Correlation & regression
· We often want to know whether various variables are ‘linked’, i.e., correlated.
· This can be interesting in itself, but is also important if we want to predict one variable’s value given a value of the other.
· Important to remember – correlation is not an indication of causality; to infer causality we need to manipulate an independent variable and observe the effect this has on a dependent variable.
Observation ‘clouds’:
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Covariance:
Do two variables change together?
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Recall that variance is:
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So it’s pretty similar, except we’re multiplying two variables, not just squaring one.
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So,
· If when X increases so does Y – cov(x,y) will be positive

· If when X increases Y decreases – cov(x,y) will be negative

· If there is no constant relationship – cov(x,y) will be zero

For example:
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But what does this number tell us? 

Nothing, really, as
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So we can only compare covariances between different variables to see which is greater.
Or, we could standardize this measure, thus obtaining a more intuitive measure of correlation magnitude.

Correlation: Pearson’s R

Standardize by adding the standard deviations to the equation:
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  → 
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Important: each xi goes with a specific yi
Why?
Example:   changing just two points…
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A limitation of r: it is very sensitive to extreme values.
Example: 

	x
	y

	 1
	1

	2
	2

	3
	3

	4
	4

	5
	0


Note: r is actually 
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OK, so when r = 1  or   r = (-1)  we have a perfect linear relationship:   y = ax + b
But here in the real world, this never happens.

There’s always a cloud of observations.

So to understand the relationship between two variables, we want to draw the ‘best’ line through the cloud – find the best fit. 
This is done using the
principle of least squares
Regression

y = ax + b      This is true for a sample.
Like in all statistical methods, we want to make inferences about the population. So,
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  (our model)
Obviously, the stronger the correlation between x and y, the better the prediction; this is expressed in both parameters:
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A different, simpler way to write this:
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It’s easy to see why if there’s no correlation, we will simply predict the average of y for any x. The larger the correlation, the greater the regression line’s slope.
In any case, the average of the predicted values will always equal the average of the true values: 
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(so 
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 is an unbiased estimator of 
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The variance of the predicted values:
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So this variance is always smaller than the true variance (as the true variance is multiplied by a fraction).
Furthermore:
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r-squared is the explained variance!
It tells us what fraction of the general variance can be attributed to the model.

Therefore:
True variance = predicted variance + error variance
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or:

[image: image62.wmf]2

2

2

2

2

)

ˆ

1

(

ˆ

y

y

y

s

r

s

r

s

-

+

=



Is the model significant? 

(do we get a significantly better prediction using it than we do by just predicting the mean?)
This is where we see why it is similar to ANOVA*:

    SSTotal     =     SSRegression    +    SSError
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* In a one-way ANOVA, we have

    SSTotal     =     SSBetween    +    SSWithin
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From the SS we can derive MS – dividing each SS by it’s degrees of freedom:
MSRegression = SSRegression / 1

MSError = SSError / N-2

Statistical significance test:
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Alternatively (as F is the square of t):

[image: image66.wmf]2

)

2

(

ˆ

1

)

2

(

ˆ

r

N

r

t

N

-

-

=

-


Important assumptions:
· Normal distributions

· Constant variances

· Independent sampling – no autocorrelations

· ε ~ N(0,σ2)

· No errors in the values of the independent variable

· All causation in the model is one-way (not necessary mathematically, but essential for prediction)

The regression model:
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The regression model in GLM terms:
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So:
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And in matrix notation:
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� EMBED Equation.3  ���





The distance of r from 0 indicates strength of correlation





r = 1 or r = (-1) means that we can predict y from x and vice versa with certainty; all data points are on a straight line. i.e., y = ax + b





The correlation seems strong – but if we calculate it we’ll find that r = 0





ε    residual error








� EMBED Equation.3  ���, true value








� EMBED Equation.3  ���, predicted value











ε





The least squares principle:





� EMBED Equation.3  ��� 





So what we’re looking for is the parameters (a, b) of the regression line.              











So all we really need to know is 


N and r  !!





y = ax + b
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