

A talk for dummies, by dummies Meghan Morley and Anne Urai

Where are we headed?

- A delicious analogy
- The General Linear Model equation
- What do the variables mean?
- How does this relate to fMRI?
- Minimizing error

Analogy: Reverse Cookery

Start with finished product and try to explain how it is made...

- You specify which *ingredients* to add (X)
- For each ingredient, GLM finds the *quantities* (*β*) that produce the best reproduction
- Then if you tried to make the cake with what you know about X and β then the error would be the difference between the original cake/ data and yours!

 $y = x_1\beta_1 + x_2\beta_2 + e$

The General Linear Model

Describes a response (y), such as the BOLD response in a voxel, in terms of all its contributing factors ($x\beta$) in a linear combination, whilst also accounting for the contribution of error (e).

Dependent variable

Describes a response (such as the BOLD response in a single voxel, taken from an fMRI scan)

factors and potential confounds)

Parameters (aka regression coefficient/beta weights) Quantifies how much each 30 predictor (X) independently Y 20 influences the dependent variable (Y) \rightarrow The slope of the line

Error

Variance in the data (*y*) which is not explained by the linear combination of predictors (*x*)

Therefore...

As we take samples of a response (*y*) *many times*, this equation actually represents a matrix...

...the GLM matrix

Each predictor (x) has an expected signal time course, which contributes to y

Parameters (β)

- Beta is the slope of the regression line
 - > Quantifies a specific predictor's (x) contribution to y.
 - > The parameter (β) chosen for a model should minimise the error (reducing the amount of variance in y which is left unexplained)

The design matrix does not account for all of y

- If we plot our observations (n) on a graph these will not fall in a straight line
- This is a result of <u>uncontrolled influences</u> (other than x) on y
- This contribution to y is called the error (or residual)
- Minimising the difference between the response predicted by the model (y) and the actual response (y) minimises the error of the model

We have our set of hypothetical time-series: x1, x2, x3....

....and our data

We find the best parameter values by modelling...

...the best parameter will miminise the error in the model

Here, there is a lot of <u>residual variance</u> in y which is unexplained by the model (error)

...and the same goes here

...but here we have a good fit, with minimal error

...and the same model can fit different data – just use different parameters

...as you can see

So the same model can be used across all voxels of the brain, just using different paramteres

Finding the optimal parameter can also be visualised in geometric space

- The *y* and *x* in our model are all **vectors of the same dimensionality** and so, lie within the same large space.
- The design matrix (x1, x2, x3...) defines a subspace; the design space (green panel).

Design space defined by *X*

 $y = X\beta + e$

Parameters determine the co-ordinates of the predicted response (\hat{y}) within this space

- The *actual* data (y) however, lie outside this space.
- So there is always a difference between the predicted y and actual y

We need to minimise the difference between predicted \hat{y} and actual y

 So the GLM aims find the projection of y ôn the design space which minimises the error of the model
(minimises the difference between predicted y and actual y)

The smallest error vector is orthogonal to the design space...

...So the best parameter will position yso that the error vector between y and \hat{y} is orthogonal to the design space (minimising the error)

How do we find the parameter which produces minimal error?

The optimal parameter can be calculated using Ordinary Least Squares

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$

A statistical method for **estimating unknown parameters from sampled data** - minimizing the difference between predicted data and observed data.

$$\overset{N}{\overset{o}{\mathbf{a}}} e_t^2 = \min$$

Overview of SPM

fMRI data

Single voxel analyzed across many different time points

Y = BOLD signal at each time point from that voxel

An fMRI experiment

Is there a change in the BOLD response between the two conditions?

Statistical Parametric Mapping

- Null
 - hypothesis: your effect of interest explains none of your data.
- Is the task significally different?

Problems

- 1. BOLD signal is not a simple on/off
- 2. Low-frequency noise
- 3. Assumptions about the nature of the error
- 4. Physiological confounds

Convolution model

expected BOLD response

= input function x hemodynamic response function (HRF)

Convolution model

Convolve stimulus function with a canonical hemodynamic response function (HRF):

Adjusting for low frequencies

Adjusting for low frequencies

Blue = data

Black = mean + low-frequency drift

Green = predicted response, taking into account lowfrequency drift

red= predicted response,NOT takinginto accountlow-frequency drift

GLM Assumptions

1. Errors are normally distributed - smoothing

2. Error is the same in each & every measurement point

3. There is **no correlation between errors** at different time points/data points

Error is time-correlated

• The error at each time point is correlated to the error at the previous time point

Autoregressive Model

- Temporal autocorrelation: in y = Xβ + e over time e_t = ae_{t-1} + ε
- 'Whitening'
- To compensate for inflated t-value

Physiological Confounds

- head movements
- arterial pulsations
- breathing
- eye blinks (visual cortex)
- adaptation affects, fatigue, changes in attention to task

To recap...

Thanks to...

- Previous years MfD slides (2009-2010)
- Dr. Guillaume Flandin