
Page 1

Overview:Overview:Overview:
generalisability of inferences from multi-subject

functional mapping experiments

l Most currently employed statistical assessments 
(parametric & non-parametric) only account for the error 
variability from scan-to-scan – fixed-effects analyses

– only assesses the mean (average) effect for these subjects

– not generalisable to the population(s) from which subjects 
were drawn – “case study” inference

– unsatisfactory for group comparisons
a group difference may simply reflect small differences between the 
particular subjects studied, rather than a systematic difference 
between the populations from which the groups were drawn

l To extend inference to the population(s) from which the 
subjects are drawn, analysis must account for sampling 
subjects from the population – a random-effects analysis

– model the variability in response from subject to subject

– account for both between-subject & error variance

– most designs are balanced and subject-separable
∴ appropriate hierarchical random effects models 

can be implemented via a multi-level approach

Theory: fixed effectsTheory: Theory: fixed effectsfixed effects

(illustrated for parametric General Linear Model / multiple regression)

Consider a 2-condition n-subject fMRI experiment…
l General Linear Model [1] for the timecourses  (at a voxel)

Yij = γi + αi f(j) + … + εij

where…

– Yij – measured response on scan i of subject j
– f(•) – reference function – such as a box-car

–  εij – residual errors
– usually εij ~ N(0 , σ2

ε)

with parameters…

–  αi – magnitude of the activation for subject i

–  γi – additive subject effects (i = 1,…, n )

l Current analyses assume parameters are fixed effects
– assess significance of mean activation of these subjects  – α•

– using α• ~ N (α• , σ2
ε / nw)

α• is the mean measured activation
w is a weight computed from the design matrix, accounting for the 
model and temporal auto-correlation in the fMRI time series [2]

– only error component of variance (σ2
ε) is considered

∴ only mean activation for these subjects is assessed

– this is effectively a case study
– results can not be generalised to population
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l Six subject visual activation:
– Epoch fMRI : BABABABABABABABA : 10 scans/epoch

– B → “baseline” – fixation point

– A → “active” – starfield simulation

– smoothed box-car reference waveform

– “high-pass” filter of discrete cosine basis functions [3]

RT=3.2s ⇒  32s / epoch ⇒  cut off 128s

l mean activation    compared with error variance
– between-subject variability not taken into account

– strong evidence of average activation for these subjects

contrast for mean activation effect α•

Example: fixed effects analysisExample: Example: fixed effects analysisfixed effects analysis

timecourses at [ 03, -78, 00 ]
p < 0.000001 (uncorrected) fixed-effects

design matrix

p < 0.001 (uncorrected)

p < 0.05 (corrected)

(global norm
alisation by proportional scaling)
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Theory: random effectsTheory:Theory: random effects random effects

…to extend inference to population
– subjects are chosen at random from population

– so αi's are random effects
–  αi ~ N (α, σ2

α)

–  α is population mean activation about which we wish to infer

–  σ2
α is between-subject variability

– account for error (σ2
ε) and between-subject (σ2

α) 
components of variance when assessing observed average 
activation

– test population mean activation α using:
 α• ~ N (α , σ2

α / n  + σ2
ε / nw  )  (assuming balanced design)

…a hierarchical model
– within-subject (1st) level:

Yij = γi + αi f(j) + … + εij –  εij ~ N(0, σ2
ε )

– between-subject (2nd) level:
 αi = α + εi – εi ~ N(0, σ2

α )
a model on the parameters of the within-subject model

l In general such multi-level models are difficult to assess
– requiring iterative algorithms & special statistics

l However: In functional neuroimaging…
– designs are balanced (or only slightly imbalanced)

– models are separable into individual subject models
– all parameters are independent from subject to subject

& can therefore be estimated separately

– individual subject models all (nearly) identical (in form)

→ two-stage approach
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Theory: two-stage approachTheory: Theory: two-stage approachtwo-stage approach

1 Fit level-one (within-subject) level models:
– Yij = γi + αi  f (j) + … + εij

– for each subject i

→giving subject activation estimates
–  αi ~ N (αi  , σ2

ε / w )

2 Plug estimates into second level (between-subject) model:
–  αi = α + εi'

– a one-sample t-test model
– residuals εi' ~ N (0, σ2 )

– where σ2 = σ2
α + σ2

ε / w 

⇒  α• ~ N (α , σ2
α / n + σ2

ε / nw )

→as required for population inference

→a one sample t-test on the subject activation estimates
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Example: random effects analysisExample: Example: random effects analysisrandom effects analysis
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p < 0.001 (uncorrected)
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level-two
(between-subject)

(no voxels significant at p < 0.05 (corrected))

– mean activation
compared with level-two 
residual variance

– both error and between-subject 
components of variance 
accounted for

– inference extends to population
– much lower significance

attempting to infer about the 
population from a sample of six!

timecourses at [ 03, -78, 00 ]
p = 0.000577 (uncorrected) mixed-effects

contrast images
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Implementation: contrast imagesImplementation:Implementation: contrast images contrast images

l In general: Consider general single-subject model:
– Y = X β + ε

– in matrix form:
data vector Y

design matrix X

parameter vector β
residual errors ε

– contrast cT β
– estimated by cT β

l General two-stage approach
– write contrast image cTβ for each subject

– assess contrast images across subjects in second level model

l Computation of contrast images
–  β = (XTX)-1 XT Y

⇒ cTβ = cT (XTX)-1 XTY

–  a weighted sum of the data
– no need to fit first-level model
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DiscussionDiscussionDiscussion
l General inter subject-level modelling

– via more elaborate second level models

– group comparisons:
– 2nd level consists of a two-sample t-test

– correlation of activation with a subject score
– 2nd level model is regression of subject activations on score

l Between-subject variability σ2
α is key

– usually much greater than error variance – σ2
α » σ2

ε
especially for cognitive tasks

– σ2
α dominates random-effects analysis variance term

σ2
α / n + σ2

ε / nw

→high chance of fixed-effects analysis (ignoring σ2
α) producing 

significant results not representative of the population

l Number of subjects (n) is crucial
– n-1 degrees of freedom

– number of scans per subject not so important
⇒ more subjects &  less scans per subject

l Unbalanced experiments (non-identical within-subject designs)

– error variance weighting (w) not common to all subjects 

– but between-subject variability » error variability (σ2
α » σ2

ε)

w appears with error variability as σ2
ε / nw in random-effects 

analysis variance term (σ2
α / n + σ2

ε / nw ) 

⇒  changes in w have little effect

→slight imbalances have negligible  effect on analysis

→can still use simple two-stage framework
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ConclusionsConclusionsConclusions
Random effects analyses are required for generalisation of 

study results to population(s) from which subjects drawn

l Particularly relevant for
– group comparisons

– where population inference is sought

– multi-subject fMRI
– where error variability is small 

(relative to between-subject variability)

– cognitive paradigms
– where between-subject variability is great

l Two-stage approach:
– collapse data for each subject into a single image 

parameterising the effect of interest (within-subject modelling)

– assess these images across subjects using a simple 
between-subject model

– extends to multiple levels
(when designs are separable and balanced at all levels)

l Multi-stage approach is
– intuitive

– practicable with existing software

– flexible

– extensible

Random effects analyses are standard fare in other disciplines 
— and are beginning to be demanded by discerning journals
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