + 2(1− qi

vi
) + (2ρi − 0.2)(1− vi))

For a particular setting of the biophysical parameters, θh, one can take the neuronal activity in a

given region, zi, integrate equation 10 and pass the resulting blood volume and deoxyhemoglobin

content values, vi and qi, through the nonlinearity in equation 13. This then gives rise to an

fMRI time series.

The nature of the prior distribution over hemodynamic parameters can be appreciated by

plotting the hemodynamic response to neuronal transients for various values of θh sampled from

p(θh), as shown in figure 2. The average hemodynamic response peaks at 4s which perhaps

seems a little early. However, one must bear in mind that these are responses to transients from

isolated regions. Connected regions result in more persistent neuronal dynamics which have the

effect of delaying the peak hemodynamic response as shown for example in figure 10 of [18].

3.3 Overall prior and likelihood

We concatenate all neurodynamic and hemodynamic parameters into the overall p-dimensional

parameter vector

θ =

[
θc

θh

]
(14)

This vector contains all the parameters of a DCM model that we need to estimate. Consequently

the prior mean and covariance are given by

θp =

[
θc

p

θh
p

]
(15)

Cp =

[
Cc

p 0

0 Ch
p

]

The neurodynamics and hemodynamics combine to produce a multivariate time series of obser-

vations as follows

ẋ = f(x, u, θ) (16)
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h(θ, u) = g(x)

with states x = {z, s, f, v, q}. For given input u, and DCM parameters θ, model predictions

can be produced by integrating the state equation as described in [18, 16]. This integration is

efficient because most fMRI experiments result in input vectors that are highly sparse. For a

data set with Ns scans we can then create a LNs×1 vector of model predictions h(θ, u) covering

all time points and all areas (in the order all time points from region 1, region 2 etc.). The

observed data y, also formatted as an LNs × 1 vector, is then modelled as

y = h(θ, u) + Xβ + w (17)

where w is an LNs × 1 vector of Gaussian prediction errors with mean zero and covariance

matrix Ce, X contains effects of no interest and β is an unknown vector of parameters to be

estimated. In [18] the error covariance described both autoregressive and white noise processes

and simulations showed the estimation was robust to misspecification of the error process. It is

sufficient therefore to characterise the prediction error in each region as a white noise process.

That is, Ce = INs ⊗Λ where Λ is an L×L diagonal matrix with Λii denoting error variance in

the ith region.

4 Bayesian Estimation and Inference

This section consists of two parts that describe how Bayesian inference is used (i) to estimate

the parameters a DCM model and (ii) to compare different models. These may be regarded as

the first and second levels of Bayesian inference.

In the first part we describe how the DCM prior and likelihoods are combined via Bayes rule

to form the posterior distribution. Section 3.1 sets out some notation and section 3.2 describes

how the posterior is computed iteratively using an Expectation-Maximisation (EM) algorithm.

The second part, starting in section 3.3, describes how to compute the model evidence. This

can be decomposed into two types of term: accuracy terms and complexity terms. The best

model, or one with the highest evidence, strikes an optimal balance between the two. In section

3.4 we describe how Bayes factors, ratios of model evidences, are used to compare different
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models and in section 3.5 suggest how Bayes factors be used to make decisions. We also present

a coding perspective on Bayesian model comparison in section 3.6.

Readers not familiar with Bayesian modelling are referred to [20]. More specifically the

Laplace approximations, model evidences and Bayes factors that we shall encounter are de-

scribed in [25, 26, 37].

4.1 Parameter Priors and Likelihoods

We now set out some notation that both summarises the definitions in section 2 and that will

be used to derive further quantities, such as posterior distributions and model evidences. The

parameter prior and likelihood are

p(θ|m) = N(θp, Cp) (18)

p(y|θ, m) = N(h(θ, u), Ce)

These can be expanded as

p(θ|m) = (2π)−p/2|Cp|−1/2 exp(−1

2
e(θ)T C−1

p e(θ)) (19)

p(y|θ, m) = (2π)−Ns/2|Ce|−1/2 exp(−1

2
r(θ)T C−1

e r(θ))

where

e(θ) = θ − θp (20)

r(θ) = y − h(θ, u)−Xβ

are the ‘parameter errors’ and ‘prediction errors’.

4.2 Estimation of Parameter Posteriors

From Bayes’ rule the posterior distribution is equal to the likelihood times the prior divided by

the evidence [20]

p(θ|y, m) =
p(y|θ, m)p(θ|m)

p(y|m)
(21)
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Taking logs gives

log p(θ|y, m) = log p(y|θ, m) + log p(θ|m)− log p(y|m) (22)

The parameters that maximise this posterior probability, the Maximum Posterior (MP) solution,

can then be found using a Gauss-Newton optimisation scheme whereby parameter estimates are

updated in the direction of the gradient of the log-posterior by an amount proportional to its

curvature (see e.g. [36]). The model parameters are initialised to the mean of the prior density.

If the proportion of data points to model parameters is sufficiently large, as is the case with

DCM models of fMRI time series, then the posterior is well approximated with a Gaussian.

The aim of optimisation is then to estimate the mean and covariance of this density which

can be achieved using an Expectation-Maximisation (EM) algorithm described in section 3.1 of

[16]. In the E-step, the posterior mean, θ̂, and the posterior covariance, Σ̂, are updated using a

Gauss-Newton step and in the M-step the hyper-parameters of the noise covariance matrix, Ce,

are updated. These steps are iterated until the posterior distribution

p(θ|y, m) = N(θMP , ΣMP ) (23)

is reached. The posterior density can be used to make inferences about the size of connections

as shown, for example, in Figure 12.

In statistics, approximation of a posterior density by a Gaussian centred on the maximum

posterior solution is known as a Laplace approximation [25]. The parameters of no interest, β,

can also be estimated by forming an augmented parameter vector that includes θ and β and an

augmented observation model, as described in Equation 7 of [18].

4.3 Model Evidence, BIC and AIC

The structure of a DCM model is defined by specifying which regions are connected to each

other, via the intrinsic connectivity matrix, and which inputs can alter which connections,

via the modulatory matrix. A given model, say model m is then defined by this pattern of

connectivity. Different models can be compared using the evidence for each model and this can
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be thought of as a second-level of Bayesian inference. The model evidence is computed from

p(y|m) =

∫
p(y|θ, m)p(θ|m)dθ (24)

Note that the model evidence is simply the normalisation term from the first level of Bayesian

inference, given in equation 21. In the appendix we show that, using the Laplace approximation,

this leads to an expression for the log model evidence consisting of an accuracy and complexity

term defined as follows

log p(y|m)L = Accuracy(m)− Complexity(m) (25)

where

Accuracy(m) = −1

2
log |Ce| −

1

2
r(θMP )T C−1

e r(θMP ) (26)

Complexity(m) =
1

2
log |Cp| −

1

2
log |ΣMP |+

1

2
e(θMP )T C−1

p e(θMP ) (27)

Use of base-e or base-2 logarithms leads to the log-evidence being measured in ‘nats’ or ‘bits’

respectively. The first term in Accuracy(m) can be expressed as the product of the noise

variances Λii over all regions and the second term will be close to unity as the Λii are estimated

based on the observed errors r(θMP ). The complexity terms will be discussed further in section

4.6.

The evidence embodies the two conflicting requirements of a good model, that it fit the

data and be as simple as possible. The requirement that the model be simple is intuitively

appealing and concurs with notions such as Occam’s Razor - that one should accept the simplest

explanation that fits the data. But is there a mathematical reason for preferring simple models

? Figure 5, presents an argument from Mackay [29], which shows that indeed there is. In brief,

although complex models can explain more data, they are suboptimal for any given data.

Computation of log p(y|m)L requires inversion of the prior covariance matrix (ie. C−1
p ). To

compute this quantity it is therefore recommended to use a full-rank prior over the hemodynamic

parameters. Alternatively, one can use a lower-rank prior (as in [18]) and compute log p(y|m)L

by first projecting the hemodynamic parameters onto the relevant subspace.
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A drawback of the Laplace approximation, to the model evidence, is its dependence on pa-

rameters of the prior density e.g. the prior variance on intrinsic connections va. This dependence

is particularly acute in the context of DCM where va is chosen to ensure (with high probability)

that the optimisation algorithm converges to a stable solution. This means it is difficult to

compare models with different numbers of connections.

We therefore do not employ the Laplace approximation in this paper but make use of al-

ternative approximations. The first, the Bayesian Information Criterion [41], is a special case

of the Laplace approximation which drops all terms that don’t scale with the number of data

points. In the appendix we show that for a DCM it is given by

BIC = Accuracy(m)− p

2
log Ns (28)

where p is the number of parameters in the model. The second criterion we use is Akaike’s

Information Criterion (AIC) [3]. AIC is maximised when the approximating likelihood of a novel

data point is closest to the true likelihood, as measured by the Kullback-Liebler divergence (this

is shown in [39]). For DCM, AIC is given by

AIC = Accuracy(m)− p (29)

Though not originally motivated from a Bayesian perspective, model comparisons based on

AIC are asymptotically equivalent to those based on Bayes factors [2], ie. AIC approximates

the model evidence.

Empirically, BIC is observed to be biased towards simple models and AIC to complex models

[25]. Indeed, inspection of Equations 28 and 29 shows that for values of p and Ns typical for

DCM, BIC pays a heavier parameter penalty than AIC.

4.4 Bayes factors

Given models m = i and m = j the Bayes factor comparing model i to model j is defined as

[25, 26]

Bij =
p(y|m = i)

p(y|m = j)
(30)
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where p(y|m = j) is the evidence for model j found by exponentiating the approximations to

the log-evidence in equations 25, 28 or 29. When Bij > 1, the data favour model i over model

j, and when Bij < 1 the data favour model j.

The Bayes factor is a summary of the evidence provided by the data in favour of one scientific

theory, represented by a statistical model, as opposed to another. Just as a culture has developed

around the use of p-values in classical statistics (eg. p < 0.05), so one has developed around the

use of Bayes factors. Raftery [37], for example, presents an interpretation of Bayes factors as

shown in Table 1. Jefferys [23] presents a similar grading for the comparison of scientific theories.

These partitionings are somewhat arbitrary but do provide rough descriptive statements.

Bayes factors can also be directly interpreted as odds ratios where Bij = 100, for example,

corresponds to odds of 100-to-1. Bayes factors can be used to convert a prior odds ratio into a

posterior odds ratio. For equal prior odds the posterior odds is equal to the Bayes factor. From

this we can compute the equivalent posterior probability of hypothesis i as shown, for example,

in Table 1.

Bayes factors in Bayesian statistics play a similar role to p-values in classical statistics. In

[37], however, Raftery argues that p-values can give misleading results, especially in large sam-

ples. The background to this assertion is that Fisher originally suggested the use of significance

levels (the p-values beyond which a result is deemed significant) α = 0.05 or 0.01 based on his

experience with small agricultural experiments having between 30 and 200 data points. Sub-

sequent advice, notably from Neyman and Pearson, was that power and significance should be

balanced when choosing α. This essentially corresponds to reducing α for large samples (but

they did’nt say how α should be reduced). Bayes factors provide a principled way to do this.

The relation between p-values and Bayes factors is well illustrated by the following example

due to Raftery [37]. For linear regression models one can use Bayes factors or p-values to decide

whether to include an extra regressor. For a sample size of Ns = 50, positive evidence in favour

of inclusion (say, B12 = 3) corresponds to a p-value of 0.019. For Ns = 100 and 1000 the

corresponding p-values reduce to 0.01 and 0.003. If one wishes to decide whether to include

multiple extra regressors the corresponding p-values drop more quickly.
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Importantly, unlike p-values, Bayes factors can be used to compare non-nested models.

They also allow one to quantify evidence in favour of a null hypothesis. Raftery shows [37] how

Bayes factors can be computed for linear and logistic regression, generalized linear models and

Structural Equation Models. Examples of using Bayes factors for assessing forensic evidence and

in probabilistic models in general are given in Mackay [29], and Raftery [37] gives applications

in sociology. For example, Raftery compared the two hypotheses about social mobility (how

the occupations of fathers and sons are related) in industrialised countries; Hypothesis 1, that

social mobility patterns were different in different countries and Hypothesis 2, that frequencies of

transition between occupations were similarly symmetric across countries, the data supporting

the second hypothesis with B21 > 150.

A possible disadvantage of Bayes factors is their dependence on parameters of the prior

distributions. For this reason we have decided to use AIC and BIC approximations to the

model evidence, as described in the previous section.

4.5 Making decisions

If one wishes to make decisions based on Bayes factors then some cut-off value is required. In

Bayesian decision theory the choice of cut-off is guided by a ‘loss function’ or ‘utility’ which

captures the costs of making false positive and false negative decisions [6].

In this paper we suggest a conservative strategy which is to compute Bayes factors based

on AIC and BIC and to make a decision only if both factors are in agreement. In particular, if

both AIC and BIC provide Bayes factors of at least e (the natural exponent 2.7183) we regard

this as ‘consistent’ evidence. Further, we regard consistent evidence as the basis for decision-

making, for example the decision to fit new models or the decision to regard one of a number

of hypotheses as a ‘working hypothesis’.

The reason for this cut-off is as follows. For a simpler model to be favoured over a complex

one, the limiting factor is due to AIC. If the simpler model has δp fewer parameters and both

models are equally accurate then the change in log evidence is −δp nats. The smallest value

δp = 1 gives a Bayes factor of e.

19



For a more complex model to be favoured over a simpler one the limiting factor is due to

BIC. In this case we can work out the number of scans required to achieve a Bayes factor of e

by noting that the change in log-evidence is

∆BIC =
Ns

2
log
(
1 +

δs

100

)
+

δp

2
log Ns (31)

where δs is the percentage increase in signal variance. Figure 6, for example, shows that for

δs = 2 which is typical of the fMRI model comparisons in this paper, about 400 data points are

required. Generally, for smaller δp and δs it is harder to tell models apart. Overall, we ‘accept’

one model over another if there is a ‘nats difference’ between them.

For the case of comparing a simpler model to a more complex one with δp = 1 this cut-off

results in a very conservative test. This is because even if the two models are truly equally

accurate, on any given finite data set one model will appear more accurate than the other.

Because this will be the simpler model for half of such data sets the sensitivity of the test is

50%. This test does, however, have a high specificity as no decision is made if the cut-off is not

exceeded. As δp increases so does the sensitivity.

Finally, we note that a Bayes factor of e corresponds to a posterior probability of 73%, ie.

there is a 27% probability that our decision is incorrect ! This may seem extraordinarily high

but, as indicated in the previous section, our experience with p-values does not translate in a

straightforward way to posterior probabilities.

If we assume that quantities governing statistical inference, such as the variance of parameter

estimates, scale in DCM as they do in linear regression then, given typical fMRI sample sizes

of 200-400 scans, a Bayes factor of e would correspond to a p-value of less than 0.01 (see linear

regression example in section 4.4). This seems quite reasonable.

4.6 Coding Perspective

In this section we consider Bayesian model comparison from an information theoretic or ‘coding’

perspective. Imagine one wished to transmit a data set over a communication channel. This

could be done by simply digitizing the data and transmitting it. It would occupy a certain

number of bits of the channel. Alternatively, one could fit a model to the data and then send
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the model parameters and the prediction errors, the total number of bits required being the sum

of the parameter bits and the error bits. Better models require fewer bits to be transmitted and

for data containing discernible patterns model-based coding is superior. This is the rationale

behind the Minimum Description Length (MDL) model comparison criterion [47]. In fact, a

version of MDL [40] is equal to the negative of the BIC, ie. MDL=-BIC. The link with Bayesian

inference is that the sender and receiver must agree on the transmission protocol so that they

know how to encode and decode the messages. The choice of coding scheme for the parameters

corresponds to the choice of prior and the choice of coding scheme for the errors corresponds to

the likelihood.

In information theory [12] the ‘information content’ of an event, x, is related to its probability

by

S(x) = log
1

p(x)
= − log p(x) (32)

More precisely, Shannons coding theorem implies that x can be communicated at a ‘cost’ that

is bounded below by − log p(x). Use of base-e or base-2 logarithms leads to this cost being

measured in ‘nats’ or ‘bits’ respectively. In what follows we refer to S(x) as the cost of commu-

nicating x.

By looking at the appropriate terms in the log-evidence one can read off the cost of coding

the prediction errors region by region and the cost of coding each type of parameter. For the

Laplace approximation we can equate

− log p(y|m) =
∑

i

Se(i) +
∑

k

Sp(k) + Sd (33)

with equation 25 where Se(i) is the cost of prediction errors in the ith region, Sp(k) is the cost

of the kth parameter and Sd is the cost of the dependency between parameters (captured in the

posterior covariance matrix). We see that

Se(i) = 0.5 log Λii + 0.5
1

Λii
ri(θMP )T ri(θMP ) (34)

Sp(k) = 0.5 log
σ2

prior(k)

σ2
posterior(k)

+ 0.5
1

σ2
prior(k)

ek(θMP )T ek(θMP )
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where Λii denotes the error variance in the ith region (defined in section 2.3), σ2
posterior(k) is

the posterior variance of the kth parameter taken from the relevant diagonal in the posterior

covariance matrix ΣMP and σ2
prior(k) is the prior variance of the kth parameter and is taken

from the appropriate diagonal entry in Cp. For example, if k refers to an intrinisic connection

σ2
prior(k) = va. Equation 34 shows that the costs of archetypal intrinsic, modulatory and input

connections are determined by va,vb and vc. This again highlights the dependence of the Laplace

approximation on these quantities. In contrast, the AIC and BIC criteria assume that the cost

of coding a parameter is the same regardless of which parameter it is. For AIC this cost is 1

nat and for BIC it is 0.5 log Ns nats.

For a given fitted DCM we can decompose the model evidence into the costs of coding

prediction errors, region by region, and the cost of coding the parameters. It is also possible

to decompose Bayes factors into prediction error and parameter terms and this will give an

indication as to why one model is favoured over another.

5 Applications

In this section we describe fitting DCMs to fMRI data from an Attention to Motion experiment

and a Visual Object Categorisation experiment. We also describe fitting models to simulated

data to demonstrate the face validity of the model comparison approach. These data were

generated so as to have similar Signal to Noise Ratios (SNRs) to the fMRI data, where SNR is

defined as the ratio of signal amplitude to noise amplitude [34]. For regions receiving driving

input the SNRs were approximately 2 for the Attention data and 0.5 for the Visual Object data.

These SNRs were computed by dividing the standard deviation of the DCM predictions by the

estimated observation noise standard deviation. We typically chose the SNR of the simulated

data to be unity.

5.1 Comparing Intrinsic Connectivity

In this section, we use Bayes factors to compare DCMs with different intrinsic connectivity

patterns. The ability to determine the most likely intrinsic connectivity pattern of a model

given the observed functional data is highly relevant in practice because there still is very little
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detailed knowledge about anatomical connections in the human brain [35]. Definitions of human

brain models therefore usually rely on inferring connections from supposedly equivalent areas in

the Macaque brain where the connectivity pattern is known at a great level of detail [43]. The

difficulties associated with this approach have been described in the Introduction. Additional

uncertainty is due to the problem that, even if one knew all anatomical connections between a

given set of areas, the question would remain whether all of these connections are functionally

relevant within a given functional context.

To demonstrate how Bayes factors can help in cases of uncertainty about the intrinsic con-

nectivity, we investigated the example of two simple models with hierarchically arranged regions.

These two models differed in their connectional structure by the presence or absence of recipro-

cal connections. Specifically, we used DCMs comprising three regions and three input variables

and generated 360 data points from the two models shown in Figure 7. Model 1 had a unilateral

forward structure and model 2 a reciprocal architecture. We used the connectivity parameters

shown in the Figure, hemodynamic parameters set to the prior expectation and an interval be-

tween scans of TR = 2s. The inputs u1, u2 and u3 are the boxcar functions shown in Figure 8.

These inputs are identical to the input variables from the Attention to Visual Motion analysis

described in a later section. The simulated time series were created by integrating the state

equations (Equation 16). We then added observation noise to achieve an SNR of unity in the

regions receiving driving input and repeated this procedure to generate ten data sets from each

model structure.

For each data set we then fitted two models, one having forward connections and the other

reciprocal connections. We then computed Bayes factors using the AIC and BIC approximations

to the model evidence. The results, in Table 2, provide consistent evidence (in the sense defined

in section 4.5) in favour of the correct model in all cases. The results in this table show average

Bayes factors where averaging took place in log-space (eg. < log B12 >).

Table 3 shows a breakdown of the Bayes factor for a typical run on simulated data from

the model with feedforward connectivity. The ‘cost’, S, column gives the cost in bits of coding

each prediction or parameter error, and the overall cost is given by the sum of the individual
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costs. The Bayes factor column shows the corresponding components of the Bayes factor, given

by 2−S , with the overall value given by the product of individual components. Any apparent

discrepancy between individual entries and overall values is due to the fact that entries are only

displayed to two decimal places. Bayes factor components larger than 1 favour model 1. In the

remainder of this paper, there are several tables showing a partitioning of Bayes factors that

use this format.

Table 3 shows that the forward model is favoured because the number of bits required to

code the errors is about the same, but fewer bits are required to code the parameters. That is,

the forward model is equally accurate but more parsimonious.

Table 4 shows a breakdown of the Bayes factor for a typical run on simulated data from

the model with reciprocal connectivity. Here, the reciprocal model is favoured as it is more

accurate, especially in regions R1 and R2, that is, in the regions which receive direct feedback.

Overall, these results demonstrate that Bayes factors can indeed be used to compare models

with different intrinsic connectivities.

5.2 Comparing Modulatory Connectivity

In this section, we use simulated data and a simple model of hemispheric specialization (lat-

eralization) to demonstrate the practical relevance of Bayes factors for comparing models with

different modulatory connectivity. Traditionally, lateralization has often been envisaged to

reflect differences in the local computational properties of homotopic areas in the two hemi-

spheres. Recent studies have indicated, however, that asymmetries in the intra-hemispheric

functional couplings may be an equally important determinant of hemispheric specialization

[31, 44]. This section demonstrates the ability of DCM to correctly identify asymmetries of

modulatory intra-hemispheric connectivity despite the presence of reciprocal inter-hemispheric

connections between homotopic regions.

We generated 256 data points (TR = 2s) from model 1 shown in the top panel of Figure 9,

where modulation of connectivity takes place in the left hemisphere. We used the connectivity

parameters shown in the figure and hemodynamic parameters were set equal to their prior
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expectation. The driving input u1 consisted of delta functions with interstimulus intervals drawn

from a uniform distribution with minimum and maximum values of 2 and 8s. The modulatory

input u2 consisted of a boxcar function with period 40s. The simulated time series were created

by integrating the state equations (Equation 16). We then added observation noise so as to

achieve an SNR of unity in the region receiving driving input. This procedure was repeated to

generate ten data sets.

For each data set we then fitted two DCM models, model 1 assuming that connectivity is

modulated in the left hemisphere and model 2 assuming that it is modulated in the right. De-

ciding which is the best model is not a trivial task as information can pass between hemispheres

via the lateral connections. Informally, however, one should be able to infer which model gen-

erated the data for the following reason. Both models predict that L2 and R2 activity will be

modulated indirectly by the contextual input u2. For data generated from the left-hemisphere

model, L2 will be modulated more than R2 (vice-versa for the right-hemisphere model). Thus

if model 2 does a reasonable job of predicting R2 activity it will necessarily do a poor job of

predicting L2 activity (and vice-versa). Formally, the hypotheses embodied in the networks can

be evaluated by fitting the models and computing the Bayes factor, B12. For our ten data sets

both AIC and BIC gave, on average, B12 = 17 providing consistent evidence in favour of the

correct hypothesis. This same value would have resulted (but this time for B21) had we fitted

the models to right hemisphere data. This is because model 2 is equivalent to model 1 after a

relabelling of regions.

Why did the Bayes factors favour the left-hemisphere model ? The short answer is that it is

the correct model. A more detailed answer can be provided by showing the breakdown of the

Bayes factor in table 5 which was computed for a typical run. This breakdown shows clearly

that the main reason model 1 is favoured is because it predicts activity in L2 more accurately.

Model 2 does a good job of predicting activity in R2 but a poor job in L2. The AIC and

BIC criteria produce the same Bayes factor because both networks have the same number of

connections. The models are therefore compared solely on the basis of accuracy.

We also considered a model, model 3, with both left and right modulatory connections.
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This was fitted to simulated data generated from model 1. For our ten data sets AIC gave, on

average, a Bayes factor B13 of 1.78 and BIC gave 10.50. Thus the Bayes factors tell us that,

overall, we can’t be confident that the data came from model 1. On exactly 5 data sets, however

we obtained B13 > e, so in these 5 cases we would correctly conclude that the data came from

model 1. On the other 5 data sets we would draw no conclusion. This gives an indication as to

the conservativeness of the ‘consistent’ evidence rule.

We then compared Bayes factors for data generated from model 3, where the modulatory

effect was the same on both sides. For ten data sets AIC gave, on average a Bayes factor B31 of

2.39 and BIC gave 0.40. Thus the Bayes factors tell us we can’t be confident that the data came

from model 3. The reason for this uncertainty is that we are asking quite a subtle question - the

increase in percentage of signal variance explained by model 3 over model 1 simply isn’t large

enough to produce consistent Bayes factors.

Finally, to show the unambiguous nature of model selection in the context of discriminable

models, we generated data from a fourth model where the modulatory effect on the left side

was as before, an increase in connection strength between L1 and L2 from 0.3 to 0.9 (mediated

with an intrinsic connection of 0.3 and a modulatory connection of 0.6), but the modulation on

the right side was a decrease in connection strength from 0.9 to 0.3 (mediated via an intrinsic

connection of 0.9 and a modulatory connection of -0.6). Over ten data sets AIC and BIC gave

Bayes factors B41, on average, of 2330 and 396 indicating strong and consistent evidence in

favour of the correct hypothesis.

Overall, these simulations show that Bayes factors can be used to make inferences about

modulatory connections. As predicted by theory (see section 3.5) the sensitivity of the model

comparison test increases with larger differences in the number of model parameters or increasing

differential signal strength. Put simply, models with greater structural or predictive differences

are easier to discriminate.
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5.3 Attention to Visual Motion

In previous work we have established that attention modulates connectivity in a distributed

system of cortical regions mediating visual motion processing [8, 17]. These findings were based

on data acquired using the following experimental paradigm. Subjects viewed a computer screen

which displayed either a fixation point, stationary dots or dots moving radially outward at a

fixed velocity. For the purpose of our analysis we can consider three experimental variables.

The ‘photic stimulation’ variable indicates when dots were on the screen, the ‘motion’ variable

indicates that the dots were moving and the ‘attention’ variable indicates that the subject was

attending to possible velocity changes. These are the three input variables that we use in our

DCM analyses and are shown in Figure 8.

In this paper we model the activity in three regions V1, V5 and superior parietal cortex

(SPC). The original 360-scan time series were extracted from the data set of a single subject

using a local eigendecomposition and are shown in Figure 10.

We initially set up three DCMs each embodying different assumptions about how attention

modulates connectivity between V1 and V5. Model 1 assumes that attention modulates the

forward connection from V1 to V5, model 2 assumes that attention modulates the backward

connection from SPC to V5 and model 3 assumes attention modulates both connections. These

models are shown in Figure 11. Each model assumes that the effect of motion is to modulate

the connection from V1 to V5 and uses the same reciprocal hierarchical intrinsic connectivity.

Later we will consider models with different intrinsic connections.

We fitted the models and the Bayes factors are shown in Table 6. These show that the data

provide consistent evidence in favour of the hypothesis embodied in model 1, that attention

modulates solely the forward connection from V1 to V5.

We now look more closely at the comparison of model 1 to model 2. The estimated connection

strengths of the attentional modulation were 0.23 for the forward connection in model 1 and

0.55 for the backward connection in model 2. The posterior distribution of this first connection

is shown in Figure 12. The posterior probabilities of these connections being greater than the
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threshold γ = (log 2)/4 (ie. the probabilities that the modulatory effects occur within 4 seconds)

are 0.78 and 0.97.

A breakdown of the Bayes factor B12 in table 7 shows that the reason model 1 is favoured

over model 2 is because it is more accurate. In particular, it predicts SPC activity much

more accurately. Thus, although model 2 does show a significant modulation of the SPC-V5

connection, the required change in its prediction of SPC activity is sufficient to compromise the

overall fit of the model. If we assume models 1 and 2 are equally likely apriori then our posterior

belief in model 1 is 0.78.

This example makes an important point. Two models can only be compared by computing

the evidence for each model. It is not sufficient to compare values of single connections. This is

because changing a single connection changes overall network dynamics and each hypothesis is

assessed (in part) by how well it predicts the data, and the relevant data are the activities in a

distributed network.

We now focus on model 3 that has both modulation of forward and backward connections.

Firstly, we make a statistical inference to see if, within model 3, modulation of the forward

connection is larger than modulation of the backward connection. For this data the posterior

distribution of estimated parameters tells us that this is the case with probability 0.75. This

is a different sort of inference to that made above. Instead of inferring which is more likely,

modulation of a forward or backward connection, we are making an inference about which effect

is stronger when both are assumed present.

However, this inference is contingent on the assumption that model 3 is a good model. The

Bayes factors in Table 6, however, show that the data provide consistent evidence in favour

of the hypothesis embodied in model 1, that attention modulates only the forward connection.

Table 8 shows a breakdown of B13. Here the dominant contribution to the Bayes factor is the

increased parameter cost for model 3.

So far, our models have all assumed a reciprocal intrinsic connectivity. We examine the

validity of this assumption by also fitting a model with purely forward connections (model 4)

and a model having a full intrinsic connectivity (model 5). These models are otherwise identical
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to model 1. Table 9 shows Bayes factors of the fitted models that provide consistent evidence

favouring model 1 over model 4. But between models 1 and 5 there is no consistent evidence

either way. We can therefore be confident that our assumption of reciprocally and hierarchically

organised intrinsic connectivity is a reasonable one.

5.4 Visual Object Categories

Functional imaging studies have reported the existence of discrete cortical regions in occipito-

temporal cortex that respond preferentially to different categories of visual object such as faces,

buildings and letters. In previous work [32] we have used DCM to explore whether such category-

specificity is the result of modulation of backward connections from parietal areas or modulation

of forward connections from primary visual areas.

In this section we focus on a single area in Mid-Occipital (MO) cortex which responded

preferentially to images of faces. We set up DCMs comprising three regions, V3, MO and

superior-parietal cortex (SPC). Full descriptions of the experimental design, imaging acquisition

and extraction of regional time series are available in [32]. Our analyses used the data from

‘subject 1’ and our regions are those used in the DCM analysis in figure 1 of [32]. The time

series consist of 1092 scans. The original data files can be obtained from the National fMRI

Data Center (http://www.fmridc.org) and their acquisition is described in Ishai et al. [22].

The aim of our analyses was to find out if the specificity of the face-responsive area could

be better attributed to increased connectivity from V3 or from SPC. To this end we fitted

three models to the data which are shown in Figure 13. These models postulate modulation

of the forward connection to MO (model 1), modulation of the backward connection to MO

(model 2) and modulation of both connections (model 3). All three models assume a reciprocal

and hierarchically organised intrinsic connectivity. Later we will look at models with different

intrinsic connectivity. We fitted the models and the Bayes factors are shown in Table 10. These

provide evidence in favour of the hypothesis embodied in model 1, that the processing of faces

modulates only the forward connection from V3 to MO.

We now turn to the assumption of reciprocal and hierarchically organised intrinsic connectiv-
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ity and test its validity by fitting a model with purely feedforward connections (model 4) and full

intrinsic connectivity (model 5). These models are otherwise identical to model 1. The Bayes

factors of the fitted models are shown in Table 11 and provide consisten evidence in favour of

model 1 over model 4. Between models 1 and 5, however, there is no consistent evidence either

way. We can therefore be content that our assumption of reciprocal connectivity is sufficient.

We now look in more detail at two of the pairwise model comparisons. Table 12 provides

a breakdown of the Bayes factor for model 1 versus model 2. This shows that the largest

contributions to the Bayes factors are the better model fits in V3 and MO. Because both models

have the same number of connections the relative BIC and AIC parameter costs are zero. The

models are therefore compared solely on the basis of which is more accurate. Table 13 shows

a breakdown of the Bayes factor for model 1 versus model 4, indicating that the increased

accuracy of the model with reciprocal intrinsic connectivity more than compensates for its lack

of parsimony, with respect to the model with purely forward connections.

6 Discussion

We have described Bayesian inference procedures in the context of Dynamic Causal Models.

DCMs are used in the analysis of effective connectivity and posterior distributions can be used,

for example, to assess changes in effective connectivity caused by experimental manipulation.

These inferences, however, are contingent on assumptions about the intrinsic and modulatory

architecture of the model ie. which regions are connected to which other regions and which

inputs can modulate which connections.

To date, the specification of intrinsic connectivity has been based on our knowledge, for

example, of anatomical connectivity in the Macaque. Whilst this approach may be tenable

for sensory sytems it is more problematic for higher cognitive systems. Moreover, even if we

knew the anatomical connectivity the question would remain as to whether these connections

were functionally relevant in a given functional context. The use of Bayes factors to guide the

choice of intrinsic connectivity is therefore of great practical relevance. In this paper we have

shown how they can be used, for example, to decide between feedforward, reciprocal and fully
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connected structures. We have also shown how Bayes factors can be used to compare models

with different modulatory connectivity. This is important as it is the changes in connectivity

that are usually of primary scientific interest.

The use of Bayes factors for model comparison is somewhat analagous to the use of F-tests

in the General Linear Model. Whereas t-tests are used to assess individual effects, F-tests

allow one to assess the significance of a set of effects. Bayes factors play a similar role but

additionally allow inferences to be constrained by prior knowledge. Moreover, it is possible to

simultaneously entertain a number of hypotheses and compare them using Bayesian evidence.

Importantly, these hypotheses are not constrained to be nested.

In this paper we have used AIC and BIC approximations to the model evidence and defined

a criterion of ‘consistent’ evidence on which decisions can be based. This was motivated by

the fact that the AIC approximation is known to be biased towards complex models and BIC

to simpler models. In future we envisage improved approximations, perhaps based on Laplace

approximations where the prior variances are inferred using Empirical Bayes. We are also aware

of a number of improvements to the AIC criterion [7].

Model comparison of effectivity connectivity models has previously been explored in the

context of SEM by Bullmore et al. [9]. This work has established the usefulness of such

approaches for comparing nested structural equation models which are most suitable for the

analysis of PET data. In our work, we compare DCM models which are currently most suited

for the analysis of fMRI data. Moreover, the model comparison approaches we have explored

employ a Bayesian perspective enabling the comparison of non-nested models.

Currently, we are using Bayesian model comparison over a limited set of models defined by

the modeller. This allows the user to compare a handful of working hypotheses about the large-

scale organisation of their neurocognitive system of interest. Future work may develop automatic

model search procedures. These would embody standard Bayesian procedures whereby model

search proceeds by considering only those models in an ‘Occam window’ [37]. Similar model

search procedures have been previously explored in the context of SEM by Bullmore et al.

[9]. Another future research avenue is to use Bayesian model averaging [21], where instead of
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choosing the ‘best’ model, models are combined using the evidence as a weighting factor.

The combined use of Bayes factors and DCM provides us with a formal method for evaluating

competing scientific theories about the forms of large-scale neural networks and the changes in

them that mediate perception and cognition.
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A The Kronecker Product

If A is an m1 × m2 matrix and B is an n1 × n2 matrix, then the Kronecker product of A and

B is the (m1n1)× (m2n2) matrix

A⊗B =

[
a11B ... a1m2B
...
am11B am1m2B

]
(35)

B Approximating the model evidence

B.1 Laplace approximation

The model evidence is given by

p(y|m) =

∫
p(y|θ, m)p(θ|m)dθ (36)

This can be approximated using Laplace’s method

p(y|m)L ≈ p(y|m) (37)

= (2π)−p/2|Cp|−1/2(2π)−Ns/2|Ce|−1/2I(θ)

where

I(θ) =

∫
exp(−1

2
r(θ)T C−1

e r(θ)− 1

2
e(θ)T C−1

p e(θ))dθ (38)

Substituting e(θ) = (θ − θMP ) + (θMP − θp) and r(θ) = (y − h(θMP )) + (h(θMP ) − h(θ)) into

the above expression, and removing terms not dependent on θ from the integral, then gives

I(θ) =

[∫
exp(−1

2
(θ − θMP )T Σ−1

MP (θ − θMP ))dθ

]
(39)
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.
[
exp(−1

2
r(θMP )T C−1

e r(θMP )− 1

2
e(θMP )T C−1

p e(θMP ))
]

(40)

where the first factor is the normalising term of the multivariate Gaussian density. Hence

I(θ) = (2π)p/2|ΣMP |1/2 exp(−1

2
r(θMP )T C−1

e r(θMP ) (41)

− 1

2
e(θMP )T C−1

p e(θMP ))

Substituting this expression into Eq 37 and taking logs gives

log p(y|m)L = −Ns

2
log 2π − 1

2
log |Ce| −

1

2
log |Cp|+

1

2
log |ΣMP | (42)

− 1

2
r(θMP )T C−1

e r(θMP )− 1

2
e(θMP )T C−1

p e(θMP )

When comparing the evidence for different models we can ignore the first term as it will be the

same for all models. Dropping the first term and rearranging gives

log p(y|m)L = Accuracy(m)− 1

2
log |Cp|+

1

2
log |ΣMP | −

1

2
e(θMP )T C−1

p e(θMP ) (43)

where

Accuracy(m) = −1

2
log |Ce| −

1

2
r(θMP )T C−1

e r(θMP ) (44)

is the accuracy of model m.

B.2 Bayesian Information Criterion

Substituting Eq. 41 into Eq. 37 gives

p(y|m)L = p(y|θMP , m)p(θMP |m)(2π)p/2|ΣMP |1/2 (45)

Taking logs gives

p(y|m)L = log p(y|θMP , m) + log p(θMP |m) +
p

2
log 2π +

1

2
log |ΣMP | (46)
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The dependence of the first three terms on the number of scans is O(Ns), O(1) and O(1). For

the 4th term entries in the posterior covariance scale linearly with N−1
s

lim
Ns→∞

1

2
log |ΣMP | =

1

2
log |ΣMP (0)

Ns
| (47)

= −p

2
log Ns +

1

2
log |ΣMP (0)|

where ΣMP (0) is the posterior covariance based on Ns = 0 scans. This last term therefore scales

as O(1). Schwarz [41] notes that in the limit of large Ns equation 46 therefore reduces to

BIC = lim
Ns→∞

log p(y|m)L (48)

= log p(y|θMP , m)− p

2
log Ns

This can be re-written as

BIC = Accuracy(m)− p

2
log Ns (49)
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Table 1: Interpretation of Bayes factors. Bayes factors can be interpreted as follows. Given
candidate hypotheses i and j a Bayes factor of 20 corresponds to a belief of 95% in the statement
‘hypothesis i is true’. This corresponds to strong evidence in favour of i.

Bij p(m = i|y)(%) Evidence in favour of model i
1 to 3 50-75 Weak
3 to 20 75-95 Positive
20 to 150 95-99 Strong
≥ 150 ≥ 99 Very Strong

Table 2: Comparing Intrinsic Connectivity The table shows the Bayes factor B12 averaged over
10 runs of feedforward data (from model 1), and B21 averaged over 10 runs of reciprocal data (from
model 2). AIC and BIC consistently provide between positive and very strong evidence in favour of
the correct model.

B12 B21

AIC 4.7 2 ×108

BIC 230 4 ×106

Table 3: Comparing Intrinsic Connectivity The table shows the contributions to the Bayes
factor B12 for a typical feedforward data set. The largest single contribution is the cost of coding
the parameters. The overall Bayes factors provide positive (AIC) and very strong (BIC) evidence
in favour of the true model.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

R1 error 0.03 0.98
R2 error -0.12 1.09
R3 error 0.20 0.87
Parameters (AIC) -2.89 7.39
Parameters (BIC) -8.49 360
Overall (AIC) -2.77 6.84
Overall (BIC) -8.38 330

Table 4: Comparing Intrinsic Connectivity The table shows contributions to the Bayes factor
B21 for a typical reciprocal data set ie. model 2 is true. The largest single contribution to the Bayes
factor is the cost of coding the prediction errors. The overall Bayes factors provide very strong
evidence in favour of the true model.

Source Model 2 vs. Model 1 Bayes Factor
Relative Cost (bits) B21

R1 error -24.8 2 × 107

R2 error -6.94 123
R3 error -0.81 1.75
Parameters (AIC) 2.89 0.14
Parameters (BIC) 8.49 0.003
Overall (AIC) -29.66 8× 108

Overall (BIC) -24.06 2× 106
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Table 5: Comparing Modulatory Connectivity Breakdown of contributions to the Bayes factor
for model 1 with ‘left-hemisphere’ modulation versus model 2 having ‘right-hemisphere’ modulation
for a typical left-hemisphere data set. The largest single contribution to the Bayes factor is the
increased model accuracy in region L2, where 2.97 fewer bits are required to code the prediction
errors. The overall Bayes factor of 8.74 provides positive evidence in favour of the left-hemisphere
hypothesis. Because both network structures have the same number of connections the relative cost
of parameters under both AIC and BIC is zero.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

L1 error -0.47 1.38
L2 error -2.97 7.82
R1 error -0.19 1.14
R2 error 0.49 0.71
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -3.13 8.74
Overall (BIC) -3.13 8.74

Table 6: Attention Data - comparing modulatory connectivities Bayes factors provide con-
sistent evidence in favour of the hypothesis embodied in model 1, that attention modulates (solely)
the bottom-up connection from V1 to V5. Model 1 is preferred to models 2 and 3.

B12 B13 B32

AIC 3.56 2.81 1.27
BIC 3.56 19.62 0.18

Table 7: Attention Data: Breakdown of contributions to the Bayes factor for model 1 versus model
2. The largest single contribution to the Bayes factor is the increased model accuracy in region SPC,
where 5.64 fewer bits are required to code the prediction errors. The overall Bayes factor B12 of 78
provides strong evidence in favour of model 1.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

V1 error 7.32 0.01
V5 error -0.77 1.70
SPC error -8.38 333.36
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -1.83 3.56
Overall (BIC) -1.83 3.56
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Table 8: Attention Data: Breakdown of contributions to the Bayes factor for model 1 versus
model 3. The largest single contribution to the Bayes factor is the cost of coding the parameters.
The table indicates that both models are similarly accurate but model 1 is more parsimonious. The
overall Bayes factor B13 provides consistent evidence in favour of the (solely) bottom-up model.

Source Model 1 vs. Model 3 Bayes Factor
Relative Cost (bits) B13

V1 error -0.01 1.01
V5 error 0.02 0.99
SPC error -0.05 1.04
Parameters (AIC) -1.44 2.72
Parameters (BIC) -4.25 18.97
Overall (AIC) -1.49 2.81
Overall (BIC) -4.29 19.62

Table 9: Attention Data - comparing intrinsic connectivities There is consistent evidence in
favour of model 1 over model 4, but, between models 1 and 5, there is no consistent evidence either
way.

B14 B15

AIC 1× 1020 0.06
BIC 1× 1019 3.13

Table 10: Visual Object Data - comparing modulatory connectivity. Bayes factors provide
evidence in favour of the hypothesis embodied in model 1, that the processing of faces modulates
(solely) the bottom-up connection from V3 to M0. Model 1 is preferred to models 2 and 3, and
model 3 is preferred to model 2.

B12 B13 B32

AIC 7950 2.75 2890
BIC 7950 33.47 237

Table 11: Visual Object Data - comparing intrinsic connectivities Bayes factors provide
evidence in favour of model 1 over model 4, but between models 1 and 5 there is no consistent
evidence either way.

B14 B15

AIC 2280 0.01
BIC 15.4 2.00
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Table 12: Visual Object Category Data Breakdown of contributions to the Bayes factor for
model 1 versus model 2. The largest contributions to the Bayes factor are the better model fits in
V3 and MO. The overall Bayes factor B12 of 7950 provides very strong evidence in favour of model
1.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

V3 error -10.59 1545
MO error -6.01 64.6
SPC error 3.65 0.08
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -12.96 7950
Overall (BIC) -12.96 7950

Table 13: Visual Object Category Data Breakdown of contributions to the Bayes factor for the
DCM with reciprocal and hierarchically organised intrinsic connectivity (model 1) versus the DCM
with feedforward intrinsic connectivity (model 4). The increased accuracy of model 1 more than
compensates for its lack of parsimony.

Source Model 1 vs. Model 4 Bayes Factor
Relative Cost (bits) B14

V3 error -8.10 274
MO error -2.97 7.83
SPC error -2.97 7.83
Parameters (AIC) 2.89 0.14
Parameters (BIC) 10.09 0.0009
Overall (AIC) -11.15 2280
Overall (BIC) -3.95 15.4
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Figure 1: DCM Neurodynamics. The top panel shows a Dynamic Causal Model comprising
L = 2 regions and M = 2 inputs. The input variable u1 drives neuronal activity z1. Informally,
neuronal activity in this region then excites neuronal activity z2 which then re-activates activity in
region 1. Formally, these interactions take place instantaneously according to equation 1. The time
constants are determined by the values of the intrinsic connections A11, A12, A21 and A22. Input
2, typically a contextual input such as instructional set, then acts to change the intrinsic dynamics
via the modulatory connections B2

11 and B2
22. In this example, the effect is to reduce neuronal

time-constants in each region as can be seen in the neuronal time series in the bottom panel.

Figure 2: Samples from priors. These distributions characterise our expectations about what the
neuronal transients and hemodynamic responses should look like. For each value of σ, sampled from
p(σ), we generated the neuronal response to a unit impulse, this response being a neuronal transient.
Then, for each neuronal transient we drew a sample θh from p(θh) and generated a hemodynamic
response. The figures show samples of (a) neuronal transients, (b) hemodynamic responses, (c) a
histogram of time constants of neuronal transients (mean=880ms), and (d) a histogram of peak
hemodynamic response times (mean=4.1s). The histograms in (c) and (d) are made up from 10,000
samples and the plots in (a) and (b) consist of the first 100 samples.

Figure 3: DCM models of modulatory processes. A: A simple DCM that includes visual
areas V1 and V5. Visual stimuli drive activity in V1 that is reciprocally connected to V5. The
strength of the forward connection V1-V5 depends on whether stimuli are moving or stationary, i.e.
V1-V5 is modulated by a vector MOT indicating the presence of motion in the visual input. B: The
bottom-up process modeled by A is shown schematically at a synaptic level. The strength of the
input from the V1 neuron to the dendritic tree of the V5 neuron is enhanced for moving stimuli. The
strength of the synaptic transmission (green circle) simply follows the strength of the input from
V1. C: Same DCM as in A, except that this model allows for modulation of the V1-V5 forward
connection by attention to motion (ATT). D: Same schema as in B, but showing the top-down gain
control process modeled by C at a synaptic level. Here, the strength of the synaptic response of
the V5 neuron to inputs from the V1 neuron (green circle) is modulated by simultaneous inputs
from a higher attention-related area X to the same V5 neuron (red circle). These inputs change the
biophysical properties of the dendritic tree of the V5 neuron, rendering it more susceptible to inputs
from V1 neurons. Various potential mechanisms for this modulation exist, e.g. see [42].

Figure 4: DCM models of additive processes. A: Same basic DCM as in Fig. 3, but without a
modulation of either connection. Instead, attention to motion leads to a direct (additive) increase of
V5 activity, independent of the presence and nature of visual input. This represents a simple model
of top-down baseline shift processes without specifying which areas represent the physiological source
of the top-down influence. B: In addition to A, this DCM includes the superior parietal cortex (SPC)
as a putative source of attentional top-down influences onto visual areas.

Figure 5: Why simple models are preferable. The figure plots the evidence for model 1, p(y|m1),
and the evidence for model 2, p(y|m2), against y, the space of all possible data sets. Here, a data set
yi would be fMRI time series from regions of interest. The complex model, model 2, can ‘explain’
more data sets than the simple model, model 1. If one observes y3, a data set that both models can
explain, then by virtue of the densities p(y|m) having to integrate to unity, p(y3|m1) will be larger
than p(y3|m2). Thus, the simple model is preferred. This figure is adapted from Mackay [29].

Figure 6: Dependence of BIC on number of samples. The figure plots the Bayes factor B12

computed from BIC versus the number of scans Ns where model 1 has one more parameter than
model 2 and the relative increase in signal variance is (a) 1% and (b) 2%, the latter being typical of
fMRI data used in this paper. The horizontal line shows a Bayes factor of e.
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Figure 7: Comparing intrinsic connectivity structures. Synthetic DCM models comprising
the three regions R1, R2 and R3. Model 1 (left panel) has only forward connections and model
2 (right panel) has a reciprocal connectivity. In both networks activity is driven by input u1 and
forward connections are modulated by inputs u2 and u3. These inputs are shown in Figure 8.

Figure 8: Comparing intrinsic connectivity: inputs. The plots bottom to top show the driving
input u1 and modulatory inputs u2 and u3. These inputs were used together with the network
structures in Figure 7 to produce simulated data. These inputs are also identical to the ‘Photic’,
‘Motion’ and ‘Attention’ variables used in the analysis of the Attention to Visual Motion data (see
Figures 10 and 11).

Figure 9: Comparing modulatory connectivity. Synthetic DCM models comprising four regions:
L1 and L2 in the ‘left-hemisphere’ and R1 and R2 in the ‘right hemisphere’. The networks have
driving input entering the ‘lower’ areas L1 and R1, and an intrinsic connectivity comprising within-
hemisphere feedforward connections and reciprocal lateral connections between hemispheres. In
model 1 (top panel), feedforward connectivity is modulated in the left hemisphere and in model 2
(bottom panel) feedforward connectivity is modulated in the right hemisphere.

Figure 10: Attention data. fMRI time series (rough solid lines) from regions V1, V5 and SPC and
the corresponding estimates from DCM model 1 (smooth solid lines).

Figure 11: Attention models. In all models photic stimulation enters V1 and the motion variable
modulates the connection from V1 to V5. Models 1, 2 and 3 have reciprocal and hierarchically
organised intrinsic connectitivty. They differ in how attention modulates the connectivity to V5,
with model 1 assuming modulation of the forward connection, model 2 assuming modulation of the
backward connection and model 3 assumes both. Models 4 and 5 assume modulation of the forward
connection, but have a purely feedforward intrinsic connectivity (model 4) or a fully connected
intrinsic architecture (model 5).

Figure 12: Attention model - posterior distribution. The plot shows the posterior probability
distribution of the parameter B1

21. This is the connection from region 1 (V1) to region 2 (V5) that
is modulated by attention (the 3rd input). The mean value of this distribution is 0.23. This is also
shown in Figure 11. We can use this distribution to compute our belief that this connection is larger
than some threshold γ. If we choose eg. γ = (log 2)/4 = 0.17 then this corresponds to computing the
probability that this modulatory effect occurs within 4 seconds. In DCM faster effects are mediated
by stronger connections (see eg. Equation 1). For our data we have p(B3

21 > γ) = 0.78.

Figure 13: DCM models of category-specificity. Models 1, 2 and 3 have reciprocal and hier-
archically organised intrinsic connectitivty. Model 1 has modulation of the forward connection to
MO, model 2 has modulation of the backward connection to MO, model 3 has both.
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