
1st level analysis 
Basis functions, parametric modulation and 

correlated regressors 
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First Level Analysis 

• Bold impulse response 

• Temporal Basis Functions  

• Parametric modulation 

• Correlated regressors 



Blocked design vs. event-related 

design 



Hemodynamic Response 

Function (HRF) 

• Function of blood 
oxygenation, flow, volume  

• Peak (max. oxygenation) 
4-6s poststimulus; baseline 
after 20-30s 

• Initial undershoot can be 
observed  

• Similar across V1, A1, 
S1… but possible 
differences across:  
– other regions    

– individuals 

Brief 
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Hemodynamic Response 

Function (HRF) 

• Long SOA → BOLD 
response returns to 
baseline, no overlap 

• Overlap can be 
accommodated if the 
BOLD response is 
explicitly modelled 
(linear superposition) 

• Short SOAs are 
more sensitive 

Brief 

Stimulus Undershoot 

Initial 

Undershoot 

Peak 



General Linear (convolution) 

model 



General linear model 



Temporal basis functions 



Temporal basis functions 

• Fourier Set 

  Windowed sines & cosines 

  Any shape (up to frequency limit) 

  Inference via F-test 

 

 

 

• Finite Impulse Response 

  Mini “timebins” (selective averaging) 

  Any shape (up to frequency limit) 

  Inference via F-test 

 



Temporal basis functions 

Two Gamma functions  
added 
 

• Gamma Functions 

  Bounded, asymmetrical (like BOLD) 

  Set of different lags 

  Inference via F-test 

 



Temporal basis functions 

• Gamma Functions 

  Bounded, asymmetrical (like BOLD) 

  Set of different lags 

  Inference via F-test 

 

 

 

• “Informed” Basis Set 

  Best guess of canonical BOLD response  

  Variability captured by Taylor expansion   

  “Magnitude” inferences via t-test…? 

 



Temporal basis functions 

Canonical 

“Informed” Basis Set 

(Friston et al. 1998) 

 
Canonical HRF (2 gamma 

functions) 



Canonical 

Temporal 

Temporal basis functions 

“Informed” Basis Set 

(Friston et al. 1998) 

 
Canonical HRF (2 gamma 

functions) 

plus Multivariate Taylor expansion 

in: 

• time (Temporal Derivative) 



Temporal basis functions 

“Informed” Basis Set 

(Friston et al. 1998) 

 
Canonical HRF (2 gamma 

functions) 

plus Multivariate Taylor expansion 

in: 

• time (Temporal Derivative) 

• width (Dispersion Derivative) 

 

Canonical 

Temporal 

Dispersion 



Design Matrix 

        Left          Right     Mean 

3 regressors used to model each 
condition  

The three basis functions are: 

 1. Canonical HRF 

2. Derivatives with respect to 
 time  

3. Derivatives with respect to 
 dispersion 

 



Temporal basis functions 

• “Informed” Basis Set 

  “Magnitude” inferences via t-test on  canonical parameters (providing 

 canonical is a reasonable fit) 

 “Latency” inferences via tests on ratio of derivative : canonical 

 parameters 



Which temporal basis set?  
Example: rapid motor response to faces, Henson et al, 2001 

…canonical + temporal + dispersion derivatives appear sufficient 

…may not be for more complex trials (eg stimulus-delay-response) 

…but then such trials better modelled with separate neural 

components (ie activity no longer delta function) + constrained HRF 

(Zarahn, 1999)  

+ FIR + Dispersion + Temporal Canonical 



Comparison of the fitted 

response 

18 

Left: Estimation using the simple model 

Right: More flexible model with basis functions 

Haemodynamic response in a single voxel.  
 



Summary 

SPM uses basis functions to model the 

hemodynamic response using a single basis function 

or a set of functions.  

 

The most common choice is the `Canonical HRF' 

(Default in SPM) 

 

By adding the time and dispersion derivatives one 

can account for variability in the signal change over 

voxels 

 



Part II:  

Correlated regressors 

parametric/non-parametric 

design 



Multicollinearity 

yi = ß0 + ß1xi1 + ß2xi2 +… +  ßNxiN + e 

 
Coefficients reflect  

an estimated change in y  
with every unit change in xi  

while controlling for all other regressors 



Multicollinearity 

yi = ß0 + ß1xi1 + ß2xi2 +… +  ßNxiN + e 

 

   xi1 = l0 + lxi2 + v 

{ 
Xi1 

(e.g. age) 

Xi2  

(e.g. chronic disease duration) 

x  
x  

x  
x  x  

x  

x  
x  x  

x  

x  

low variance of v 
high variance of v 

x  

x  

x  
x  

x  
x  

x  

x  x  
x  x  

Xi1 

Xi2 



Multicollinearity and estimability 

y 

e 

x1 

x2 ̂ˆ Xy 

(SPM course Oct. 2010, Guillaume Flandin) 

OLS minimizes e by 
 
 Xe = 0  
 
with 
 e = Y – (Xestim)-1  
 
which gives 
 

 estim = (XTX)-1XTY 

 cf 
covariance matrix 

perfect multicollinearity  
(i.e. variance of v = 0) 
 

 det(X) = 0  
  (XTX) not invertible 
 estim not unique 

high multicollinearity  
(i.e. variance of v small) 
 

 inaccuracy of 
individual estim, high 
standard error  



Multicollinearity 

Xiestim 

R1 

R2 

R1’ 

(t- and [unidimensional] F-) testing of a single 
regressor (e.g. R1) =̂ testing for the component 
that is not explained by (is orthogonal to) the 
other/the reduced model (e.g. R2)  
 
 multicollinearity is contrast specific 
 
 “conflating” correlated regressors by means 

of (multidimensional) F-contrasts permits 
assessing common contribution to variance 

 

(Xiestim = projection of Yi onto X space) 



Multicollinearity 

(relatively) little spread after 
projection onto  
 
 x-axis,  
 y-axis or 
 f(x) = x 
 
reflecting reduced efficiency 
for detecting dependencies 
of the observed data on the 
respective (combination of) 
regressors regressor 1 x hrf 

re
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(MRC CBU Cambridge,  
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency) 



Orthogonality matrix 

reflects the cosine of the angles 
between respective pairs of 
columns 

(SPM course Oct. 2010, Guillaume Flandin) 



Orthogonalizing 

Xestim 

R1 

R2
new 

R1
orth 

R2 

leaves the parameter estimate of R1 
unchanged but alters the estimate of 
the  R2 parameter 
 
assumes unambiguous causality 
between the orthogonalized predictor 
and the dependent variable by 
attributing the common variance to this 
one predictor only  
 
hence rarely justified 



Dealing with multicollinearity 

 Avoid.  
     (avoid dummy variables; when                                            
      sequential scheme of predictors  
     (stimulus – response) is inevitable:  
      inject jittered delay (see B) or use a  
      probabilistic R1-R2 sequence (see C))  
 
 Obtain more data to decrease standard 

error of parameter estimates 
 

 Use F-contrasts to assess common 
contribution to data variance 
 

 Orthogonalizing might lead to self-
fulfilling prophecies 

(MRC CBU Cambridge,  
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency) 



Parametric vs. factorial design 
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Widely-used example  
(Statistical Parametric Mapping,  
Friston et al. 2007) 
 

Four button press forces 



Parametric vs. factorial design 
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Which – when? 
 
 
Limited prior knowledge, 
flexibility in contrasting 
beneficial (“screening”): 
 
 
 
 
 
 
Large number of 
levels/continuous range: 
 



Resources 

• Slides from Methods for Dummies 2011 

• Rik Henson Short SPM Course slides 

• SPM 2012 Course  

• SPM Manual and Data Set 

 

Special thanks to Guillaume Flandin 

 


