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Abstract

Statistical Paramemetric Mapping (SPM) is a method for detecting
regional, task-related changes in brain activity from neuroimaging data.
In this paper we provide a guide to the methodological literature on SPM,
highlighting key papers and those of historical interest. Complementary
approaches, which look at distributed task-related changes, such as mul-
tivariate analysis and effective connectivity, are also covered.

1 Introduction

The fundamental text on Statistical Parametric Mapping (SPM) is the
Human Brain Function (HBF) book [1]. This comprises a basic overview
[2], and then chapters on the spatial transformation of images [3], charac-
terizing brain images with the general linear model [7], making statistical
inferences [5], characterizing distributed functional systems [3], charac-
terizing functional integration [2] and a chapter looking at the basic types
of study design [2].

In addition there are a number of general introductory articles and
commentaries. In [9], the distinction is made between (i) making maps of
functional responses in the brain and (ii) discerning the principles under-
lying their organization, where both approaches are considered fruitful. A
more detailed and up-to-date review of functional brain imaging appears
in [10]. A comprehensive tutorial on Statistical Parametric Mapping
(SPM), experimental design and functional and effective connectivity ap-
pears in [11]. Researchers new to the field are encouraged to read [12].

For each section, we provide a list of methods papers and describe
the contribution of each. The lists are not exhaustive and some papers
appear in more than one section. Key papers are marked with an asterisk
(*) and papers of historical note are marked with a dagger (). We em-
phasise that this bibliography is focussed on the methodological literature
on SPM from the Wellcome Department of Cognitive Neurology and is
by no means meant to be an exhaustive bibliography of the more general
area of neuroimaging analysis.
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Spatial Processing

Before subsequent processing, images must be realigned and spatially nor-
malised to remove movement artifacts or to put data from different sub-
jects into a common anatomical frame. These methods are reviewed in

[1]-



The idea of using structural information in functional data to register
images was first presented in [2]. This approach provided a linear affine
normalisation of PET images (an affine transformation preserves parallel
lines).

In [3], the authors consider the registration of PET images using linear
translations to correct for positional shifts and nonlinear resampling to
account for morphological differences among subjects.

Friston et al. [4] propose an algorithm for removing movement-
related artifacts in fMRI. The method is composed of two stages. In
the first stage, each image is transformed via a 6-parameter rigid-body
transformation so as to be as similar as possible to the first image in the
time series. This corrects for changes in instantaneous position of the
body in the scanner. A second stage, based on an autoregressive-moving
average (ARMA) model, corrects for changes in the recorded signal due to
the sequence of body positions. This second component can be attributed
to the spin-excitation history of the object being scanned.

In [5], the authors describe a general framework for registering images
that involves both spatial and intensity transformations using a Gauss-
Newton optimisation method. This paper introduced spatial basis func-
tions for defining warps and is the foundation for the nonlinear normali-
sation used in SPM.

In [6], the authors present a method for co-registration of brain im-
ages from different modalities. Instead of matching the images directly,
one performs intermediate within modality registration to two template
images that are already in register. This paper also describes a segmen-
tation method that is refined in [7]. The main contribution of this work
is that it uses spatial priors from previously segmented images. In [8],
the authors consider the co-registration of functional PET images with
structural fMRI images (using the above method). The algorithm is com-
pared to the Automatic Image Realignment (AIR) method. Ashburner
[9] et al. extend the standard affine registration method by incorporating
information about the variability in the shape and size of heads in the
form of Bayesian priors. The paper is is important because it brought the
spatial basis function approach into a Bayesian framework. In [10] and
[11], the authors present a nonlinear spatial registration algorithm which
uses a set of low spatial frequency basis functions (discrete cosines), and a
smoothness constraint which is implemented using a Bayesian Maximum a
Posteriori (MAP) estimator. In this short review article [12], the authors
explain the motivation behind the development of the above registration
methods - highlighting the need to remove motion artifacts and to bring
data from many subjects into the same space for anatomical localization
and intersubject averaging.

In [13], the authors present a finite element (hence high dimensional)
approach to nonlinear image registration. Symmetric priors are imposed
to ensure smooth transforms and a MAP solution is found. The work in
[14] extends the algorithm from 2 to 3-dimensional images.

Registration methods are also central to the field of computational
neuroanatomy which looks at differences in the structure (rather than
function) of different human brains.

In [15], the authors illustrate a method for identifying macroscopic
anatomical differences among the brains of different populations of sub-
jects. The method involves spatial normalization of structural MR images
(affine transformation and a nonlinear deformation, based on a discrete
cosine basis set) and a canonical variates analysis (see section 8) to assess



significant differences in deformations between groups. This is known as
Deformation-Based Morphometry (DBM).

A related procedure is known as Voxel-Based Morphometry (VBM)

[7] and was first described in [16]. VBM throws away global differences
and focuses on local differences. The normalised images are first classified
as being either grey matter, white matter or Cerebro-Spinal Fluid (CSF),
using a refined version of the algorithm described in [6]. Following this,
the data are smoothed before performing voxel-wise statistical tests.
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3 General Linear Model

The General Linear Model (GLM) and the theory of Gaussian Random
Fields (GRFs) (or, simply, ‘Random Field Theory’) lie at the heart of
statistical parametric mapping. SPM was first formally introduced in [1]
which described a GLM that used global activity as a confounding covari-
ate. The defining features of SPM were, at that time, the construction
of maps of a statistical parameter obtained by treating each voxel sep-
arately in a mass univariate approach. In [2], the problem of multiple
comparisons was first addressed using the theory of stochastic processes
and estimates of the smoothness of the images (this work was later gen-
eralised - as described in section 4). The two elements of SPM, namely
GLM and GRF, are described together in [3].

The validity of many of the assumptions underlying SPM (eg. that
error variance changes over voxels, that voxel error terms are Gaussian-
distributed), is addressed in [4].

In [5], Holmes considers a number of issues underlying the statisti-
cal analysis of PET data. This covers GLMs and GRFs and again ad-
dresses the issue of homoskedacity (equal error variance) across voxels.
A Markov Random Field (MRF) model is also proposed, for segmenting
active areas from non-active areas. Finally, a non-parametric approach
is proposed for the analysis of simple activation studies. This removes
the need to assume that voxels are Gaussian-distributed, and develops a
‘distribution-free’ procedure which is always valid, albeit at the cost of
increased computation. The non-parametric analysis is also published in
[6].

An introduction to the GLM and its application to neuroimaging (in-
cluding to fMRI) is given in [7].
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4 Random Field Theory

In SPM, the GLM is used to relate the activity at each voxel to the
experimental task. Significant task-related changes in voxel activity are
assessed using F', t or z statistics. To guard against false positives, a
correction for multiple comparisons (ie. 10° comparisons over the 10°
voxels) must be made. This is achieved using Gaussian Random Field
(GRF) theory.

The core paper in this area is [1]. This provides an estimate of the p-
value for local maxima of Gaussian, ¢, x> and F fields over search regions
of any shape or size in any number of dimensions. This unifies earlier
results on 2D [2] and 3D [3] images.

The above analysis requires an estimate of the smoothness of the im-
ages (images have some inherent smoothness but are also smoothed using
Gaussian kernels (i) to allow for variability in subjects neuroanatomy and
(ii) to ensure the validity of GRF theory). In [4], Poline et al. estimate
the dependence of the resulting SPMs on the estimate of this parameter.
Whilst the applied smoothness is usually fixed, [5] propose a scale-space
procedure for assessing significance of activations over a range of pro-
posed smoothings. In [6], the authors implement an improved estimation
procedure for estimating smoothness in Gaussianised t-fields.

Another approach to assessing significance is based, not on the height
of a cluster of activity, but on its spatial extent [7].

In [8], the authors consider a hierarchy of tests that are regarded as
voxel-level, cluster-level and set-level inferences. These inferences have
increasing power but decreasing spatial localization. The notion of set-
level inferences allows one to assess the significance of distributed (rather
than local) activations.

If the approximate location of an activation can be specified in advance
then the significance of the activation can be assessed using the spatial ex-
tent or volume of the nearest activated region [9]. This test is particularly
elegant as it does not require a correction for multiple comparisons.

In more recent work [10], Kiebel et al. propose a model for the analysis
of PET and fMRI data that allows incorporation of prior neuroanatomical
knowledge. Specifically, a set of basis functions placed on the grey matter
surface obtained from a T1-weighted MRI image, allows one to specify
a spatial smoothing on the data that both varies over the image and
is anatomically informed. This improves the spatial resolution and the
sensitivity of the resulting SPM analysis.



The mathematical basis of GRF theory is described in a series of peer-

reviewed articles in statisical journals [11, 12, 13, 14, 15].
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5 Experimental Design

There are a number of useful reviews of different approaches to experi-
mental design in neuroimaging, the most introductory being [1], with [2]
being the most tutorial, and [3] being the most up-to-date (including a
discussion of event-related fMRI designs).

The first analyses of PET images used a ‘cognitive subtraction’ paradigm
which relies upon the assumption of pure insertion - this assumes that a
new cognitive component can be purely inserted ie. without affecting the
expression of previous ones. This assumption is often invalid, however, as
shown in [4] where it was demonstrated that interaction terms (between
the new and previous cognitive components) are often significant.

More powerful experimental designs, such as parametric designs (in-
volving continuous dependent variables, such as time) and factorial de-
signs (which explicitly look at interaction terms) can be facilitated with
the GLM.

The first published study using a parametric analysis was by Price et
al. [5] where activity in primary auditory cortex was found to be linearly
related to the word presentation rate (this was in contrast to, for example,
Wernicke’s area which responded solely to the occurence of a word rather
than its presentation rate).

In [6] Buchel et al. extend the above analysis by allowing stimulus or
task parameters to be nonlinear functions of the hemodynamic response.
This was implemented using second-order polynomial expansions and ap-
plied to PET data. In [7] the method was implemented in the context
of the General Linear Model and SPM’s, based on omnibus F-statistics
(eg. to test for any significant linear and/or nonlinear effect), were used
to test for local linear or nonlinear dependencies in fMRI data.

The first factorial analysis of PET data, for example, found a sig-
nificant interaction between motor activation and time during a paced
finger opposition task [8]. The first psycho-pharmaceutical study using a
factorial design was [9].

Despite these advances, the experimental paradigms so far described
are restricted in that the inferences made relate to the particular subjects
scanned. This is overcome in the Random Effects (RFX) Analysis proce-
dure where inferences can be made about the populations from which the
subjects are sampled (eg. males/females). This can be implemented in
SPM using a two-level analysis procedure described in [10].

Conjunction analysis [11] looks for areas of activation that are common
to a number of tasks. For example, in a phonological retrieval task whether
subjects named words, objects, letters or colors there is always activation
of the left thalamus (and a number of other areas). In a further paper
[12], the authors show that conjunction analysis can be applied to data
from multiple subjects to make inferences about populations. This work
relied on a technical development by Worsley [13].

The relative merits of RFX versus conjunction analysis and the larger
issues are discussed in [14].
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fMRI

To apply SPM to fMRI time-series it was necessary to account for two
fundamental characteristics of fMRI data: (i) that the Hemodynamic Re-
ponse Function (HRF) is transient, delayed and dispersed in time and (ii)



that the sampling interval is shorter than the time constant of the HRF,
making the observed time-series highly correlated. These issues were ad-
dressed in [1] where the HRF was modelled using a Poisson function
and the intrinsic correlation was measured after first removing the sig-
nal components that were phase-locked to the stimulus (ie. the extrinsic
components).

In a later paper [2], the authors consider a temporal smoothing of the
fMRI time-series (using a Gaussian filter) so as to induce a known auto-
correlation structure. This is then used to adjust the degrees of freedom
used when making inferences from the GLM. In the further development
of this model [3], Worsley and Friston introduced a general procedure
for unbiased estimation of the error variance term. This series of papers
culminates in [4], where it was shown that whitening (estimating the
autocorrelations and then removing them - a procedure favoured by a
number of other researchers) can result in a large bias in the resulting
statistical inferences (ie. many false positives).

At this point in time, the favoured approach for handling correla-
tions in fMRI time seris was therefore ‘smoothing’ rather than ‘whitening’.
More recent developments, however, have changed this view somewhat.
With the advent of Hierarchical Bayesian Models [5], [6] a new approach,
which might be termed ‘Bayesian whitening’ is now the preferred method.
This allows for both the error variance term and the intrinsic correlation
term to be estimated in an unbiased manner.

A second key feature of fMRI data, as opposed to PET data, is that
data can be collected more than once from any given subject. This allows
for a quantification of the ‘within-subject’ variability, which is to be con-
trasted with the ‘between-subject’ variability. Both sources of variability
can be accounted for the random effects analysis procedure discussed in
the previous section. In earlier work Buchel et al. [7] showed that fMRI
data from multiple subjects could be pooled in a ‘fixed-effects’ analysis.
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7 Event-Related fMRI

Event-related fMRI (efMRI) is the use of fMRI to characterize and de-
tect transient hemodynamic responses to brief stimuli or tasks, and is
analagous to the the study of event-related potentials in electrophysiol-
ogy. A review of the statistical issues underlying efMRI is presented in
[1] with special emphasis on determining the optimal experimental design
for testing a given hypothesis.

In [2], temporal basis functions were used to model the ‘early’ and
‘late’ components of the evoked response (in the context of a block-design).
These took the form of exponentially modulated sine functions. The
model can detect ‘conventional’ activations, where both components are
expressed to the same degree, and differential activations such as are in-
volved in tasks that do not require sustained attention.

Josephs et al. [3] proposed staggering stimulus times relative to scan
acquisition times so as to realize a higher effective sampling rate. This
effectively allowed, for the first time, whole-brain EPI scans to be used in
an efMRI context. In [4], the GLM is employed to detect responses that
are different in both magnitude and latency.

Friston et al. [5] characterise the evoked hemodynamic response using
Volterra kernels. This allows for nonlinear components of the response to
be modelled, such as the saturation of responses at high presentation
rates. The linear models described above may be viewed as a first order
approximation to this nonlinear model.

In [6], the authors consider stochastic experimental designs where
an event (eg. a stimulus) has a certain probability of occuring at any
given time point. This is to be contrasted with deterministic designs
in which the timing of events is fixed. They then make the distinction
between stationary stochastic designs where the probability is fixed and
nonstationary designs where this probability may vary over time. They
conclude that block designs are generally the most efficient for detecting
differential responses, whereas designs including null events are the most
efficient for detecting transient responses.

In [7], Hopfinger et al. looked at the sensitivity of event-related fMRI
analyses to voxel size, spatial and temporal smoothing parameters and
the basis set used to characterise the HRF.
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8 Multivariate Analysis

In neuroimaging, multivariate analysis is concerned with characterising
the relations between different areas during brain function; ie. charac-
terising distributed rather than local functional systems. The general
approach and a number of instances of it are described in a tutorial in
[2].

The simplest and most frequently applied multivariate procedure is
Principal Component Analyis (PCA) which can be implemented using
Singular Value Decomposition (SVD). As applied to neuroimaging data
PCA finds a set of spatial modes that are mutually uncorrelated both
spatially and temporally. The modes are also ordered according to the
amount of variance they explain. In [2], the authors applied PCA to
the analysis of PET data. By comparing the temporal expression of the
first few spatial eigenmodes with the variation in experimental condition
a distributed functional system associated with the activation could be
identified.

A more sophisticated use of PCA occurs in the context of Generalised
Eigenimage Analysis (GEA) [3] where the principal component is found
which is maximally expressed in one experimental condition/group and
minimally expressed in another (eg. control and patient groups).

Friston et al. [4] apply Multi-Dimensional Scaling (MDS) to data
from schizophrenic and control subjects. The MDS procedure maps func-
tionally connected areas into similar positions in a 2D or 3D map. This
results in a ‘functional map’ rather than an ‘anatomical map’. For the data
studied, abnormal connectivity patterns were observed in a schizophrenic
group. The MDS algorithm works by preserving pairwise distances be-
tween data in the original high dimensional space and data in the low
dimensional (2D or 3D) visualisation space. If the distance metric is cho-
sen to be the Euclidian distance then MDS turns out to be equivalent to
projecting the data onto the first 2 or 3 principal components.

A second useful multivariate procedure is the Multivariate Linear Model
(MLM) (see eg. [3]) which maps one set of variables to another, ie. there
are multiple independent variables (inputs) and multiple dependent vari-
ables (outputs). This is to be contrasted with the Linear Model (LM)
or General Linear Model (GLM) which has multiple independent vari-
ables but only a single dependent variable (eg. the model for a voxel in
a standard SPM analysis). The multivariate analysis of covariance (Man-
Cova), for example, may be implemented using an MLM - the MLM is to
ManCova what the LM is to the analysis of variance (Anova).

In [5], the authors use a MLM in an analysis of PET data. Wilk’s
Lambda is used to assess the significance of the amount of signal vari-
ance explained (in proportion to the amount of variance unexplained -
the ‘noise’). Canonical Variates Analysis (CVA) is then used to find the
associated ‘canonical’ images. These are modes that are expressed most
in the signal and least in the noise - CVA is therefore a generalisation of
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GEA which allows for multiple groups and parametric designs. In [6],
the approach is applied to event-related fMRI where task-dependent HRF's
were identified. In [5], the approach is applied to the analysis of evoked
responses in EEG and MEG. Worsley et al. [7] apply a MLM and CVA
to PET and fMRI data. The paper extends previous work by allowing for
temporal correlations - hence the application to fMRI.

In [8], the authors derive a nonlinear PCA algorithm, implemented in
a neural network, which finds a number of sources which are orthogonal in
time. These sources generate the data via first and second order spatial
modes - these may be said to constitute the generative network. The
sources themselves are derived from the data using a separate ‘recognition’
network. Standard PCA is recovered in the absence of second order spatial
modes - or when the generative network implements the inverse function
of the recognition network.

In [9], Ashburner et al. apply a cluster analysis procedure to PET
radiotracer time series. This identified a number of archetypal time series
(tracer kinetics) and associated areas.

In [10], Friston offers a critique of Independent Component Analysis
(ICA). As applied to neuroimaging data, ICA attempts to find a set of
spatial modes that are spatially independent. In contrast to PCA, which
finds spatially uncorrelated modes, the ICA modes are sparser and more
spatially localised. As with many other multivariate procedures (eg. PCA,
MDS, cluster analysis), ICA is data-driven rather than hypothesis-driven
and is therefore best suited to the generation of new hypotheses rather
than the testing of existing ones.
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9 Effective connectivity

Effective connectivity is defined in the neuroimaging community [1] as
the influence one neural system exerts over another, either at a synaptic
or cortical level. It is defined both by a neuroanatomical model, defining
which areas are connected, and a mathematical model detailing how they
are connected (linearly, nonlinearly, with or without temporal evolution
etc.). A tutorial on effective connectivity appears in [2]. Friston et al.
[1] initially focussed on linear time-varying connections.

Effective connectivity is to be contrasted with functional connectiv-
ity. In [3], the authors present a synthesis of functional and effective
connectivity, defining functional connectivity as the temporal correlation
between spatially remote neurophysiological processes. Operationally, this
is implemented using PCA (see previous section) where the different spa-
tial modes together account for the observed correlations in the data.
In contrast, effective connectivity posits directed (and therefore causal -
rather than associative) relations between variables. The differences are
illustrated on PET and fMRI data and nonlinear time-varying effective
connectivity models are illustrated.

In [4], the interactions between V1 and V2 were characterized us-
ing a nonlinear model of effective connectivity. This extended the linear
model by allowing for modulatary connections, ie. the activity in V1 is
linearly dependent on activity in other areas and dependent on the prod-
uct of activity from other areas and the intrinsic activity in V1 (this is
the modulatory term).

To characterize the interactions between multiple areas a ‘Structural
Equation Model (SEM)’ or a ‘Path Model’ is required. This is specified by
a directed graph. In its simplest incarnation a number of path coefficients
define the linear relation between nodes on the graph (ie. neuroanatom-
ical areas). These coefficients are then set so as to explain the observed
covariance among the variables, as described in [5]. SEM was introduced
to neuroimaging by McIntosh and Gonzalez-Lima [6].

Buchel and Friston [7] propose an SEM with time-dependent connec-
tions which are estimated using a Kalman filter algorithm. The approach
is reviewed in [8] which also has a general discussion on effective connec-
tiviy.

In [9], Friston et al. introduced the concept of Psychophysiological
Interactions (PPIs) to neuroimaging. This model explains the activation
at any given voxel as an interaction between a psychological variable and
a physiological variable (plus the main effects of each). This is a powerful
cross-fertilisation of two related concepts (i) factorial designs - which look
at the interactions between two psychological variables and (ii) effective
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connecticity - which looks at the interactions between two physiological
variables (ie. the activations in different anatomical areas).

In a study of associative learning of objects and their positions [10],
increases in effective connectivity between distinct cortical systems spe-
cialised for spatial and object processing were observed (in addition to the
expected repetition supression effect).

In a study of visual attentional mechanisms [11] measures of effec-
tive connectivity based on a nonlinear system identification showed that
the effective connectivity between V2 and V5/MT is dependent on ac-
tivity in parietal cortex. This provides evidence for the role of top-down
‘backwards’ connections in visual processing.
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10 Most quoted papers

The table below shows a list of those papers that have been cited at least
50 times in scientific journals - naturally, older papers appear more often
than newer ones. The information was collated from the Institute for
Scientific Information (ISI) citation database. Note that this database
does not include volumes 1 and 2 of the Human Brain Mapping journal.

Table 1: A list of SPM methods papers with at least 50 citations

Paper | Citations |
Comparing functional (PET) images - the assessment .. (1991) 722
The relationship between global and local changes .. (1990) 456
A 3-dimensional statistical analysis .. (1992) 436
Localization in PET images: direct fitting .. (1989) 278
Plastic transformation of PET images (1991) 205
Analysis of fMRI time-series revisited (1995) 169
Functional connectivity - the PCA of large .. (1993) 165
Analysis of fMRI time-series revisited - again (1995) 158
Spatial registration and normalisation of images (1995) 152
Movement-related effects in fMRI time-series (1996) 143
A unified statistical approach for determining .. (1996) 102
Cognitive conjunction: a new approach to brain .. (1997) 98
Functional neuroanatomy of the human brain .. (1994) 97
Event-related fMRI (1997) 76
Local maxima and the expected Euler .. (1994) 68
The trouble with cognitive subtraction (1996) 63
Nonlinear event-related responses in fMRI (1998) 57
Event-related fMRI: characterising differential responses (1998) 56
Statistical parametric mapping: ontology and current issues (1995) | 52
Characterizing evoked hemodynamics with fMRI (1995) 51
Modulation of connectivity in visual pathways .. (1997) 51
A voxel-based method for the statistical ... (1995) 50
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