1st level analysis Basis functions, parametric modulation and correlated regressors

1

First Level Analysis

- Bold impulse response
- Temporal Basis Functions
- Parametric modulation
- Correlated regressors

Blocked design vs. event-related design

Block/epoch designs examine responses to series of similar stimuli

Event-related designs account for response to each single stimulus

Hemodynamic Response Function (HRF)

- Function of blood oxygenation, flow, volume
- Peak (max. oxygenation) 4-6s poststimulus; baseline after 20-30s
- Initial undershoot can be observed
- Similar across V1, A1, S1... but possible differences across:
 - other regions
 - individuals

Hemodynamic Response Function (HRF)

- Long SOA → BOLD response returns to baseline, no overlap
- Overlap can be accommodated if the BOLD response is explicitly modelled (linear superposition)
- Short SOAs are more sensitive

General Linear (convolution) model

GLM for a single voxel:

 $y(t) = u(t) \otimes h(\tau) + \varepsilon(t)$

u(t) = neural causes (stimulus train)

 $u(t) = \sum \delta (t - nT)$

h(t) = hemodynamic (BOLD) response

 $h(\mathbf{T}) = \sum \mathcal{B}_i f_i(\mathbf{T})$

 $f_i(\mathbf{T}) =$ temporal basis functions

$$y(t) = \sum \sum B_i f_i(t - nT) + \varepsilon(t)$$

 $y = XB + \varepsilon$

General linear model

Fourier Set

Windowed sines & cosines Any shape (up to frequency limit) Inference via F-test

Finite Impulse Response

Mini "timebins" (selective averaging) Any shape (up to frequency limit) Inference via F-test

Gamma Functions

Bounded, asymmetrical (like BOLD) Set of different lags Inference via F-test

Two Gamma functions added

Gamma Functions

Bounded, asymmetrical (like BOLD) Set of different lags Inference via F-test

• "Informed" Basis Set

Best guess of canonical BOLD response Variability captured by Taylor expansion "Magnitude" inferences via t-test...?

"Informed" Basis Set (Friston et al. 1998)

Canonical HRF (2 gamma functions)

"Informed" Basis Set (Friston et al. 1998)

Canonical HRF (2 gamma functions)

plus Multivariate Taylor expansion in:

• time (Temporal Derivative)

"Informed" Basis Set (Friston et al. 1998)

Canonical HRF (2 gamma functions)

plus Multivariate Taylor expansion in:

- time (Temporal Derivative)
- width (*Dispersion Derivative*)

Design Matrix

- 3 regressors used to model each condition
- The three basis functions are:
- 1. Canonical HRF
- 2. Derivatives with respect to time
- 3. Derivatives with respect to dispersion

• "Informed" Basis Set

"Magnitude" inferences via t-test on canonical parameters (providing canonical is a reasonable fit)

"Latency" inferences via tests on ratio of derivative : canonical parameters

Which temporal basis set?

Example: rapid motor response to faces, Henson et al, 2001

...canonical + temporal + dispersion derivatives appear sufficient

...may not be for more complex trials (eg stimulus-delay-response)

...but then such trials better modelled with separate neural components (ie activity no longer delta function) + constrained HRF (Zarahn, 1999)

Comparison of the fitted response

Haemodynamic response in a single voxel.

Left: Estimation using the simple model

Right: More flexible model with basis functions 18

SPM uses basis functions to model the hemodynamic response using a single basis function or a set of functions.

The most common choice is the `Canonical HRF' (Default in SPM)

By adding the time and dispersion derivatives one can account for variability in the signal change over voxels

Part II: Correlated regressors parametric/non-parametric design

Multicollinearity

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_N x_{iN} + \varepsilon$

Coefficients reflect an estimated change in y with every unit change in x_i while controlling for all other regressors

Multicollinearity

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{N}x_{iN} + \varepsilon$$
$$x_{i1} = \lambda_{0} + \lambda x_{i2} + V$$

Multicollinearity and estimability

Multicollinearity

(t- and [unidimensional] F-) testing of a single regressor (e.g. R_1) \doteq testing for the component that is <u>not explained by</u> (is orthogonal to) the other/the reduced model (e.g. R_2)

- \Rightarrow multicollinearity is contrast specific
- ⇒ "conflating" correlated regressors by means of (multidimensional) F-contrasts permits assessing common contribution to variance

 $(X_i \beta_{estim} = projection of Y_i onto X space)$

Multicollinearity

(relatively) little spread after projection onto

x-axis, y-axis or f(x) = x

reflecting reduced efficiency for detecting dependencies of the observed data on the respective (combination of) regressors

(MRC CBU Cambridge, http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency)

Orthogonality matrix

Statistical analysis: Design orthogonality					
Intatrix 	-sn(1) F144(3) -sn(1) F244(1)	-5n(1)F2%4(2) -5n(1)F2%4(3) -5n(1)F2%4(3)		-Sn(1)R4 -Sn(1)R5 -Sn(1)R5 -Sn(1)R6	-Sit()) constant
	+				
design orthogonality	5			2	Sin () () () () () () () () () (
Measure : Scale :	abs. valu black - co white - ori gray - no	e of cosine linear (cos thogonal (c it orthogona	e of angle b ;=+1/-1) :os=0) al or coline:	etween colu ar	mns of design matrix

reflects the cosine of the angles between respective pairs of columns

(SPM course Oct. 2010, Guillaume Flandin)

Orthogonalizing

leaves the parameter estimate of R_1 unchanged but alters the estimate of the R_2 parameter

assumes unambiguous causality between the orthogonalized predictor and the dependent variable by attributing the common variance to this one predictor **only**

hence rarely justified

Dealing with multicollinearity

Avoid.

(avoid dummy variables; when sequential scheme of predictors (stimulus – response) is inevitable: inject jittered delay (see B) or use a probabilistic R₁-R₂ sequence (see C))

- Obtain more data to decrease standard error of parameter estimates
- Use F-contrasts to assess common contribution to data variance
- Orthogonalizing might lead to selffulfilling prophecies

⁽MRC CBU Cambridge, http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency)

Parametric vs. factorial design

Widely-used example (Statistical Parametric Mapping, Friston et al. 2007)

Four button press forces

Parametric vs. factorial design

Which – when?

factorial

Limited prior knowledge, flexibility in contrasting beneficial ("screening"):

Large number of levels/continuous range:

- Slides from Methods for Dummies 2011
- Rik Henson Short SPM Course slides
- SPM 2012 Course
- SPM Manual and Data Set

Special thanks to Guillaume Flandin