Overviaew:

generalisability of inferences from multi-subject
functional mapping experiments

Most currently employed statistical assessments
(parametric & non-parametric) only account for the error
variability from scan-to-scan

only assesses the mean (average) effect

not generalisableto the population(s) from which subjects
weredrawn — “ " inference

unsatisfactory for group comparisons

a group difference may simply reflect small differences between the
particular subj idied, rather than a systematic di
between the populations from which the groups were drawn

To extend inference to the population(s) from which the
subjects are drawn, analysis must account for sampling
subjects from the population — a

model the variability in response from subject to subject
account for both between-subject & error variance

most designs are balanced and subj ect-separ able

appropriate
can be implemented via a multi-level approach
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Theory: fixed effects

(illustrated for parametric General Linear Model / multiple regression)
Consider a 2-condition n-subject fMRI experiment...
General Linear Model 1Y for the timecour ses (at a voxel)
Y=y +af@)+...+

measured response on scan i of subject
reference function — such as a box-car
residual errors
~N(©, ")
with parameters...
a; magnitude of the activation for subject i
Vi additive subject effects (i = 1

Current analyses assume par ameter s ar e fixed effects
assess significance of mean activation a,
using &, ~N (a., o~ / nw)
a, isthe mean measured activation

wisaweight computed from the design matrix, accounting for the
model and temporal auto-correlation in thefMRI time series[@

only error component of variance (©-) isconsidered
only mean activation for these subjectsis assessed
thisis effectively a

results can not be generalised to population




Example: fixed effects analysis

Six subject visual activation:
Epoch fMRI | BABABABABABABABA : 10 scans/epoch
B  “baseline’ fixation point
A  “active’ starfield smulation
smoothed box-car reference waveform
“high-pass’ filter of discrete cosine basis functions 4!

RT=3.2s!| 32s/epoch || cut off 128s

p < 0.001 (uncorrected)

-~

»

.

| { p < 0.05 (corr ected)
[

SPM (1)
ixedt effec ) ) t' A

mean activation | compared with error variance
between-subject variability not taken into account
strong evidence of average activation
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Theory: random effects

to extend inference to population
subjects are chosen at random from population
sooj'sare
a; ~N (a, 0%,)

ais mean activation about which we wish to infer

02, is

account for error (©°.) and between-subject (02,)
of variance when assessing observed average
activation

test population mean activation o using:
a.~N(a,02,/n + 0% /nw ) (assuming balanced design)

within-subject (1%) level:
Yi=Yi+of@)+..+
between-subject (2) level:
o, =a+g g ~N(0, 0%,)
amodel on the parameter s of the within-subject model
In general such models are difficult to assess
requiringiterative algorithms & special statistics
However: In functional neuroimaging...
designs are balanced (or only slightly imbalanced)
models ar e separable into individual subject models
all parameter s areindependent from subject to subject
& can therefore be estimated separ ately

individual subject modelsall (nearly) identical (in form)
two-stage approach




Example: random effects analysis

Theory: two-stage approach

Fit level-one (within-subject) level models: level-one
Yi=vi+o f@+...+
for each subject i

giving subject activation estimates

o, ~N(a,, 0" /w)

level-two

an estimate of the mixed-
model varia
0%, +

P|Ug estimates into second level (between-subject) model:
a =a+
aone-sample t-test model
residualse;’ ~N (0, 0%)
whereo? =07, + 0" [w
0.~N(a,0% /n+o [nw)
asrequired for population inference
a one samplet-test on the subject activation estimates

variance

cf.o’in=0%,/n+

[
[
[
[
[

24X,

mean activation | [P<@E0 (TR,
compared with level-two :

residual variance SN
both and between-subject 4
componentsof variance

accounted for

inference extends to population

much lower significance

attempting to infer about the
population from a sample of six!

level-2 model &
level-2 contrasts

parameter

estimation inference

(population)
inference
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| mplementation: contrast images

In general: Consider general single-subject model:
Y=XB+
in matrix form:
data vector Y
design matrix X
parameter vector
residual errorsg
contrast c' B .
estimated by c" B

General two-stage approach
write contrast image '3 for each subject
assess contrast images acr 0ss subjects in second level model

Computation of contrast images
B=(X™X)1XTY
Qré =T (XTX) L XTY
aweighted sum of the data
no need to fit first-level model

Discussion

General inter subject-level modelling
via mor e elabor ate second level models
group comparisons:
2nd |evel consists of a two-samplet-test
correlation of activation with a subject score
2nd |evel model isregression of subject activations on score
Between-subject variability 02, iskey
usually much greater than error variance—o?, »
especially for cognitive tasks

02, dominates random-effects analysis variance term
0%, /n+0° [ nw

high chance of fixed-effects analysis (ignoring 02,) producing
significant results not representative of the population

Number of subjects (n) iscrucial
n-1 degrees of freedom
number of scans per subject not so important
more subjects & lessscans per subject
Unbalanced experiments (non-identical within-subject designs)
error variance weighting (w) not common to all subjects

but between-subject variability » error variability (o2, »

w appearswith error variability as o, / nwin random-effects
analysisvarianceterm (02, /n + o/ nw)

changesin w have little effect
dight imbalances have negligible effect on analysis
can still use smple two-stage framework
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Conclusions

Random effects analyses are required for generalisation of
study results to population(s) from which subjects drawn

Particularly relevant for
group comparisons
wher e population inferenceis sought
multi-subject fMRI

whereerror variability issmall
(relative to between-subject variability)

cognitive paradigms
wher e between-subject variability is great

Two-stage approach:

collapse data for each subject into a single image
parameterising the effect of interest (within-subject modelling)

assess these images acr oss subjectsusing a simple
between-subject model

extendsto multiple levels
(when designs ar e separ able and balanced at all levels)

Multi-stage approach is
intuitive
practicable with existing software
flexible
extensible

Random effects analyses are standard fare in other disciplines
— and are beginning to be demanded by discerning journals
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